
Creating Works-Like Prototypes of Mechanical Objects

Bongjin Koo
Univ. College London

Wilmot Li
Adobe Research

JiaXian Yao
UC Berkeley

Maneesh Agrawala
UC Berkeley

Niloy J. Mitra
University College London

Abstract

Designers often create physical works-like prototypes early in the
product development cycle to explore possible mechanical architec-
tures for a design. Yet, creating functional prototypes requires time
and expertise, which discourages rapid design iterations. Designers
must carefully specify part and joint parameters to ensure that parts
move and fit and together in the intended manner. We present an
interactive system that streamlines the process by allowing users to
annotate rough 3D models with high-level functional relationships
(e.g., part A fits inside part B). Based on these relationships, our
system optimizes the model geometry to produce a working design.
We demonstrate the versatility of our system by using it to design a
variety of works-like prototypes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms.

Keywords: fabrication, 3D printing, sketch-based modeling

Links: DL PDF WEB VIDEO

1 Introduction

Creating physical prototypes is an
integral part of the product devel-
opment process that helps designers
evaluate and refine potential designs,
explore multiple approaches in paral-
lel, and communicate designs to oth-
ers [Kelley 2001; Eissen and Steur
2009; Hallgrimsson 2012]. Design-
ers create different prototypes for dif-
ferent purposes. Early in the design
cycle, they often create works-like prototypes like the one shown
above that embody the functional aspects of a design. Such pro-
totypes typically contain working mechanical joints but simplified
part geometry so that designers can focus on the mechanical “ar-
chitecture” (i.e., how parts move and fit together) of the product.
Later in the cycle, designers may create looks-like prototypes that
convey the detailed shape and/or colour-material-finish (CMF) of a
design. Such prototypes help designers (and clients) understand the
intended appearance of the product.

In this work, we focus on the task of creating works-like prototypes.
Designers are increasingly turning to 3D printing as a tool for fab-
ricating physical prototypes with mechanical joints that approxi-
mate the intended functionality of a design. Yet, creating work-

Support
Flush

(a) Rough model (b) Optimized model (c) Works-Like Prototype

Figure 1: Creating works-like prototypes. Users start by creating
a rough 3D model of a design and then specifying the desired func-
tional relationships between parts (a). Our system optimizes part
and joint parameters to generate a working model (b) that can be
fabricated as a physical prototype (c).

ing mechanisms requires expertise and time [Ulrich and Eppinger
2007; Hallgrimsson 2012]. Designers must carefully specify part
proportions and joint parameters to ensure that all moving parts fit
together in the intended manner without interference. This task of-
ten involves non-trivial geometric calculations, even when the parts
are composed of simple primitives (e.g., cuboids). Moreover, de-
signers almost always iterate and refine prototypes by modifying
certain parameters (e.g., size of a part, joint types), which requires
updating the part and joint parameters to ensure a working proto-
type. Due to these challenges, designers often have to work with
skilled CAD engineers to help them create physical works-like pro-
totypes. This added friction in the design-prototype-evaluate cycle
significantly limits the number of iterations designers can make and
often leads to shallow exploration of the design space.

To address this problem, we present an interactive system that helps
designers create functioning works-like prototypes. The user starts
by creating a rough 3D model of all the parts in the design and
specifying the types of joints that connect the parts. Then, instead
of tweaking part and joint parameters to produce a working model,
our system allows users to directly specify high-level functional
relationships between parts (e.g., part A fits inside part B, parts
C and D support part E, etc.). Based on these relationships, our
system automatically adjusts part proportions and joint parameters
to produce a physically realizable working model (Figure 1c). To
aid in design exploration, the system propagates edits (e.g., users
may add/remove parts or modify part proportions) throughout the
design to ensure that all the specified functional relationships are
preserved. By allowing users to work primarily at the level of func-
tional relationships rather than low-level joint and part geometry,
our system helps designers create new prototypes more quickly and
experiment with variations of existing designs.

We used our system to fabricate works-like prototypes for a variety
of objects, including articulated devices (folding tablet), appliances
(printer), and furniture (kiosk cabinet, sofa bunk). Figure 1 shows
the printed prototype of a cabinet design generated by our system,
and Figure 10 shows all of our examples with the moving parts in
different configurations. It took less than 10 minutes of interaction
time in our system to create working 3D models for these results.

http://doi.acm.org/10.1145/2661229.2661289
http://portal.acm.org/ft_gateway.cfm?id=2661289&type=pdf
http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/worksLikePrototype/worksLikePrototype_sigga14.html

2 Related Work

There is an extensive body of literature on product design the-
ory and practice that discusses the benefits of physical prototyp-
ing [Kelley 2001; Ulrich and Eppinger 2007; Eissen and Steur
2009; Hallgrimsson 2012]. While this material offers important
motivation for our goal of helping designers create works-like pro-
totypes, we focus here on related work that proposes computational
tools for analyzing product designs and generating physical objects.

Analyzing designs. There has been a significant amount of work
that leverages sketches to produce a 3D representation of a design.
Bae et al. [2008] and Schmidt et al. [2009] propose methods for au-
thoring 3D curves based on gestures and standard techniques for
constructing perspective drawings, while Shao et al. [2012] and
Xu et al. [2014] extract 3D information from existing sketches by
leveraging drawing conventions. However, these techniques focus
on creating static 3D geometry, whereas we aim to produce mod-
els with moving parts. In this respect, the most relevant previous
work is by Shao et al. [2013], who develop a system for creating
interactive 3D models from a set of concept sketches that depict an
object from different viewpoints and with different configurations
of moving parts. However, their approach does not produce a sin-
gle consistent 3D model, which is necessary for creating a physical
realization of the design.

