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Abstract

We present an interactive texture painting system that allows the user to author digital images by painting with
a palette of input textures. At the core of our system is an interactive texture synthesis algorithm that generates
textures with natural-looking boundary effects and alpha information as the user paints. Furthermore, we describe
an intuitive layered painting model that allows strokes of texture to be merged, intersected and overlapped while
maintaining the appropriate boundaries between texture regions. We demonstrate the utility and expressiveness of
our system by painting several images using textures that exhibit a range of different boundary effects.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tion - Display algorithms I.3.3 [Computer Graphics]: Methodology and Techniques - Interaction techniques I.4.7
[Image Processing and Computer Vision]: Feature Measurement - Texture

1. Introduction

Since the introduction of SketchPad [Sut63] in 1963, draw-
ing or painting with a handheld input device has become one
of the most popular interaction modes for creating digital
images. Direct painting interfaces are both simple and intu-
itive; the act of applying digital paint to a digital canvas is
closely analogous to the act of applying real paint to a real
canvas. Today, every industry-standard image creation and
design tool (including Adobe Photoshop, Adobe Illustrator,
etc.) allows the user to make marks on a digital canvas by
applying digital paint.

Recent advances in texture synthesis have the potential to
significantly increase the expressive power of digital paint-
ing tools. By enabling the reproduction of arbitrary amounts
of a given sample texture, modern synthesis algorithms open
up the possibility of using textures as another form of digital
paint. The user should be able to choose a set of example
textures to form a palette of texture paints that could then
be applied interactively. By painting with texture, the user
could create images that exhibit the complex detail and sub-
tle variations of the example textures with a relatively small
amount of effort.

In this work, we present an interactive texture painting
application that allows the user to create digital images by
painting with a palette of input textures. At the core of our
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Figure 1: Boundary effects. Top row shows boundary effects
in a stroke of watercolour paint (a), orange peel (b), and torn
piece of paper (c). Bottom row shows synthesized paper tex-
ture with and without boundary effects. Without boundaries,
the edge of the texture looks artificial.

system is a texture synthesis algorithm that addresses three
main challenges.

Boundary effects. The boundaries of many interesting tex-
tures have a different appearance than their interiors. Fig-
ure 1 shows three examples of such boundary effects. Paint-
ing with texture produces images comprised of multiple dis-
tinct textures, and in such images, boundary effects are cru-
cial for producing natural transitions between regions of dif-
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ferent texture. Without the appropriate boundary effects, in-
terfaces between adjacent textures tend to look artificial.
Most existing texture synthesis algorithms generate an in-
finite expanse of a particular texture without considering the
texture’s appearance at its perimeter.

Interactive texture synthesis. Synthesizing high-quality tex-
tures can be a computationally expensive task that is often
difficult to perform at interactive rates. However, an interac-
tive texture painting system must be able to generate texture
in a responsive manner, as the user paints.

Combining strokes. In a typical usage scenario, multiple
strokes of texture paint will overlap when a user paints with
texture. Thus, a texture painting system must define what it
means when regions of texture overlap and provide the user
with an intuitive interface for combining strokes.

The techniques we have invented to address these chal-
lenges represent our primary contribution. Specifically, we
have developed a texture synthesis algorithm that extends
existing methods to produce textures with boundary effects
and alpha information. We present an implementation of this
algorithm that performs well enough to enable interactive
feedback within the context of our texture painting interface.
Finally, we describe a layered painting model for combining
overlapping regions of texture paint that is simple enough to
be intuitive for the user, and expressive enough to support a
wide range of composite texture effects.

2. Related work
This work draws inspiration from three sources: interactive
painting software, non-photorealistic rendering, and texture
synthesis.

Applications like Adobe Photoshop, Adobe Illustrator,
and the GIMP have become mainstays of digital artwork
creation. While very powerful, creating high quality images
from scratch using these programs takes a great deal of time
and skill. Some systems (like Photoshop) support the incor-
poration of digital photographs or scans as part of the au-
thoring process, but the user is limited to essentially filtering
and copying parts of the existing media. For example, the
user might painstakingly piece together new images using
the cloning and/or healing brush in Photoshop.

A great deal of work has been done emulating particular
artistic media, including watercolour [CAS∗97], pen-and-
ink [WS94], and ink on absorbent paper [CT05]. Each of
these systems has been carefully engineered to reproduce the
visual characteristics of a specific medium. In contrast, our
system enables the reproduction of a broad range of media
through the use of example-based texture synthesis.

