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Abstract
We present a user-assisted video stabilization algorithm that is able to stabilize challenging videos when state-
of-the-art automatic algorithms fail to generate a satisfactory result. Current methods do not give the user any
control over the look of the final result. Users either have to accept the stabilized result as is, or discard it should
the stabilization fail to generate a smooth output. Our system introduces two new modes of interaction that allow
the user to improve the unsatisfactory stabilized video. First, we cluster tracks and visualize them on the warped
video. The user ensures that appropriate tracks are selected by clicking on track clusters to include or exclude
them. Second, the user can directly specify how regions in the output video should look by drawing quadrilaterals
to select and deform parts of the frame. These user-provided deformations reduce undesirable distortions in the
video. Our algorithm then computes a stabilized video using the user-selected tracks, while respecting the user-
modified regions. The process of interactively removing user-identified artifacts can sometimes introduce new ones,
though in most cases there is a net improvement.We demonstrate the effectiveness of our system with a variety of
challenging hand held videos.

Categories and Subject Descriptors (according to ACM CCS): I.8 [Computer Graphics]: Applications—Video

1. Introduction

Video stabilization algorithms have improved dramatically
in recent years, and can simulate remarkably smooth cam-
era paths. Recent algorithms are 3D-aware and go beyond
single-homography motion models to produce much higher
quality results. However, these algorithms all have a signif-
icant problem; they are one-button press, and offer no user
control other than manipulating global parameters. If the sta-
bilization result is flawed, or the user simply wants some-
thing else, there is no recourse. We introduce two techniques
for interactive control of video stabilization.

The first step in current video stabilization methods is to
track feature points that estimate scene and camera motion.
The video is then stabilized by warping the frames such that
the key feature points follow a smooth trajectory. However,
challenging scenes such as those containing a large range
of depths and dynamic objects are difficult to stabilize. One
reason for failure is that selecting tracks that belong to the
background becomes difficult for scenes with dynamic con-
tent. If the algorithm uses tracks on dynamic objects (Fig-
ure 1(c)) to estimate camera motion and warp the frames,
the output video may be unstable. Another reason for failure
is that the stabilized video is computed without any knowl-

edge of the scene’s semantic content. As a result, regular
video stabilization might not yield a desirable visual appear-
ance. For example, vertical structures in the stabilized scene
shown in Figure 1(a) are tilted and a viewer might prefer
these structures to remain vertical, as shown in our corrected
version in Figure 1(b).

Our work directly addresses these two issues by providing
two tools for the user to customize the stabilization result.
Our algorithm starts with an initial baseline automatic video
stabilization result [LYTS13] which the user can further im-
prove using our tools. First, the user can improve track se-
lection to ensure that only background tracks are selected.
We cluster tracks spatio-temporally across the video so that
the user can interact with tracks at the granularity of whole
objects and motions, rather than individual tracks. We then
plot clustered track trajectories on the warped video to allow
the user to visually inspect and correct the track selection if
necessary as demonstrated in Figure 1(c-d). Our clustering
improves upon the previous clustering techniques by using a
moving window factorization which speeds up computation
by 12 times while maintaining similar clustering properties.

Second, we allow the user to provide feedback to the al-
gorithm describing how parts of the stabilized video should
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a) Still Frame From Initial Stabilization

b) Still Frame From Our User Guided Stabilization

e) Initial Warped Framec) Initial Automatic Track Selection

f ) User-corrected Framed) User-corrected Track Selection

Figure 1: Automatic video stabilization using the state-of-the-art is unsatisfactory as shown in a) as the background and
subjects are heavily skewed. We visualize clusters of tracks used for stabilization c) and the user removes tracks on dynamic
objects d) using mouse clicks. Tracks that are not used for the final rewarp are drawn in grey. The green outline in e) and f)
shows the original frame boundaries. The distortion of the frame in e) is removed by having the user draw a quadrilateral
(white lines) and its desired transformation shown in f). The new track selection and user-drawn transformations are used to
re-stabilize the video to obtain the final result as shown in b). Notice that the background is rectified and that the subjects are
no longer distorted.

look. The user corrects regions at unsatisfactory frames by
drawing quadrilaterals on the frame and providing her pre-
ferred location for the quadrilateral in the final stabilized
video as shown in Figure 1(e-f).