Tools for digital fabrication. With the recent advances in dig-
ital fabrication, researchers have started to explore methods for
transforming 3D models into physically realizable objects. Some
of these techniques optimize properties such as stability [Umetani
et al. 2012], robustness [Stava et al. 2012], and the ability to bal-
ance [Prévost et al. 2013]. However, these methods focus on the
design of static objects. In the domain of moving objects, Bacher
et al. [2012] and Cali et al. [2012] propose techniques for adding
printable mechanical joints to 3D models, while other efforts ex-
plore the design of linkage and gear mechanisms to drive toys or
automata [Zhu et al. 2012; Coros et al. 2013; Ceylan et al. 2013].
Although all of these methods produce working, physically realiz-
able models, they focus on the problem of adding joints, gears or
linkages to existing 3D models. In contrast, our work helps design-
ers create working models from scratch, which requires optimizing
both joint parameters and part geometry. Of course, commercial
CAD packages like AutoCAD and SolidWorks also enable users to
create working physical prototypes from scratch. However, these
tools require users to manually specify part and joint geometry to
produce a working design.

Constraint-based modeling. Our work is also related to the ex-
tensive body of constraint-based modeling research in the graphics
and CAD communities. In particular, we adopt the same high-level
approach as previous graphics research that tries to automatically
determine the relevant geometric relationships between parts to en-
able editing and synthesis of 3D models [Gal et al. 2009; Xu et al.
2009; Bokeloh et al. 2012; Zheng et al. 2012]. Our approach is
also similar in spirit to previous mechanical engineering research
that proposes declarative methods for specifying the relevant geo-
metric constraints for a given mechanical design [Daniel and Lucas
1997; Yvars 2008]. However, to our knowledge, we are the first
to focus specifically on the design of articulated, works-like proto-
types, and a key part of our contribution is defining a set of func-
tional relationships that are useful for this design task. We also note
that some professional CAD tools include constraint-based model-
ing features, but they require users to manually specify low-level
geometric relationships between part/joint parameters. In contrast,
our approach automatically converts high-level user-specified func-
tional relationships into the relevant low-level constraints.

3 Overview

To create a works-like prototype in our system, the user starts by
producing a rough 3D model of all the parts in the design and spec-
ifying the types of mechanical joints that connect the appropriate
parts. The user then specifies the relevant functional relationships
between parts. Based on these relationships, our system optimizes
the part proportions and joint parameters to create a working ver-
sion of the design.

Parts. In our system, each part consists of one or more axis-aligned
connected cuboids. Since works-like prototypes focus on mechani-
cal functionality rather than detailed appearance, representing parts
with sets of cuboids is often sufficient. We provide two part mod-
eling interfaces: (1) users draw 2D boxes from one of three or-
thogonal viewpoints (top, front, side) and then extrude them into
cuboids; (2) users annotate an input concept sketch by clicking on
feature points (e.g., corners) to create cuboid parts (as described in
Shao et al. [2013]). In addition to modeling solid parts, users can
also create cuboid or cylindrical cavities within a part. We refer to
the initial positions and orientations of all the extracted proxies as
the base configuration of the object.

Joints. Our system supports four types of mechanical joints (Fig-
ure 2). Hinges are attached to the faces of two different parts and
enable rotation around an axis, sliding joints allow two parts to
translate linearly along a sliding vector with respect to one another,
sliding hinges enable both rotation and translation, and double pivot
joints allow rotations around two axes separated by a rigid link. To
add joints, the user first selects two adjacent parts and then does
one of the following: add a hinge by selecting any cuboid edge
that touches both parts; add a sliding joint by selecting a cuboid
face whose normal defines a sliding vector; add a sliding hinge by
selecting both an edge and a face; add a double pivot by clicking
points on two coplanar faces (one on each part) that define the pivot
positions. We represent the pose of a joint j as j(θ). For hinges, θ
represents the angle between the pair of attached faces (Figure 2a).
For sliding joints, θ is the signed offset along the sliding vector
between the two connected parts with respect to the base config-
uration (Figure 2b). For sliding hinges, θ is a tuple that includes
both the rotational and translational parameters of the joint (Fig-
ure 2c). For double pivots, θ is a tuple that includes the rotations
around both pivots (Figure 2d). We write the combined pose of a set
of joints J = (j1, j2, . . . , jn) with corresponding joint parameters
Θ = (θ1, θ2, . . . , θn) as J(Θ).

θ

θ

(a) hinge (b) sliding joint

θ1

θ2

(c) sliding hinge

θ1

θ2

rotation axis sliding vector double pivot

(d) double pivot

Figure 2: Joints. We support hinges, sliding joints, sliding hinges,
and double pivot joints.

4 Defining Functional Relationships

To determine the types of functional relationships to include in our
system, we examined many product designs and consulted with
three professional product designers: a former IDEO employee who
now works for Proteus, a startup that makes wearable sensors; and
two partners who run Anvil Studios, a Seattle-based product design
firm. Based on this formative research, we identified four functional
relationships that support a wide range of products with rigid me-
chanical interactions between parts: cover, fit-inside, support and
flush. These relationships impose specific geometric dependencies
between the relevant parts. The remainder of this section describes
how we formulate these dependencies in terms of constraints on the
part dimensions.

