
SiftGPU Manual
Changchang Wu

University of North Carolina at Chapel Hill

Introduction

SiftGPU is a GPU implementation of David Lowe’s Scale Invariant Feature Transform.

The following steps can use GPU to process pixels/features in a parallel way:

1. Convert color into intensity, and up-sample or down-sample input images

2. Build Gaussian image pyramids (Intensity, Gradient, DOG)

3. Keypoint detection (sub-pixel and sub-scale localization)

4. Generate compact feature lists with GPU histogram reduction

5. Compute feature orientations

6. Compute feature descriptors

By taking advantages of the large number of graphic processing units in modern graphic

cards, this GPU implementation of SIFT can achieve a large speedup over CPU.

Not all computation is faster on GPU, so the library is also trying to find the best option for

each step. The latest version does intensity conversion, down-sampling, multi-orientation

feature list rebuilding, and descriptor normalization on CPU. The latest keypoint list

generation is also a GPU/CPU mixed implementation.

Running SiftGPU requires a high-end graphic card that 1) has a large graphic memory to

keep the allocated intermediate textures for efficient processing of new images. 2)

Supports dynamic branching. The loops in orientation computation and descriptor

generation are decided by the scale of the features, and they cannot be unrolled.

SiftGPU now runs on GLSL by default. You can optionally use CG (requires fp40) or

CUDA (experimental) for nVidia graphic cards.

Interface: class SiftGPU
Class SiftGPU is provided as the interface of this library. The following examples will
show how to use this class to run SIFT in a different ways.

Initialization, Normal initialization for an application
 //create a SiftGPU instance

 SiftGPU sift;

 //processing parameters first

 char * argv[] ={ "-fo", "-1", “-v”, “1”};

 //-fo -1, starting from -1 octave

//-v 1, only print out # feature and overall time

 sift.ParseParam(4, argv);

 //create an OpenGL context for computation

 int support = sift.CreateContextGL();

//call VerfifyContexGL instead if using your own GL context

 //int support = sift.VerifyContextGL();

 if(support != SiftGPU::SIFTGPU_FULL_SUPPORTED) ret urn;

Example #1, run sift on a set of images and get results:

//process an image, and save ASCII format SIFT file s

 if(sift.RunSIFT("1.jpg")) sift.SaveSIFT("1.sift");

//you can get the feature vector and store it yours elf

 sift.RunSIFT("2.jpg");

 int num = sift.GetFeatureNum(); //get feature count

 //allocate memory for readback

vector<float> descriptors(128*num);

vector<SiftGPU::SiftKeypoint> keys(num);

 //read back keypoints and normalized descritpros

 //specify NULL if you don’t need keypionts or desc riptors

 sift.GetFeatureVector(&keys[0], &descriptors[0]);

Example #2, run SiftGPU with your own image data
// This is very convenient for camera application

 int width = …, height =…;

 unsigned char *data = … // your (intensity) image data

sift.RunSIFT (width, height, data, GL_RGBA, GL_UNSI GNED_BYTE);

//Better use GL_LUMINANCE data to save transfer ti me

Example #3, specify a set of image inputs using SetImageList
 char * files[4] = { “1.jpg”, “2.jpg”, “3.jpg”, “4. jpg”};

 sift.SetImageList(4, files);

 //Now you can process an image with its index

 sift.RunSIFT(1);

 sift.RunSIFT(0);

Example #4, manual storage allocation

//Option1, use “-p”, “1024x1024” to initialize the texture

//storage for size 1024x1024, so that processing sm aller

//images does not require texture re-allocation

//char * argv[] ={ "-m", "-s", “-p”, “1024x1024”};

//sift.ParseParam(4, argv);

//Option2, manually allocate the storage

sift.AllocatePyramid(1024, 1024);

// processing images with different sizes.

sift.RunSIFT(“1024x768.jpg”);

sift.RunSIFT(“768x1024.jpg”);

sift.RunSIFT(“800x600.jpg”);

Example #5, runtime library loading

//new exported function CreateNewSiftGPU

 SiftGPU* (*pCreateNewSiftGPU)(int) = NULL;

//Load siftgpu dll… use dlopen in linux/mac

 HMODULE hsiftgpu = LoadLibrary("siftgpu.dll");

 //get function address

 pCreateNewSiftGPU = (SiftGPU* (*) (int))

 GetProcAddress(hsiftgpu, "CreateNewSiftGPU");

 //create a new siftgpu instance

//exported functions are all virtual

 SiftGPU * psift = pCreateNewSiftGPU(1);

Example #6, Compute descriptor for user-specified keypoints(NEW!)
vector<SiftGPU::SiftKeypoint> keys;

//load your sift keypoints using your own function

LoadMyKeyPoints(…);

//Specify the keypoints for next image to siftgpu

 sift.SetKeypointList(keys.size(), &keys[0]);

 sift.RunSIFT(new_image_path); // RunSIFT on your image data

 //****If it is to re-run SIFT with different keyp oints***

 //Use sift.RunSIFT(keys.size(), &keys[0]) to skip filtering

//Get the feature descriptor

float descriptor* = new [128 * keys.size()];