After the user has provided edits to improve the stabilized
video to her liking, we rewarp the video only using tracks
that she has selected and constrain the output video to incor-
porate the region edits from the quadrilaterals that she has
specified. The resulting video exhibits smooth motion for
the selected tracks while also respecting the user-specified
region constraints.

Our work is the first user-assisted video stabilization
pipeline which allows the user to influence the video stabi-
lization algorithm. In some cases, fixing user-specified arti-
facts may lead to new artifacts; however, for most examples
we find there to be a net improvement in stabilization quality.

2. Previous Work

Video Stabilization. There are several video stabilization
tools available today. For example, a user could stabilize
the video in real-time using gyroscopic information from
the camera [KJBL11]. She can also use tools such as Warp
Stabilizer from Adobe during post-production [LGJA09,
LGW∗11] or the video stabilization tool on YouTube after
uploading the input video [GKE11, GKCE12].

Video stabilization works by first estimating scene

and camera motion and then re-projecting each frame
such that the unwanted camera motions are minimized.
RANSAC [FB81] is used to automatically select tracks
on background regions to stabilize the video. If the scene
is largely planar, novel camera viewpoints can be gener-
ated using homographies [HZ04, GL07, GKE11]. For gen-
eral scenes, a single homography is too restrictive and re-
projections using a grid mesh have better success in stabiliz-
ing such videos.

Content-preserving warps [LGJA09] reconstruct the 3D
scene and plan an optimal camera path. A grid mesh which
preserves the structure of the scene content is used for re-
projection. However, an alternative is to use 2D feature tra-
jectories to guide the re-projection after applying a low-
rank subspace constraint for camera smoothing [LGW∗11].
Epipolar geometry can also be exploited to avoid re-
constructing the 3D scene to stabilize the video [GF12].
Motion in-painting can also be included in video stabi-
lization [MOT∗06] and parallax can be handled explic-
itly [WLHL13]. Video stabilization techniques have also
been developed for light fields [SZJA09] and for videos with
depth information [Sun12].

Bundles of homographies guiding cells in a grid mesh
achieve state-of-the-art results by optimizing the path of
each grid cell while enforcing spatial coherence [LYTS13].
We use Bundled Paths, a state-of-the-art video stabilization
algorithm, as our initial baseline for user improvement be-
cause the algorithm was shown to be robust and have su-
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Figure 2: Homographies Fi(t) computed between grid cells
Ci(t) and Ci(t + 1) illustrated in (a). Relationships between
the computed camera path C(t), the smoothed camera path
P(t), the user-specified path Q(t) and the final user-assisted
stabilized video U(t) are shown in (b).

perior results compared to other available techniques. We
also compare our results with other commercially available
video stabilization tools such as Adobe’s Warp Stabilizer and
YouTube.

Motion Clustering. We reduce the amount of work the
user needs to improve track selection by clustering tracks
with similar trajectories and spatial locations since these
tracks usually track the same object or region.

Multi-frame motion clustering seeks to group tracks with
similar behavior over frames. Techniques which are based on
subspaces such as agglomerative lossy clustering [RTVM10]
or sparse subspace clustering [EV09] typically require some
tracks which span the length of the video sequence. Since
hand held videos typically do not have long track trajectories
due to occlusions or large motions, these techniques are not
robust enough for motion clustering.

Another approach for motion clustering is affinity-based,
which measures the pairwise relationship between track tra-
jectories. Affinities based on spatial distance, and similarity
of translational motion of track trajectories can be used as
features for clustering [BM10]. Affine motion similarity can
also be used as a basis for affinities for clustering [FRP09].
Weights from non-negative matrix factorization of the tra-
jectory speed and direction give reliable results for partial
track data [CR09]. However, hand held videos have many
short tracks and clustering can be computationally intensive.
We instead use a moving window and non-negative matrix
factorization of the track trajectory’s speed and direction
to build an affinity matrix for clustering, which greatly de-
creases the computation time.

3. Background

Bundled paths [LYTS13] is a state-of-the-art video stabiliza-
tion algorithm which performs well with challenging videos.
The algorithm divides each frame into a 16 by 16 grid and
estimates camera paths throughout time for each cell. The

stabilized output video is obtained by smoothing the indi-
vidual paths both temporally and spatially. We use bundled
paths as the baseline in our system; the user will provide
inputs (Sections 4 and 5) to further improve the stabilized
video. This section describes the bundled paths algorithm.