4.1 Cover

In many products, certain parts are designed to cover either other
parts or cavities. For example, the top half of a clamshell phone
must cover the bottom half, and the lid of a container covers its
opening. The relationship stipulates that specific faces of the cov-
ering part must be the same size or larger than specific faces of the
covered part or cavity (Figure 3). While the simplest examples in-
volve a single face covering another single face, in general, cover
relationships can involve a set of faces covering another set of faces,
based on a corresponding faces graph that indicates which subsets
of faces correspond. We say that the faces are in their covered con-
figuration when all corresponding faces lie in the same plane, the
covered faces lie within the covering faces, and there are no gaps or
overlaps between the covering or covered faces.

f A1

f B
1

f A
1 f B

1

M

Box(F A) Box(F B)

f A1 f A2f B1

Box(F A) Box(F B)

f A1 f B
1

M

f A2

f A1

f A2
f B

2 f B
1

M
f A1 f A2 f B

2f B
1

Box(F A) Box(F B) Box(F A) Box(F B)

(a) One face covering one face

(b) Two faces covering one face

(c) Two sets of corresponding faces

covering face covered face

Figure 3: Example cover relationships. Each example shows the
covering faces FA and covered faces FB in their base and covered
configurations, corresponding faces graph M , and the bounding
boxes of the corresponding faces.

We define a cover relationship as Cover(FA, FB ,M, J,Θ),
where the set of faces FA cover the set of faces FB , M is a corre-
sponding faces graph linking each face in FA to the corresponding
faces in FB that it must (fully or partially) cover, and J(Θ) are
the set of joints and parameters that put the faces into their covered
configuration. Under this definition, each connected component of
M contains two sets of faces FA ⊆ FA and FB ⊆ FB , and in
the covered configuration, these corresponding faces lie in a plane
where FA covers FB . Thus, for the cover relationship to hold,
these faces must meet the following geometric constraints:

Box(FA)l ≤ Box(FB)l

Box(FA)b ≤ Box(FB)b

Box(FA)r ≥ Box(FB)r

Box(FA)t ≥ Box(FB)t
(1)

where Box(F) represents the bounding box of the geometric
union of the set of faces F , and Box(F)l, Box(F)r , Box(F)b,
Box(F)t represent the left, right, bottom and top coordinates of
the box. The bounding boxes are defined in 2D because FA and
FB are in the covered configuration, which means that the faces all
lie in the same plane. To compute the bounding boxes, we define
a coordinate system by taking the largest surface f ∈ FB , choos-
ing one corner as the origin and using the two incident edges as the
x and y axes. Note that changing the inequalities to equalities in
the constraints above indicates that the faces in FA should be large
enough to “just cover” the corresponding faces in FB .

To ensure that there are no gaps or overlaps between each group
of covering or covered faces, we impose additional packing con-
straints that require adjacent faces to touch without overlapping, as
in the example below.

Box(f A)b = Box(f A)t1 2

Box(f A)r = Box(f A)l2 3

Box(f A)b = Box(f A)t1 3

f A
1

f A
2 f A

3

4.2 Fit Inside

Another common functional relationship involves one or more parts
fitting inside another (Figure 4). For example, drawers must fit in-
side the body of a dresser, and a pocket door must fit inside its
housing. Some designs include parts that fit partially inside other
parts without being completely contained. In some cases, the inside
part is designed to be just small enough to fit inside the container
part in certain dimensions. We say that the parts are in their fitting
configuration when the appropriate part fits inside the other.

We define a fit inside relationship as Fit(PA, pB , J,Θ), where the
set of parts PA fit inside part pB , and J(Θ) are the set of joints
and parameters that put the parts into their fitting configuration. In
order for PA to fit inside pB , the following geometric constraints
must hold:

Box(PA)l ≥ Box(pB)l

Box(PA)b ≥ Box(pB)b

Box(PA)n ≥ Box(pB)n

Box(PA)r ≤ Box(pB)r

Box(PA)t ≤ Box(pB)t

Box(PA)f ≤ Box(pB)f

(2)

where Box(PA) is the 3D bounding box of the geometric union of
parts PA, Box(pB) is the 3D bounding box of pB , and Box(p)l,
Box(p)r , Box(p)b, Box(p)t, Box(p)n, Box(p)f are the left,
right, bottom, top, near and far coordinates of a bounding box. Both

Box(pA)

Box(pB)

Box(pA)

Box(pB)

pA

pB
pB

pA

(a) Fit inside (sliding joint) (b) Fit partially inside (hinge)

Figure 4: Example fit inside relationships. Each example shows
the inner part pA and enclosing part pB in their base and fitting
configurations. Setting pA to be a portion of a part specifies a “fit
partially inside” relationship (b).

bounding boxes are defined with respect to the coordinate system
of pB and with all parts in their fitting configuration. To represent
a relationship where a part pA ∈ PA “fits partially inside” pB , we
set pA to be the specific portion of the part that should fit inside pB

(Figure 4b). Note that changing any of the inequalities above into
an equality constraint indicates that PA should have enough room
to “just fit inside” pB in one or more dimensions.