//We only need to read back the descriptors

sift.GetFeatureVector(NULL, descriptor);

Example #7, Compute (guided) putative sift matches. (NEW)
//specify the naximum number of features to match

SiftMatchGPU matcher(4096);

//You can call SetMaxSift anytime change this limit

//You can call SetLanguage to select shader languag e

//between CG/GLSL/CUDA before initialization

//Verify current OpenGL Context and do initializati on

 if(matcher.VerifyContextGL() == 0) return;

//Set two sets of descriptor data to the matcher

 matcher.SetDescriptors(0, num1, des1);

 matcher.SetDescriptors(1, num2, des2);

//Match and read back result to input buffer

int match_buf[4096][2];

int nmatch = matcher.GetSiftMatch(4096, match_buf);

// You can also use homography and/or fundamental m atrix to

// guide the putative matching

// Check function SiftMatchGPU::GetGuidedMatch

// For more details of the above functions, check

// SimpleSIFT.cpp and SiftGPU.h in the code packag e.

OpenGL Context

SiftGPU uses OpenGL, and there has to be an OpenGL context to run the program. There

are several ways to initialize the OpenGL context:

1. Use function SiftGPU::CreateContextGL. It simply uses GLUT to create an

invisible window and use that GL context to run the shaders. (The example

SimpleSIFT is doing this way).

2. Use GLUT yourself (see example project TestWinGlut).

3. Use raw OpenGL functions (see example project TestWin). You have to make

sure you have an active context before calling SiftGPU functions (for example: call

WglMakeCurrent to set the context in windows).

Multiple Implementations (CG/GLSL/CUDA)

The code package includes 5 different implementations of SiftGPU. CG Unpacked/Packed,

GLSL Unpacked/Packed and CUDA. They can be selected by using combination of “-

glsl”,”-cg”, “-unpack”, “-pack” and “-cuda”. “-glsl -pack” is now default.

The processing speed decreases when the image size increases. On NVIDIA 8800 GTX,

the CG/GLSL packed versions are faster than CUDA for large images, while CUDA is

faster for small images. This order could be different on different GPUs, and you can just

try them on your computer to select the best one for different image sizes.

The packed versions take the smallest amount of GPU memory. The CUDA version takes

more memory than others because part of the intermediate results has two copies (Both

linear memory and 2D texture).

SiftMatchGPU also has implementations for CG, GLSL and CUDA, and they can be

selected by calling function SiftMatchGPU::SetLanguage. CG/GLSL matching is slightly

slower than CUDA for exhaustive putative matching. CG/GLSL matching is faster for

guided putative matching.

Memory Management

SiftGPU needs to allocate OpenGL textures (or CUDA linear memory/texture) for storing

intermediate results. This allocation is a time-consuming step, and it would be efficient if

memory re-allocation is infrequent and the storage can be re-used to process lots of

images. The best performance can be obtained when you pre-resize all images to a same

size, and process them with one SiftGPU instance.

When starting up, you can pre-allocate the memories to fit some specified size or SiftGPU

will automatically fit the first image. You can also manually re-allocate the active pyramid

at anytime by calling SiftGPU::AllocatePyramid(int width, int height).

While processing an image that has a different size, the memory behavior is defined by

the memory management mode as follows:

1) Auto (default). The storage will automatically resize to fit the largest width and the

largest height so far. But you can pre-allocate it to the largest size you know so

that there won’t be any re-allocation after. SiftGPU will reuse existing storage that

is allocated for a large image to process small images (See example 4)

2) Tight. The storage will automatically resize to any new image size. It saves

memory for smaller images, but there will be a re-allocation each time when the

image size changes. If you start to process a set of images of a same size, you

can change to “tight” mode for better performance. (not available in CUDA version)

The memory management mode can be changed at runtime by calling function

SiftGPU::SetTightPyrmid(int tight = 1).

When you run TestWinGlut with the first input image, it will print out the total number of

megabytes of textures it takes (not including the copy of the original 4-channel image).

Please do compare that number with your total number of GPU memory.

Parameter System (used by SiftGPU::ParseParam)
 ♠ the parameter can be changed after initialization in all implementations
 ♦ the parameter can be changed after initialization in CUDA implementation

-h -help

Display usage help
-i <strings> Filenames of the input images (for example: -i 1.jpg 2.jpg 3.jpg)

-il <string> Filename of an image list file

-o <string> Where to save SIFT features

-f <float> ♦

Factor for filter width [2*factor*sigma+1] (default : 4.0)

-w <float> ♦ Factor for orientation sample window [2*factor*sigma] (default : 2.0)

-dw <float> ♠ Factor for descriptor grid size [4*factor*sigma] (default : 3.0)

-fo <int> ♠

First Octave to start detection (default: 0)

-no <int> Maximum number of octaves (default: not limit)

-d <int> DOG levels in an octave (default: 3)