Content-preserving warps [LGJA09] guided by SURF
tracks [BETVG08] are used to align neighboring frames t
and t+1. The homography which transforms grid cell i from
frame t to t + 1 is Fi(t) as illustrated in Figure 2(a). The
paths are parameterized by the transformations of the grid
cells over time. Therefore, the camera path Ci(t) for each
grid cell is defined as the sequence of homographies the cell
goes through from the start of the video to frame t. Mathe-
matically, the camera path Ci(t) for a grid cell i at frame t is
Ci(t) = Fi(t−1) · · ·Fi(1)Fi(0).

The stabilized camera path Pi(t) is derived from the cam-
era path Ci(t) (Figure 2(b)). The algorithm computes Pi(t)
by optimizing an energy function O(P(t))such that camera
path for each grid cell i is smooth temporally and is similar
to the path of its neighboring grid cells,

O(P(t)) = ∑
t
(||P(t)−C(t)||2)

+ ∑
t
(λt · ∑

r∈Ωt

ωt,r(C) · ||P(t)−P(r)||2)

+ ∑
t

∑
j∈N(i)

||Pi(t)−Pj(t)||2
(1)

The first term enforces that the smooth path is similar to the
original path to minimize cropping and distortion, the sec-
ond term enforces smooth temporal changes, and the third
term enforces spatial smoothness among the grid cells. The
temporal window for smoothing, Ωt , is set to 60 frames and
N(i) includes the 8 neighboring grid cells. The strength of
the smoothing is controlled by λt . The smoothing kernel ωt,r
gives higher weight to paths with temporal proximity and
similar transformations. It is set to the product of two Gaus-
sians; the first Gaussian is a function of the frame distance
and the second is a function of the difference in translation
coefficients of the camera path Ci(t). A Jacobi-based itera-
tive solver is used to solve for the optimal camera path P(t).
For more details of the algorithm, please refer to the original
paper [LYTS13]. We used our own implementation of the
algorithm for our work.

The output video is obtained by applying the transforma-
tion B(t) to the input video, which is computed as B(t) =
P(t)C−1(t).

Our Work. We use the smooth camera path P(t) as the
baseline for our method, but do not assume that it is sat-
isfactory. The user provides a set of constraints on which
tracks are selected (section 4) and how regions in the video
should look after stabilization (section 5). Region constraints
are represented by Hk(t), where some region in frame t is
transformed with the homography Hk(t) to obtain the user-
specified path Q(t). If no constraints are specified, then
Hk(t) is the identify transformation. Since the user does not
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Figure 3: There are three steps in our track clustering algorithm. The velocity profile V is computed using the magnitude and
direction of the tracks. It is sparse as the tracks are short. Next, we find sub-matrices Vi by selecting only velocity profiles that
exist in a window of 20 frames. The step size for the window is 10, which gives us overlapping windows and therefore dependent
motion bases Si. The affinity matrix A is computed at this step using the weights in Wi. After the affinity matrix is computed, we
project the affinity vector for each track onto the 20 largest eigenvectors of A. We append the average spatial location of each
track to its feature vector for k-means clustering.

specify changes to every frame, Q(t) needs to be smoothed.
We compute the final user-assisted stabilized video U(t) by
minimizing an energy function described in equation 5 in
section 5. The transformation D(t) is used to correct Q(t)
to get the U(t) and it is computed as D(t) = U(t)Q−1(t).
Figure 2(b) illustrates the relationship between the different
paths.

4. Improving Track Selection

Selecting the appropriate set of tracks to guide the stabi-
lization algorithm is crucial to the success of the stabilized
video. Tracks that accurately track key feature points should
be selected. In most cases, these key points should lie on a
stationary background, but for specialized uses such as de-
animation [BAAR12,BAAR13], these key points may lie on
a subject of interest.

Most video stabilization algorithms automatically prune
tracks using RANSAC [FB81] to remove outlier tracks by
fitting homographies between frames. While this approach
gives acceptable results for simple scenes, selecting appro-
priate tracks for scenes with multiple moving objects can be
difficult for an automatic algorithm.

Our solution is to have the user improve track selec-
tion by clicking on tracks to include or exclude when they
are overlaid on the video. Note that we also automati-
cally prune tracks using the technique described in Bundled
Paths [LYTS13]. We cluster tracks based on affinities of their
trajectories and average spatial location across time to alle-
viate the tedious task of selecting individual tracks for the
user. A full cluster can be selected or de-selected with a sin-
gle mouse click. Since clusters of tracks usually belong to
the same object or region, the user can quickly ensure that
selected tracks are now properly tracking the background.