Similar to the cover relationship, if there is more than one part in
PA, the parts cannot intersect each other in the fitting configuration.
Thus, we apply non-overlapping constraints to adjacent parts, as in
the example below.

pA
1

pA
2

pA
3

pA
4

Box(pA)b ≥ Box(pA)t1 2

Box(pA)b ≥ Box(pA)t1 3

Box(pA)b ≥ Box(pA)t1 4

Box(pA)f ≥ Box(pA)n3 4

Box(pA)l ≥ Box(pA)r3 2

4.3 Support

In some objects, certain parts are designed to support other parts
in specific configurations. For example, in a folding table, the legs
support the tabletop when the table is opened. In the simplest case,
the relationship stipulates that one of the top faces of a supporting
part must be in the same supporting plane and in contact with one
of the bottom faces of the supported part. However, as with cover
relationships, the general case involves a set of faces from multi-
ple parts supporting a set of faces on another collection of parts,
based on a corresponding faces graph (Figure 5). We say that the
faces are in their supported configuration when all corresponding
faces are in the same plane and in contact. Note that our definition
of support does not consider whether the supported part maintains
static equilibrium on top of the supporting parts.

We define a support relationship as Support(FA, FB ,M, J,Θ),
where FA and FB are the sets of supporting and supported faces,
M is the corresponding faces graph, and J(Θ) are the set of joints

and parameters that put the faces into their supported configuration.
This relationship implies the following geometric constraints for
each pair of faces fA ⊆ FA and fB ⊆ FB connected by an edge
in M :

fA
l < fB

r

fA
r > fB

l

fA
t < fB

b

fA
b > fB

t

cAb = cBt (3)

where fl, fr , fb,ft are the left, right, bottom, top coordinates of
each face with respect to the supporting plane, cA, cB are the par-
ent cuboids of fA, fB , and cb, ct are the bottom and top coordi-
nates of each cuboid. The four inequality constraints on the left
ensure that fA and fB overlap in the supporting plane, and the
equality constraint on the right ensures that fA and fB are at the
same height. In addition, the support relationship specifies that the
bottom coordinates of all parts with one or more supporting faces
but no supported faces must be equal, which ensures that the entire
set of supporting/supported parts can sit flat on the ground.

4.4 Flush

Finally, many designs include parts that fit together such that one
or more of their faces are flush. For example, folding access pan-
els on the side of a printer are usually flush with the printer body
when closed. We say that faces are in their flush configuration
when they lie in the same plane, and we define the relationship
as Flush(fA, fB , J,Θ), where fA and fB are the two faces that
are flush, and J(Θ) are the set of joints and parameters that put
the faces into their flush configuration. The flush relationship con-
strains the coordinates of the parent cuboids of fA and fB such
that the two faces are coplanar in the flush configuration.

5 Specifying Functional Relationships

To help users specify functional relationships for a given design,
our system provides interactive tools that automatically infer the
appropriate low-level geometric constraints given a small amount
of user interaction.

5.1 Specifying Cover Relationships

Users specify a cover relationship by selecting the set of parts that
contain the covering faces FA and covered faces FB , adjusting
joint parameters to move the faces into their covered configuration,
and indicating whether they want a regular cover relationship or a
“just cover” relationship. The system infers the corresponding faces
graph M with a simple greedy approach that considers every can-
didate covering face fA and adds an edge to any candidate covered
face fB where fB and fA are parallel, separated by less than a
small threshold distance, and overlap by more than half the area of
the smaller face when both faces are projected onto fA. The algo-
rithm processes the candidate covering faces in order from largest
to smallest and removes candidate covered faces from consideration
once they are added to M . If the system infers any incorrect edges
in M , the user can click on the appropriate corresponding faces.

FA
1

FB
1

M

FA
2

FA
3 FB

2

FB
1

FA
1 FA

2

FA
3

FB
2

Figure 5: Example support relationship. A set of supported faces
(green) sit on top of their corresponding supporting faces (orange).

f A
1

f A
2

f A
3

f A
4

f A
1

f A
2

f A
3

f A
4

(a) Horizontal sweep (b) Vertical sweep

(c) Constraints

Box(f A)l = Box(f A)l1 2

Box(f A)r = Box(f A)r4 1

Box(f A)r = Box(f A)l2 3

Box(f A)r = Box(f A)l3 4

Box(f A)b = Box(f A)b 2 3

Box(f A)b = Box(f A)b3 4

Box(f A)b = Box(f A)b4 2

Box(f A)t = Box(f A)b 2 1

Box(f A)t = Box(f A)b3 1

Box(f A)t = Box(f A)b4 1

Figure 6: Plane-sweep. We use a plane-sweep approach to order
covering faces horizontally (a) and vertically (b) and then generate
constraints between consecutive faces (c).

Once M has been determined, our system generates the geomet-
ric constraints described in Section 4.1 for each set of correspond-
ing faces. To compute all the relevant packing constraints (which
eliminate gaps or overlaps between each set of covering or covered
faces), we start by determining a spatial ordering over the faces us-
ing a plane-sweep approach [Nievergelt and Preparata 1982]. We
sweep a vertical line from left to right and compute intersections
between the line and face bounding boxes. We keep track of boxes
that intersect overlapping segments of the line (ignoring overlaps
that are less than a small threshold) to determine a partial ordering
of the boxes in the x dimension (Figure 6a). We then sweep a hor-
izontal line from bottom to top to compute a partial ordering in the
y direction, ignoring any pair of faces that are already ordered in x
(Figure 6b). Finally, for any remaining pair of faces that are not or-
dered in x or y, we sort them in one of the two dimensions based on
their centroid coordinates. Given this ordering, we generate pack-
ing constraints between consecutive faces in each dimension, and
we also constrain the coordinates of the leftmost, rightmost, bot-
tommost and topmost bounding boxes to be equal, which results in
a rectangular packing of all the face bounding boxes (Figure 6c).