-t <float> ♦ DOG threshold (default: 0.02/3)

-e <float> ♦ Edge Threshold (default : 10.0)

-m –mo <int=2>

Number of possible Feature Orientations (default : 2)

-m2p Use packed orientations (one float to store 2 orientations)
-m2p and –m1 may be slower than the default (-m 2)

-s <int=1>

Enable sub-pixel, sub-scale Localization, If the number is 0, sub-
pixel is disabled. If the number is larger than 1, multiple refinement
will be done, but only available in cg-unpacked

-lc <int =-1> CPU/GPU mixed Feature List Generation (default : 6)
Use GPU first, and use CPU when reduction size <= 2 ^num
When <num> equals -1, no GPU reduction will be used

-noprep Upload raw data to GPU if specified (Converting RGB to LUM and
down-sampling is running on CPU by default)

-sd Skip descriptor computation if specified

-unn ♠ Write un-normalized descriptor if specified

-b ♠ Write binary format descriptors

-fs <int>

Block size for feature storage <default : 4> (4 or 8 might be better
than 1 in GPU parallelism)

-cuda Use CUDA based implementation

-cg Use CG instead of GLSL

-glsl

Use GLSL instead of CG (This is default)

-tight Automatically resize storage to fit tightly to new image size
(in the default mode, the storage is only enlarged)

-p WxH Set the dimension for initializing pyramids. For example: -p
1024x768 will let all pyramid initialized to 1024x768

-lm <num>
-lmp <percent>

Maximum feature count for a level (default: 4096), and that as a
ratio of the pixel count (default: 0.05). The two parameters are only
used in initial allocation, and textures will be automatically re-
allocated when the storage is insufficient.

-v <level> ♠ Same effect as calling SetVerbose(level)
0, no output at all, except errors
1, print out over all timing and features numbers
2, print out timing for each steps
3, print out timing for each octaves
4, print out timing for each levels

-ofix ♠ Fix the orientation of all features to 0

-ofix-not ♠ Disable -ofix

-loweo ♠ Let (0, 0) be center of top-left pixel instead of corner with this
parameter. The corner is (0, 0) by default, but Lowe’s SIFT and
sift++ are using the pixel center.

-maxd ♠ Maximum working dimension. When some level images are larger
than this, the input image will be automatically down-sampled.
(default: 2560(unpacked) / 3200(packed))

-exit Exit the TestWinGlut application after processing the image.
(otherwise the viewer will show up)

-di ♦ For OpenGL-based, use dynamic array indexing in histogram
computation in the orientation computation
For CUDA, use dynamic array indexing in descriptor generation.

-pack(default)
-unpack

Use packed/unpacked implementation. The packed version should
be faster than the unpacked version.

-sign ♦ When specified, output scale of local DOG minimum keypoints will
be multiplied by -1.

 You can also change the default parameters in GlobalUtil.cpp and compile it yourself.

SiftGPU Viewers

There are 2 GUI viewers for SiftGPU in the folder TestWin\bin.

TestWinGlut.exe is a Glut-based viewer that has console output.

TestWin.exe is a Win32-based viewer that does not have console output

There are 7 view modes in the viewers:

0, original image and feature (drawn as blue points or rectangles):

1, Gaussian pyramid

2, octaves (View different octaves one by one)

3, levels (View different levels one by one)

4, the pyramid of difference of Gaussian

5, the pyramid of image gradient

6, detected keypoints in levels. Red points are the local maxima, and green points

are local minima. You can zoom to see the details in levels

Viewer keys

You can loop through these view modes by pressing the following keys:

Enter, next view

Backspace, previous view

Space . (>) next sub-view/level/octave (in view mode 0, 2, 3)

, (<) previous sub-view/ level/octave (in view mode 0, 2, 3)

x, Escape exit

Some other controls are as follows:

Mouse click, hold and move to pan the view

r Go to the next image if there is, and re-compute SIFT

o reset coordinate

+, = zoom in

-, zoom out

l start/stop loopy processing of a set of images

c Randomize the colors for sift feature box display in view mode 0-2

q Change verbose level 2-1-0-2-1-0…

Demos

1. There are three demo batch files in the ‘demos’ folder.

Demo1.bat is a basic example of SiftGPU. Try step through all the views to see

the intermediate results of SIFT using the controls explained in the last section.

Demo2.bat shows the processing of a file that contains a list of image filenames.

The images in this demo are all of size 640x480. After the viewer shows up, press

‘l’ to start/stop process the input images one by one repeatedly. Other keys also

work to change the view modes during the loop.

Demo3.bat shows the processing of a list of images of varying sizes.

Evaluation-box.bat computes the sift features for comparing with Lowe’s result.

2. SimpleSIFT project in the workspace/solution shows how to use SiftGPU without GUI.

It also shows how to read back SIFT results from SiftGPU. There is also an optional

macro which enables runtime loading of SiftGPU library.

3. Speed project shows how to evaluate the speed of SiftGPU