Tracks that should not be selected often have erratic trajec-
tories in the warped video as their trajectories are not well
explained by the camera motion, or they lie on dynamic ob-
jects (Figure 4).

4.1. Track Clustering

Track trajectories are usually short for handheld videos due
to occlusions and dynamic scene content. Non-negative ma-
trix factorization (NMF) [CR09] seeks a low dimensional
motion basis that explains the speed and direction of the
track trajectories for the entire video while handling incom-
plete track trajectories. However, a full factorization of all
the incomplete track trajectories can take up to 6 minutes for
a 10 second video. For our user-in-the-loop approach it is
crucial that the factorization runs within about a minute on
standard consumer hardware.

There are three main parts to our approach for track clus-
tering. First, we construct the velocity profile V which stores
the magnitude and directions for each track k over all frames.
Second, we compute an affinity matrix A which measures
the similarity between track trajectories using a moving non-
negative matrix factorization that is faster than factoring V
directly. Finally, we reduce the dimension of the affinity vec-
tor for each track by projecting it onto the eigenvectors of A.
We cluster the tracks using the reduced feature vectors and
their average spatial location with k-means. Figure 3 illus-
trates the three steps of our approach, and we consider each
one in turn.

4.1.1. Velocity Profile

The first step is to compute the velocity profile V . If the
video has T frames and K total tracks, then matrix V is size
3(T−1)×K. The velocity profile captures the instantaneous
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magnitude and direction of each track k. The kth column of
V is:

V k = [mk
1, · · · ,m

k
T−1,c

k
1, · · · ,c

k
T−1,s

k
1, · · · ,s

k
T−1]

T (2)

where mk
t is the magnitude of the velocity of the kth track

from frame t to t + 1, while ck
t and sk

t are the cosine and
sine of the angle of the kth track. We add 1 to ck

t and sk
t to

make the entries of V positive and we enter zeros into V to
handle missing data at any particular frame. Figure 3 shows
the structure of a typical velocity profile V .

4.1.2. Moving Window Factorization and Affinity
Matrix

Non-negative matrix factorization seeks to factor V into its
motion basis S and the corresponding weights W . The affin-
ity matrix A of size K×K measures the similarity between
all tracks in the video using their weights computed in W .
However, the velocity profile is usually sparse because tracks
in handheld videos are short as seen in Figure 3. Therefore
the computation can be sped up by first breaking V into win-
dows and factoring each window separately.

The entries of sub-matrix Vi correspond to velocity pro-
files of tracks that exist from frame i∗b to (i+2)∗b, where
b is the step size. For our application, we set b to 10. In other
words, our window size is 20 and the windows overlap by 10
frames as we move the window. To create the windowed Vi,
we simply select the appropriate rows from V (Figure 3) and
discard any empty columns. We factor each Vi into its motion
basis Si and the corresponding weights Wi. The overlapping
windows help to maintain coherence in the estimated motion
basis Si. We compute affinities between tracks in each sub-
matrix Vi using Wi and update the overall affinity matrix A
accordingly, as described later in equation 4.

We seek to factorize Vi into non-negative matrices Si (6b×
r) and Wi (r× K̂) that minimize the following expression:

||Vi−SiWi||2 (3)

The matrix Si is the motion basis for the window, and Wi
contains the non-negative weights for constructing the tra-
jectory of the tracks using the basis Si. K̂ is the number of
tracks that exist in the window. We use alternating least-
squares [GZ79] to find Si and Wi using the the algorithm
described by Cheriyadat et al. [CR09]. We set the number
of terms r to be 6 for our purposes as we expect a sparse
set of motion basis vectors will be sufficient to represent the
motions within a short window.

We can compute the affinity matrix A after the matrices Wi
are computed. Let Φq,s be the set of indices of the matrices
Wi that contain track q and s. Also, let wi(q) be the column
of Wi containing the weights of the qth track in the ith win-
dow. The affinity between two tracks q and s is computed as
follows:

Aqs =
1
|Φq,s| ∑

i∈Φq,s

exp(
−||wi(q)−wi(s)||2

σ
) (4)
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Figure 4: We cluster and visualize the selected tracks. Each
cluster of tracks is assigned a bright color and their trajecto-
ries are overlaid on the warped video. Notice how tracks on
dynamic objects can have an erratic appearance. The user
then removes some clusters by clicking on the clusters to tog-
gle them off. Tracks that are not used for the next warp are
shown in light grey.