Next, we compute the constraints on the 2D bounding boxes
Box(FA) and Box(FB) defined in Equation 1. Since we now
have a spatial ordering for each set of covering and covered faces,
we can express Box(FA) and Box(FB) in terms of their con-
stituent faces as follows:

Box(FA)l = Box(fA
l)l

Box(FA)r = Box(fA
r)r

Box(FA)b = Box(fA
b)b

Box(FA)t = Box(fA
t)t

Box(FB)l = Box(fB
l)l

Box(FB)r = Box(fB
r)r

Box(FB)b = Box(fB
b)b

Box(FB)t = Box(fB
t)t

where fl, fr , fb, ft represent the leftmost, rightmost, bottommost
and topmost faces in the set of faces F . This formulation results
in a set of equality and inequality constraints that are linear with
respect to the size and position of individual faces (and thus the
size and position of the cuboids to which those faces belong).

5.2 Specifying Fit Inside Relationships

To specify a fit inside relationship, users select the set of inner parts
PA and the single enclosing part pB , adjust joint parameters so that
the parts are in their fitting configuration, and indicate whether they
want a regular fit inside or “just fits inside” relationship. Users can

also specify a “fit partially inside” relationship by selecting just a
portion of an inner pA to fit inside pB .

Based on the specified parts and fitting configuration, our system
generates the constraints defined in Section 4.2 to ensure that the
inner parts PA fit inside pB . We use a similar strategy as with
the cover relationship constraints. In particular, we use the same
plane-sweep approach described earlier, but this time in 3 dimen-
sions to determine a spatial ordering over all the parts in x, y and
z. We then generate non-overlapping constraints between consec-
utive parts in each dimension and constrain the coordinates of the
leftmost, rightmost, bottommost, topmost, nearest and farthest part
bounding boxes to be equal. Finally, we rewrite the constraints from
Equation 2 on the sizes and positions of Box(PA) and Box(pB)
to obtain a set of linear constraints on the sizes and positions of the
individual part cuboids in PA and pB .

5.3 Specifying Support Relationships

Users specify a support relationship by selecting the set of all parts
that contain supporting faces FA and/or supported faces FB and
adjusting joint parameters so that the faces are in their supported
configuration. The system infers the corresponding faces graph M
using a similar algorithm as described above for the cover relation-
ship. However, in this case, we only consider horizontal faces, and
we allow each pair of candidate supporting/supported faces to be
separated by a larger threshold distance and to not overlap when
projected onto the same plane. As with the cover relationship, the
user can manually fix any incorrect face corresondences.

Given M , our system automatically generates the geometric con-
straints described in Section 4.3 for each pair of corresponding sup-
porting/supported faces and their parent cuboids. The system also
identifies all parts with supporting faces but no supported faces and
constrains the bottom coordinates of those parts to be equal.

5.4 Specifying Flush Relationships

To specify a flush relationship, users select the two faces that must
be coplanar and adjusts joint parameters to move the faces into their
flush configuration. The system automatically adds an equality con-
straint to the appropriate coordinates of the parent cuboids of the
selected faces.

5.5 Specifying Additional Geometric Constraints

Although the primary goal of works-like prototypes is to represent
mechanical functionality, there may be some aesthetic properties of
a design (e.g., symmetry) that the designer wants to enforce. To ad-
dress such cases, we allow users to directly add low-level geometric
inequality and equality constraints between the dimensions of part
cuboids. For example, we constrain all the parts in the crate bed
prototype (Figure 10) to have the same thickness.

5.6 Double Pivot Joint Constraints

As described earlier, users add double pivot joints between parts
by specifying the positions of the pivots on two coplanar faces.
However, in most cases, these initial pivot placements will ei-
ther cause the parts to interfere as they move between the rele-
vant user-specified configurations and/or end up in the wrong po-
sitions/orientations (Figure 7a–c). To address these problems, our
system automatically generates additional geometric constraints for
each double pivot joint. In particular, for each double pivot joint j
with pivots uA and uB attached to faces fA and fB of parts pA and
pB , we constrain the two pivot positions to ensure that the parts can

b
uB

uA

a fA

fB

pB

pA
pA

pB pA pB

(a) C1 (b) C2 (c) Incorrect pivots (d) Pivot o�sets

Figure 7: Double pivot joints. Given user-specified part configura-
tions C1 (a) and C2 (b), a naive placement of the pivots results in
interference and an incorrect ending position for part pA (c). We
parameterize the pivot positions by pivot offsets a and b and impose
constraints that enforce good pivot placements.

successfully move between all the relevant configurations. To sim-
plify our formulation, we restrict the possible position of each pivot
to an offset vector that passes through the initial user-specified posi-
tion and is parallel to the cuboid axis that corresponds to the largest
cuboid dimension. Thus, we can parameterize the positions of uA

and uB with scalar offsets a and b (Figure 7d). Here, we describe
the constraints on the pivot offsets imposed by a single pair of part
configurations, C1 and C2. If the user specifies additional part con-
figurations, we add the corresponding constraints.