Our texture synthesis algorithm is based on the non-
parametric sampling methods proposed by Efros and
Leung [EL99]. In addition, we incorporate techniques
for preserving coherent patches of texture proposed by
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Figure 2: Input texture. Left shows RGBA input image. Right
shows binary mask/texture region along with the alpha chan-
nel.
Ashikhmin [Ash01], who also introduced the concept
of user controllable texture synthesis through a user-
specified initialization image. Both these and subsequent ap-
proaches [EF01, KSE∗03, WY04, LH05] have focused on
generating an infinite expanse of relatively uniform texture
and have not addressed the issue of texture boundary effects.

A few recent results have made great strides towards inter-
active texture synthesis. Patch-based methods, such as Jump
Maps [ZG02], have been used primarily for interactive tex-
ture synthesis on surfaces. Patch-based techniques, at least
in their current form, cannot be used in our application since
they do not provide any mechanism for handling the spe-
cial appearance of texture boundaries — although this is an
interesting area for future work. The pixel-based methods
of [LH05] and [WL02] rely on precomputation of neigh-
borhood search candidates to perform parallel synthesis. As
currently formulated, these methods are inappropriate for
boundary synthesis since the synthesis region needs to be
"dilated" at coarser resolutions. This dilation relies, once
again, on the assumption that the texture to be synthesized
is relatively uniform and infinite in all directions.

Our work most directly relates to the Image Analogies
“texture-by-numbers” technique [HJO∗01], which works
by “filtering” a false-coloured image of labels based on
an example labels/filtered-image pair. However, texture-by-
numbers treats labels as colour values, comparing them us-
ing colour-space distance. This metric can cause poor neigh-
borhood matching and low quality results due to the erro-
neous combination of the texture channels and label chan-
nels. Our work treats labels as ordinal, not metric, values and
so is not subject to these limitations. Additionally, texture-
by-numbers has no ability to treat pixels from adjacent tex-
ture regions independently. Thus, texture-by-numbers is un-
able to reproduce convincing texture boundaries for inter-
faces not present in the example pair. This limitation pre-
vents the user from “mixing and matching” a wide variety of
textures from disparate sources. Our system circumvents this
problem by using a novel energy function that takes texture
regions into account.

3. System overview
To create an image using our system, the user first provides
a set of example textures that represent a palette of texture
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paints. Once these textures are loaded into the system, the
user can select a texture and then paint with it on a canvas
provided by the application. As the user moves the virtual
brush, the system dynamically synthesizes the selected tex-
ture in the newly painted region of the canvas.

The palette of example textures represents the only re-
quired input to our system. Each texture is specifed as an
RGBA image along with a binary mask, created by the user,
that identifies the texture region — i.e., the region of the im-
age that contains the texture. Locations in the mask with a
value of 1 (typically, all parts of the texture with non-zero
alpha) represent the pixels within the texture region, called
texture-region pixels. These pixels define the texture’s ap-
pearance (see Figure 2). When the texture has a boundary
effect, it is defined by the pixels near the perimeter of the
texture region. Optionally, the user can provide an additional
file that contains the specific parameter values to use when
synthesizing each texture. These parameters are described in
Section 4. There is no conceptual limit on the size or res-
olution of the input images, though, in practice, the use of
memory-intensive ANN search structures restricts the size
of each texture. Most textures we have experimented with
are smaller than 400×400.

To fill a painted texture region with the selected exam-
ple texture, we extend the pixel-based texture synthesis ap-
proach used in the Image Analogies system of Hertzmann
et al. [HJO∗01]. In the following section, we describe the
overall algorithm at a high level. The subsequent two sec-
tions focus on the specific novel techniques we developed to
capture boundary effects and make the synthesis interactive.

4. Pixel-based texture synthesis
Given an example texture A and a target texture region B in
which to synthesize the texture, our system proceeds using
the basic approach presented in Image Analogies [HJO∗01].
Target pixels are synthesized, in scanline order, by copying
the RGBA values of pixels from the example texture. To de-
termine which example pixel to copy into a location b in B,
the algorithm looks for the pixel in A whose local neighbor-
hood is most similar, under a prescribed energy function, to
the neighborhood of b.

To find the most similar example neighborhood, the algo-
rithm performs two searches, a data search, and a coherence
search [Ash01]. The data search attempts to find the best
matching neighborhood over all of A. The coherence search
attempts to preserve coherent regions of texture in the result
by limiting the search to example patches adjacent to previ-
ously copied pixels. A coherence parameter κ is used to help
choose between the results of these two searches. A specific
κ value can be associated with any example texture as part of
the input to the system. The default value for κ in our system
is 2. The user also has the option of disabling the coherence
search.