In other words, the affinity score between two tracks is the
average affinity score computed over the windows where
both tracks exist. We set σ to 5.0.

Our approach does not gives us the same affinity matrix
as that obtained from a direct factorization of V , without
breaking into windows. In particular, in our approach, tracks
which do not exist on the same frame will have an affin-
ity score of 0. This implicitly enforces tracks which do not
overlap temporally to be clustered into different clusters. We
compare and discuss our clustering results and performance
using our approach against direct factorization in the results
section.

4.1.3. Clustering

The qth row of the affinity matrix is the affinity vector for
the qth track. Instead of using the affinity vector to cluster
the tracks directly, we reduce the dimension of the affinity
vector by projecting it onto the 20 largest eigenvectors of A
to reduce computation costs for clustering. In practice, the
reduced feature vector is the row of the set of eigenvectors
corresponding to each track. This reduced feature vector for
track q is combined with the average spatial location of the
track across time to form a length 22 vector. (The average
spatial location is normalized by the width of the video and
multiplied by 15.) We use k-means clustering with the num-
ber of clusters set to be the number of frames T . Examples
for our track clustering are shown in Figure 4.

4.2. Track Visualization

Each track is drawn as a red square on the frame with its
entire trajectory drawn as a line on the warped video (Fig-
ure 4). Selected tracks are displayed in bright colors, with
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each track cluster receiving a unique color. Tracks which are
pruned and not used to guide the warp are displayed as pink
squares with their trajectory in light grey.

The user interacts with the track clusters by clicking on
them when the warped tracks are displayed. We find the clos-
est track cluster to the mouse and highlight it in real-time.
The user can toggle the track cluster by clicking on it to ei-
ther include or exclude the cluster from guiding the warp.
Once she is happy with her modifications, we stabilize the
video with the user-selected tracks.

Occasionally, the user might wish finer-grain control to
make edits within a cluster, or to refine the output of the clus-
tering algorithm. We allow them to remove and turn on/off
specific tracks from within a cluster.

5. Specifying Region Warps

Videos stabilized with tracks on the background might still
be undesirable for a user like the example shown in Fig-
ure 1(d), where the background structures are tilted. In gen-
eral, since the baseline stabilization algorithm does not have
any semantic information of the content in the video, it might
warp the frames in a way that the user finds undesirable. Our
solution is to allow the user to directly specify how regions in
the frame should deform. We then use the user specifications
to guide a new optimization with new temporal weights that
propagates the user edits. This new optimization tries to find
a stabilized video that is close to the previous stabilized re-
sult yet conforms to the user-specified constraints as shown
in Figure 1(b).

5.1. User Interface

The user scrubs through the video to find an offending frame
she wishes to correct. We show the entire warped frame
without cropping to allow the user to access the extreme
edges of the warped frame. A green outline is overlaid to
provide a visual cue on the boundaries of the initial frame
size as shown in Figure 1(e-f).

The user draws a quadrilateral around the region she
wishes to correct by clicking on the four corners of the re-
gion. The corners of the quadrilateral can be selected and
dragged to warp the region. The region selected within the
quadrilateral is deformed in real-time to provide feedback
for the user as shown in Figure 1(f). Arrow keys on the key-
board translate the region to provide additional control. Note
that while only one quadrilateral is drawn in Figure 1(f)
which covers the entire frame, the user can draw multiple
small quadrilaterals (which do not cover the entire frame) to
make local corrections.

The user can specify how each edited frame will affect
neighboring frames. She can choose to propagate the edit to
frames both preceding and succeeding the edited frame (the
default), or only propagate in one direction.

We introduce a global parameter α with which the user
can specify the confidence of her region constraints. If the α

value is high, her region constraints have more weight in the
optimization routine when solving for a user-stabilized out-
put. Conversely if the α value is low, her region constraints
can be relaxed to generate a smoother video. We provide two
recommended values for α, 1 and 10 which we found to bal-
ance well with the rest of the energy terms.