b
xB

a

x1
A

xm
A

x2
A

C1

C2

pA

pA

a

Position constraint. Given the posi-
tions and orientations of pA and pB

in configurations C1 and C2, we can
derive the following geometric con-
straint between the pivot offsets a
and b. As illustrated in on the right,
any value of a defines two positions
xA
1 and xA

2 for pivot uA that corre-
spond to the two part configurations.
Since the distance between uA and
uB (which corresponds to the rigid
link of the pivot) must remain fixed, it follows that uB has to lie
on the perpendicular bisector of the line segment that connects xA

1

and xA
2 . In addition, as explained above, we restrict uB to lie on its

offset vector. Thus, the position xB of uB is defined by the inter-
section of its offset vector and the perpendicular bisector. Based on
this construction, we derive the following constraint:

(xA
2 − xA

1) · (xA
m − xB) = 0

Since xA
1 , xA

2 , xA
m and xB all depend linearly on a and b, the con-

straint is quadratic with respect to the pivot offsets.

Motion constraints. While the position constraint ensures that the
pivots can, in theory, move pA and pB to the specified configu-
rations, the distance between the pivots may not provide sufficient
clearance to allow the two parts to rotate into the appropriate config-
urations without interfering (Figure 8 left). To enforce interference-
free motion, we consider the bounding boxes of the two parts pro-
jected onto the pivot plane (i.e., the plane that contains fA and fB).
Based on how the parts move between the two configurations, we
determine what combination of bounding box corners the pivot link
can potentially pass over, which allows us to derive a conservative
lower bound on the length of the link (Figure 8 right). We formu-
late these minimum length requirements as linear constraints over
a and b by representing the distance from the pivot positions to the
bounding box corners (dA and dB in Figure 8b) with linear lower

a

hA

wA - a

b

hB dB

dA

Ltwo

hA

b

hB
dB

Lone

(a) Link length accounts for one corner

(b) Link length accounts for two corners

Figure 8: Motion constraint. We automatically generate a motion
constraint that ensures the pivot link is long enough to allow the
parts to rotate into the appropriate configuration. We determine
which bounding box corners to take into account based on the mo-
tion of the parts between the start and end configurations.

bounds. For example, we write the pivot length constraint for the
two examples in the figure as follows:

Lone > hA +
(hB + b)√

2
, Ltwo >

(hA + (wA − a) + hB + b)√
2

Note that although the above constraints guarantee interference-free
motion, they are conservative (i.e., the joint may be longer than
necessary). Furthermore, we do not test for non-local interferences
between parts.

6 Computing Part and Joint Parameters

Once the user has specified all the necessary functional relation-
ships, we solve the constraint system to update the model. The com-
putation proceeds in two stages. First, we consider the cuboid pa-
rameters, which we denote as B = {Bi}, where Bi represents the
left, right, bottom, top, near and far coordinates of the i-th cuboid in
the model. We solve for B under all the constraints related to part
geometry (Sections 5.1–5.5) to determine the appropriate size and
position of each part for all user-specified configurations. Then, we
fix the cuboid parameters and solve for the double pivot parame-
ters, which we denote as L = {Li}, where Li represents the two
pivot positions of the i-th double pivot joint. We solve for L under
the constraints described in Section 5.6. Since each stage updates
different sets of parameters, we do not need to iterate.

For most designs, the user-specified functional relationships do not
fully constrain the part and joint geometry. To find unique solutions
for both cuboid and double pivot parameters, we introduce an en-
ergy function that minimizes deviations from the base configuration
in a least squares sense:

E(B,L) =
∑
i

‖Bi − B̄i‖2 +
∑
j

‖Lj − L̄j‖2 (4)

where B̄ and L̄ are the values of the cuboid and double pivot param-
eters in the base configuration. With this energy function, we can

formulate both the cuboid and double pivot parameter optimiza-
tions as quadratic programming problems, which we solve using
Matlab’s fmincon function. If there is no valid solution, the sys-
tem tells the user that there are conflicting constraints.

Given that most of our constraints are linear (except for the
quadratic position constraint on double pivot joints) and the fact
that we typically have a relatively small number of variables, our
system solves for both part and joint parameters at interactive rates.
This allows users to explore design variations either by modifying
the dimensions of any part cuboid, changing the desired configura-
tions of parts, or performing discrete edits such as adding/removing
parts or changing their joint types. Once the user performs an edit,
the system automatically updates the rest of the model based on the
geometric dependencies imposed by the specified functional rela-
tionships. Figure 9 shows some design variations that we generated
with our system, and the submission video shows additional editing
sequences.

7 Generating Fabricatable Geometry

Once we have determined all the cuboid and double pivot param-
eters, our system converts the design into fabricatable form. This
involves three steps: adding cavities to ensure that parts can move
into their fitting configurations, generating working joint geometry,
and creating gaps where necessary to prevent interferences.

Cavities. We assume that only parts with fit inside relationships
may require cavities to be generated. We move each inner part pA

from its base configuration to its fitting configuration with respect
to the outer part pB and sweep out a volume along this motion path.
We then use CSG to subtract the swept volume from pB .

Joint geometry. We take a procedural approach to generate joint
geometry that takes into account the geometry of the connected
parts. For a hinge attached to edge e, we attach a cylindrical pin to
one part and two yokes that surround the pin to the other part. We
set the length of the pin to the length of e and position the yokes
symmetrically near the ends of the pin. We set the radii of the pin
and yoke loops to half the thickness of the thinnest attached part.
For a sliding joint, we check if the two connected parts fit together
tightly (e.g., one part slides into a cavity). If so, we do not add any
extra joint geometry. Otherwise, we add mated rails that allow the
parts to move along the sliding vector with respect to one another.
For a sliding hinge, we make the hinge pin slightly longer than the
shared edge e and then add rails that allow the entire pin to move
along the sliding vector. For double pivot joints, we generate a pin
for each pivot that allows it to rotate and then connect the pivots
with a rigid link.

Gaps. Since our joints are designed to be printed in fully assem-
bled form, we add a small gap around all touching faces to ensure
that parts do not fuse together and that the support material can be
removed after printing. We also add gaps around cavities and all
the moving components of the synthesized joints. We export the
final printable geometry as an STL file that can be sent directly to
the printer.

8 Results

We used our system to create works-like prototypes for 8 different
designs (Figure 10). Our submission video shows how the various
parts move and fit together. Creating each working model in our
system took between 1–10 minutes of user interaction. Modeling
the parts and adding joints took about three quarters of the time, and
the remaining time was spent specifying functional relationships.

(a) sofa bunk 1

folded

unfolded

(b) sofa bunk 2

folded

unfolded

(c) crate bed 1 (d) crate bed 2

Figure 9: Variations of sofa bunk and crate bed.

In addition to cover, fit-inside, support and flush relationships, we
added 4 geometric constraints: 2 symmetry constraints for the top
two cabinet doors and the two folding sections of the crate bar; and
2 to make the folding parts of the tablet and crate bed the same
thickness. Table 1 summarizes various statistics for all the results.

While some of our prototypes may appear simple, mechanisms with
even a small number of moving parts often involve non-obvious
geometric dependencies. By automatically maintaining the speci-
fied functional relationships, our system helps users create an initial
working design from a rough input model and modify that design to
generate variations. For example, the crate bed only has three parts,
but creating variations of the design with different arrangements of
the head and footboards requires non-trivial adjustments to the dou-
ble pivot joint parameters (Figures 9c–d). The folding sofa also has
interesting dependencies due to the fact that the top bunk must be
supported when the model is unfolded into the bed configuration
and then fit together with the headrest and base when folded into
the sofa configuration. Figures 9a–b) shows two variations that we
created by changing the height of the headrest. The system auto-
matically updated the other part and joint parameters appropriately
to maintain the functional relationships. Our system also supports
discrete edits. For example, our submission video shows an editing
sequence with a jewelry box design where removing various com-
partments causes the remaining parts to update in different ways.

While the most common use case for our system is to help designers
generate working models that can be 3D printed, the optimized part
and joint parameters can also be used as instructions for hand-built

Figure 10: Various works-like prototypes created using our system.

prototypes. For example, Figure 11 shows a variation of the crate
bed design that we built out of paper using measurements computed
by the system.

Designer feedback. To get informal feedback on our approach, we
showed our system to the three professional designers that we con-
sulted as part of our formative work. We asked them to comment
on the general usefulness of the system, whether they could imagine
using it as part of their workflows, and what aspects of the system
should be improved. All of the designers felt that our system would
be very useful during the early stages of design when works-like
prototypes provide important feedback on potential mechanical ar-
chitectures for a product. They said that our tool was better suited
to this kind of early prototyping than existing CAD software; one
of the Anvil designers, who has been using SolidWorks for over 15
years, said that our system significantly streamlines the process of
designing working mechanisms by abstracting away the low-level
details of joint and part geometry. There was also a positive re-
action to our use of functional relationships as the main authoring
paradigm, which allows users to understand and engage with mov-
ing parts in an intuitive way.

Models
Joints # Constraints Int. Time (s)

Hinge Slide S-Hinge D-Pivot Fxn Geom Proxy Fxn
Cabinet 1 1 3 0 7 1 150 90
Crate Bar 2 5 0 0 2 1 300 60
Crate Bed 0 0 0 4 3 1 60 40
Sofa Bunk 2 0 0 2 5 1 450 60
Printer 2 3 0 0 2 0 90 90
Cellphone 1 1 0 0 2 1 30 40
Tablet 1 1 0 0 2 1 40 30
Toolbox 1 1 0 0 2 0 40 40

Table 1: Statistics for fabricated prototypes.

Limitations. The main limitation of our approach is the restricted
set of part primitives and joint types that we support. While compo-
sitions of cuboids are sufficient for many works-like prototypes, de-
signers sometimes want higher fidelity geometry to understand the
relationships between the form and function of a design. Similarly,
other joint types and part interactions could be useful for prototyp-
ing certain classes of products, including ball joints, snapping fea-
tures, threads, and simple gears. Our current system can certainly
be extended to handle more complex geometry and a wider range
of joints, but this would require modifications to the constraints im-
posed by our functional relationships.

9 Conclusions and Future Work

In this work, we present a new approach to authoring works-like
prototypes with functional mechanisms. By providing a 3D model-
ing interface where geometry is determined by functional relation-
ships between parts, we allow users to work top-down and focus on
the functional goals of the design rather than working bottom-up
from low-level geometric details. Our fabricated results demon-
strate that our system can generate functional models with a small

Figure 11: Hand-built prototype.

amount of high-level user interaction, and the informal feedback
from professional designers suggest that our approach could signif-
icantly improve existing prototyping workflows.