5.2. Stabilizing Video With User-Constraints

After the user is done specifying region constraints using
quadrilaterals and deforming them, our system derives the
user-specified camera path Q(t). It also propagates the con-
straints smoothly across time and we achieve this by intro-
ducing a window function which modulates the temporal
term in the video stabilization energy function. We also in-
troduce a data term that controls which frames are penalized
if they deviate from the user-specified path Q(t). The follow-
ing parts detail how Q(t) is computed, how the energy func-
tions are modified and how the final stabilized video U(t) is
computed.

5.2.1. User-Specified Camera Path

The user-specified camera path Q(t) incorporates the region
constraints the user has drawn. Therefore, we first identify
which grid cells are affected by each region constraint. Grid
cells which have more than 50% of their area within the
drawn quadrilateral inherit any modifications the user makes
to the quadrilateral. The kth deformation the user makes on
frame t is represented by a homography Hk(t). We compute
Hk(t) by computing the homography that takes the original
four corners of the quadrilateral to the corners of the modi-
fied quadrilateral.

If the user adds no constraints, then Q(t) =P(t). However,
if the user modifies regions by deforming them with the kth

quadrilateral, then for grid cell i in frame t, the user-specified
camera path is Qi(t) = Hk(t)Pi(t).

5.2.2. Constraint Propagation

Since the user only specifies region constraints on a sparse
set of frames, our algorithm must propagate the region con-
straints smoothly over time. Each region constraint is lin-
early interpolated to its neighboring frames as shown in Fig-
ure 5. The linear interpolation is performed for a maximum
of 60 frames centered at the edited frame t, illustrated by the
frames after the blue arrow in Figure 5.

We embed this interpolation in the original energy func-
tion in equation 1. We introduce a new window function σt
which modulates the existing temporal filter ωt,r in equa-
tion 1 by replacing ωt,r with σt ·ωt,r. Our window function
σt is a linear interpolation weight as shown in Figure 5. We
set σt to 1 for the entire window by default. We use the
corresponding linear interpolation weights as illustrated in
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Figure 5: Top: The user adds three region constraints on
frame t, t − 10 and t − 25. The dotted lines show how the
the region constraints should be linearly propagated. The
support of the interpolation is determined by the proximity
of other constraints. If there are region constraints that are
within 30 frames, such as the red-green and green-blue pair,
the linear interpolation is performed within the frames be-
tween them. Otherwise, the interpolation is performed for
30 frames like the blue arrow to the right. The user can also
specify one-sided propagation like the red arrow on the left.
Middle: We show an example of our window function σt for
frame t1. Bottom: The function E(t) controls if the new data
term is applied for each frame, allowing frames to follow the
user-specified path Q(t) or not.

Figure 5 if there are region constraints on frames within the
window.

5.2.3. Warping With Constraints

We would like to reoptimize the stabilized video to find a
smooth user-assisted stabilized video U(t) which respects
the user-specified camera path Q(t). We use a similar energy
function O(U(t)) to that in equation 1 used to find the initial
stabilized video,

O(U(t)) = ∑
t
( 1

5 (1−E(t))||U(t)−C(t)||2)

+ ∑
t
(5αE(t)||U(t)−Q(t)||2)

+ ∑
t
(αλt · ∑

r∈Ωt

σt ·ωt,r(C) · ||U(t)−U(r)||2)

+ ∑
t

∑
j∈N(i)

||Ui(t)−U j(t)||2

(5)
The energy function we optimize is similar to equation 1.
We reduce the weight of the first term which enforces the
final stabilized video to follow the estimated camera motion
C(t). We introduce a new term so that the final stabilized
video will follow the user-specified path Q(t). Note that the
temporally varying function E(t) controls when the final sta-

O
ur

 A
pp

ro
ac

h
Pr

ev
io

us
 W

or
k

Still Frame 1 Still Frame 2A�nity Matrix

Figure 6: We compare the clustering result of our method
against using the direct factorization of V . Tracks in the
same clusters are drawn with the same color. Notice that
while the affinity matrices are different, the quality of the
track clusters are similar. In particular, tracks belonging to
the dynamic objects are rarely clustered with the background
tracks. In still frame 1, our result correctly clusters the tracks
on the arm with the tracks on the torso. Also, in still frame 2,
our result clusters the tracks on the torso as a single cluster.
Our clustering method is also 12 times faster.

bilized video should be similar to Q(t). Also, ωt,r is replaced
with σt ·ωt,r and with P(t) replaced with U(t). The value α

(default value is 10) is the global variable which controls the
confidence of the user’s region constraints.

We set E(t) to have a value of 0 for all frames initially.
For each frame t that the user provides an edit, we set E(t)
to 1.

The update rule for the Jacobi-based iterative
solver [BS97] is:

U (ξ+1)
i (t) = 1

γ′ (
1
5 (1−E(t))Ci(t)+5αE(t)Qi(t)

+ ∑
r∈Ωt

r 6=t

2λtωt,rσtU
(ξ)
i (t)+ ∑

j∈Ni
j 6=i

2U (ξ)
j (t))

(6)
where

γ
′ = 2λtσt ∑

r∈Ωt
r 6=t

ωt,r +2N(i)+
1
5
(1−E(t))+5αE(t)

The (ξ + 1)th iteration of the user-specifed camera path
U (ξ+1)

i (t) is computed with the update rule in equation 6.
The initial solution U (0)(t) is initialized with Q(t) and we
use 15 iterations. The transformation D(t) is used to correct
Q(t) and it is computed as D(t) =U(t)Q−1(t).

6. Results

We test our system on a collection of very chal-
lenging videos and compare our user stabilized re-
sult against the other methods. Specifically, we com-
pare against our baseline [LYTS13], YouTube’s video
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Video A Video B Video C Video D Video E Video F

ID # frames # tracks C(t) P(t) U(t) Direct A Our A Total # Cluster # Region
Clustering Edit Const.

A 207 16144 38.9 s 102.9s 106.5 s 225.2 s 14.85 s 30.1 s 24 23
B 298 19385 57.6 s 146.1 s 153.9 s 156.0 s 17.78 s 44.6 s 49 23
C 167 11050 28.9 s 79.2 s 84.5 s 86.0 s 10.4 s 19.1 s 10 23
D 203 15001 34.8 s 103.9 s 103.6 s 253.36 s 13.5 s 28.6 s 23 24
E 312 23936 54.6 s 163.1 s 162.9 s 371.3 s 25.4 s 60.5 s 68 36
F 147 10186 23.2 s 73.8 s 73.7 s 60.3 s 8.7 s 15.0 s 2 23

Table 1: Our computation times for our examples as well as the number of user edits. Notice that our method for computing
the affinity matrix is on average 12 times faster. Our average clustering time is 33 seconds. Computing the baseline video
stabilization takes 0.67 seconds per frame (1.5fps). Optimizing for our user-assisted video takes 0.52 seconds per frame (1.9fps).
On average the user removes 29 clusters and provides 25 region constraints.

Baseline Stabilization Stabilization With 
User-Selected Tracks

Figure 7: Comparision of initial baseline with result using
user-selected tracks. The face and torso of the subject have
less horizontal stretch in the top example. The walls of the
buildings on the left are less skewed in the bottom example.

stabilizer [GKE11, GKCE12], and Adobe’s warp stabi-
lizer [LGJA09, LGW∗11]. We use a MacBook Pro 2013 2.8
Ghz i7 with 16GB of RAM. Our code is unoptimized in C
and Matlab. OpenGL is used to display the video and user
interface.

User Input and Performance. Depending on the com-
plexity of the video, and desired control over the final out-
put video, the user typically takes around 10 minutes to se-
lect tracks and provide constraints. Our selection of 6 videos
contains severe camera shake with wide field-of-view and
large depth range. This makes our videos very challeng-
ing for video stabilization algorithms. We remove 29 track
clusters and provide 25 region constraints on average for
our videos. The region constraints are distributed over the

length of the entire video. Our results have smoother camera
motion with less background distortion when compared to
the other methods. For detailed comparisons, please see the
main video and supplementary videos.

It takes 0.67 seconds per frame (1.5fps) to stabilized the
video using the initial baseline (C(t) and P(t)) and 0.52 sec-
onds per frame (1.9fps) to optimize with user constraints
(U(t)). Our computation for the affinity matrix is on aver-
age 12 times faster than using direct factorization. Our total
clustering time on average is 33 seconds. Table 1 has the
detailed breakdown of the times and edits.

Quality of Track Clustering. Factoring the velocity pro-
file matrix directly can be computationally intensive since
the size of V can be up to 1000× 20000 for our examples.
Our method clusters small overlapping windows of Vi in-
stead and computes affinities based on local weights Wi from
local motion bases Si as described in Section 4.1. While the
affinities computed with the two techniques are different, the
clustering results are similar as shown in Figure 6.