Given the recent advances in 3D printing, we see a huge potential
for modeling tools that target the physical prototypes that product
designers create. Our work takes a small step in this direction, but
we see many opportunities for future work in this vein:

Other functional properties. While we focused on four common
functional relationships, it would be interesting to consider other
functional requirements like whether an object can stand or roll or
fold flat. Supporting such requirements would entail further analy-
sis of the geometric and physical properties of the design.

Interacting with existing geometry. Some products are designed
to interact with existing reference objects (e.g., phone cases and
bicycle mounts). Thus, it could be useful to extend our approach to
handle interactions between parts and this reference geometry.

Alternative printing technologies. High-resolution 3D printers
can produce accurate geometry with assembly-free mechanisms,
but these printers are slow and expensive. One area for future work
would be to develop techniques that produce working mechanisms
with faster and cheaper printing technologies to reduce the time and
cost of mechanical prototyping.

Acknowledgements

We thank the reviewers for their helpful feedback. We also thank
Arna Ionescu from Proteus Digital Health, and Greg Janky and
Treasure Hinds from Anvil Studios for their insightful feedback.
This work was supported in part by the Marie Curie Career Integra-
tion Grant 303541, the ERC Starting Grant SmartGeometry (StG-
2013-335373), and gifts from Adobe Research.

References

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2008. Iloves-
ketch: As-natural-as-possible sketching system for creating 3d
curve models. In ACM UIST, 151–160.

BOKELOH, M., WAND, M., SEIDEL, H.-P., AND KOLTUN, V.
2012. An algebraic model for parameterized shape editing. ACM
SIGGRAPH 31, 4, 78:1–78:10.

CALÌ, J., CALIAN, D., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3d-printing of non-
assembly, articulated models. 130:1–130:8.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND
PAULY, M. 2013. Designing and fabricating mechanical au-
tomata from mocap sequences. ACM SIGGRAPH Asia 32, 6.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
SIGGRAPH 32, 4, 83:1–83:12.

DANIEL, M., AND LUCAS, M. 1997. Towards declarative geomet-
ric modelling in mechanics. In Integrated Design and Manufac-
turing in Mechanical Engineering, P. Chedmail, J.-C. Bocquet,
and D. Dornfeld, Eds. Springer Netherlands, 427–436.

EISSEN, K., AND STEUR, R. 2009. Sketching: Drawing Tech-
niques for Product Designers. BIS Publishers.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iwires: An analyze-and-edit approach to shape manipu-
lation. ACM SIGGRAPH 28, 3, #33, 1–10.

HALLGRIMSSON, B. 2012. Prototyping and modelmaking for
product design. Laurence King.

HOFFMANN, C. M. 2005. Constraint-based computer-aided de-
sign. ASME J. Comput. Inf. Sci. Eng. 5, 182–187.

KELLEY, T. 2001. The Art of Innovation: Lessons in Creativity
from IDEO, America’s Leading Design Firm. Crown Business.

NIEVERGELT, J., AND PREPARATA, F. P. 1982. Plane-sweep al-
gorithms for intersecting geometric figures. Commun. ACM 25,
10 (Oct.), 739–747.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make It Stand: Balancing shapes for
3D fabrication. ACM SIGGRAPH 32, 4, 81:1–81:10.

SCHMIDT, R., KHAN, A., SINGH, K., AND KURTENBACH, G.
2009. Analytic drawing of 3d scaffolds. ACM Transactions on
Graphics 28, 5. ACM SIGGRAPH Asia.

SHAO, C., BOUSSEAU, A., SHEFFER, A., AND SINGH, K.
2012. Crossshade: Shading concept sketches using cross-section
curves. ACM SIGGRAPH 31, 4.

SHAO, T., LI, W., ZHOU, K., XU, W., GUO, B., AND MITRA,
N. J. 2013. Interpreting concept sketches. ACM SIGGRAPH
32, 4.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: Improving structural strength of 3d printable
objects. ACM SIGGRAPH 31, 4, 48:1–48:11.

ULRICH, K., AND EPPINGER, S. 2007. Product Design and De-
velopment. McGraw-Hill.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
SIGGRAPH 31, 4, 86:1–86:11.

XU, W., WANG, J., YIN, K., ZHOU, K., VAN DE PANNE, M.,
CHEN, F., AND GUO, B. 2009. Joint-aware manipulation of
deformable models. In ACM SIGGRAPH, 35:1–35:9.

XU, B., CHANG, W., SHEFFER, A., BOUSSEAU, A., MCCRAE,
J., AND SINGH, K. 2014. True2form: 3d curve networks from
2d sketches via selective regularization. ACM SIGGRAPH 33, 4.

YVARS, P.-A. 2008. Using constraint satisfaction for designing
mechanical systems. International Journal on Interactive De-
sign and Manufacturing (IJIDeM) 2, 3, 161–167.

ZHENG, Y., CHEN, X., CHENG, M.-M., ZHOU, K., HU, S.-M.,
AND MITRA, N. J. 2012. Interactive images: Cuboid proxies for
smart image manipulation. ACM SIGGRAPH 31, 4, 99:1–99:11.

ZHU, L., XU, W., SNYDER, J., LIU, Y., WANG, G., AND GUO,
B. 2012. Motion-guided mechanical toy modeling. ACM SIG-
GRAPH Asia 31, 6, 127:1–127:10.