Notice that in both methods, the tracks on dynamic ob-
jects are rarely clustered with the background tracks. In still
frame 1, our method clusters tracks on the subject’s arm on
the right with the torso while the previous work clusters them
with the background. In still frame 2, our method success-
fully clusters tracks on the torso as a single cluster.

In addition, our approach assigns tracks that do not exist
in the same frame an affinity score of 0. As a result, the like-
lihood of tracks that do not exist on the same frame being
assigned the same cluster is much lower than the previous
approach.
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Frame 147 Frame 150 Frame 153 User Constraint

Be
fo

re
 C

on
st

ra
in

ts
A

ft
er

 C
on

st
ra

in
ts

Figure 8: Before region constraints were applied (top row), the frame is skewed. The region constraint is drawn on frame
150 and it corrects for this deformation. The red arrows show the change in the quadrilateral drawn in white for the region
constraint. After the video is stabilized with the constraints, note that the neighboring frames are corrected appropriately as the
background is upright and there are fewer distortions.

Quality of Stabilization. There are two ways the user can
improve video stabilization in our framework. First by im-
proving track selection, and second, by adding additional re-
gion constraints. In Figure 7, the use of user-selected tracks
reduces distortion in both examples. In the top example, the
horizontal stretch of the subject is reduced after using the
appropriate tracks for stabilization. In the bottom example,
the walls of the building on the left, after using user-selected
tracks, have less skew than the initial baseline. For video
comparisons please see the supplementary videos.

When proper track selection is not sufficient to improve
the stabilization results, the user can correct distortions di-
rectly as shown in the example in Figure 8. The user drawn
constraints are on the right and are applied to frame 150. No-
tice that after stabilizing the video with the user constraints,
the neighboring frames inherit the user modifications prop-
erly. However, in some cases, slight wobbles are introduced
in the video after correcting for distortions.

In Figure 9, we compare video stills from the baseline
stabilization against corresponding frames after the user-
specified constraints are used to stabilize the video. No-
tice that in both examples, the stabilized video with user-
constraints has milder distortions as vertical structures in the
scene remain vertical. For better comparison for all results,
please see our main video and supplementary videos.

Since the quality of the stabilized video is strongly corre-
lated with the user constraints, the more constraints the user
provides across the frames, the better the stabilized video
will be. Our results are generated with a set of user con-
straints across the video to correct for distortion and cam-
era paths. Note that if the user only wishes to fix major ar-
tifacts in isolated regions, she only would have to provide
constraints in those regions.

Limitations. While our method allows the user to have
control over how the stabilized video will look, our system
will not generate good results if the quality of the user con-

straints is bad. In particular, if the user constraints signifi-
cantly deviate from the camera path and are in conflict, the
output video will be jerky. Our system does not infer the
intent of the user. For example, if the user wants to level
the horizon in the stabilized video, she would still have to
manually correct regularly spaced frames as opposed to just
specifying her intent. However, there is also a drawback to
our method; in some cases, new artifacts are introduced in
the effort to reduce existing artifacts.

7. Conclusion and Future Work

We have demonstrated that our system can improve video
stabilization by allowing the user to customize the result to
her preferences. The two modes of interactions, track se-
lection and region specification, directly relate to how auto-
matic stabilization algorithms work. With a set of correctly
selected tracks and region constraints, the output video ex-
hibits smoother motion while respecting the user’s intent.

One avenue for future work is to explore how more tools
can be used for improving stabilization. For example, higher
level controls such as automatic vertical and horizontal rec-
tification could be explored to minimize the user interac-
tion needed. Similarly, the user could also potentially spec-
ify constraints by providing exemplar frames and the algo-
rithm could compute the transformations necessary to match
scene properties such as vanishing points. Finally, there is
definitely room for improvement as our technique might in-
troduce unwanted artifacts such as small wobbles in the final
result.

In conclusion, we believe that our paper is a first step to-
wards video stabilization algorithms that leverage user guid-
ance and expertise to solve for a stabilized output, beyond
the capabilities of fully automatic methods.
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Baseline Stabilization Stabilization With User-Constraints

Figure 9: Comparision of initial baseline with result using
user constraints. In all examples on the left, the baseline sta-
bilization is not satisfactory as the scene is distorted and the
horizon is not level. The same frames in our result are less
distorted as the structures are vertical.
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