To capture features at different scales, the algorithm runs
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Figure 3: Neighborhood shape. White squares represent tex-
ture region pixels, and black squares represent non-texture-
region pixels. The layout of white pixels determines neigh-
borhood shape. If we compare P to Q, R, and S, mismatch-
ing pixels (in pink) indicate shape differences. Based on the
number of mismatches, Q is most similar to P with one, R is
next with two, and S is the least similar with six mismatches.

at multiple resolutions. Gaussian image pyramids are con-
structed for both A and B, and the synthesis is performed at
each level of the pyramid, from coarsest to finest using multi-
scale neighborhoods. At each level, the algorithm initializes
the target region with the synthesized result from the previ-
ous level. The size and number of levels of the search neigh-
borhood can be adjusted to synthesize textures with features
of different sizes. As with κ, a specific neighborhood size
and the number of Gaussian pyramid levels can be specified
for any example texture. We have found that two-level 7×7
neighborhoods work well for a variety of textures, and we
use this as our default neighborhood size.

5. Synthesizing boundary effects
The key component of the synthesis algorithm is the en-
ergy function used to compare two texture neighborhoods.
Roughly speaking, we want this energy function to return
a lower energy for neighborhoods that look more alike, in-
cluding neighborhood apprearance at texture boundaries.

As with previous techniques, we consider the colours of
the pixels within each neighborhood as part of our metric.
In addition, when comparing two neighborhoods that are
near texture boundaries, our energy function penalizes dif-
ferences in “neighborhood shape,” by which we mean the
layout of texture region-pixels within a neighborhood (see
Figure 3). Thus, when the system synthesizes a pixel near the
boundary of the target region, the energy function favours
pixels near similarly shaped boundary neighborhoods in the
example texture. This approach allows our system to capture
variations in the texture boundary that depend on the curva-
ture and orientation of the border.

We compute the energy between two neighborhoods as
follows. Given two equal-sized neighborhoods P and Q, our
energy function computes an energy contribution for each
pair of corresponding pixels and then returns a normalized
sum of these contributions as the total energy. Pixels are
compared in one of three different ways:

1. If both pixels are texture-region pixels, the energy con-
tribution is the sum of squared differences between their
RGBA values.
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2. If both pixels are non-texture-region pixels, we consider
them to be perfectly matched. Thus, the contribution to
the total energy is zero.

3. Finally, if one pixel is a texture-region pixel and the other
is not, there is a difference in the shape between the two
neighborhoods. In this case, the pixels contribute a very
large energy value that penalizes the shape mismatch.

Here, we give the formal definition of the energy function.
Let P and Q be two neighborhoods of size n comprised, re-
spectively, of pixels {p1, ..., pn} and {q1, ...,qn}. We use TP
and TQ to denote the texture regions associated with these
two neighborhoods. Let d(p,q) represent the sum of squared
differences between the RGBA values at pixels p and q. Fi-
nally, let emax be the penalty for a shape mismatch. Typi-
cally, we set emax large enough so that shape mismatches
completely override colour matches. The energy E(P,Q) be-
tween P and Q is defined as follows:

E(P,Q) =
1
n

n
∑
i=1

e(pi,qi)

e(p,q) =











d(p,q) if p ∈ TP and q ∈ TQ
0 if p /∈ TP and q /∈ TQ
emax if p ∈ TP xor q ∈ TQ

Note that if all the pixels in both neighborhoods are
texture-region pixels, the energy function essentially mea-
sures the L2 colour distance between the two neighborhoods.
Thus, away from the texture boundaries, our energy function
is identical to the colour-based metrics used in previous al-
gorithms [HJO∗01]. However, near boundaries, both shape
and colour are used to evaluate neighborhood similiarity.

6. Synthesizing texture interactively

To enable a smooth painting interaction, our synthesis
algorithm must generate texture at interactive rates. Recent
work by Lefebvre and Hoppe [LH05] presents a very fast
GPU-based synthesis technique, but their method does
not handle textures with boundaries. To make our system
responsive, we combine two strategies that help mitigate the
expense of the texture synthesis computation.

Accelerating search for example pixels
The performance of the synthesis algorithm is dominated by
the running time of the inner loop, which involves searching
for the best (i.e., lowest energy) example pixel to copy into
the target region. When the target neighborhood is entirely
within the texture region, we accelerate the search using a
technique from Image Analogies. In particular, we represent
the colours of neighboring pixels as a feature vector and use
approximate-nearest-neighbor search (ANN) [AMN∗98] to
find the best match in the example texture. The system also
searches in luminance space (or luminance plus alpha) in-
stead of RGBA space to reduce the dimensionality of the

problem. The user also has the option of including alpha as
an additional search channel.

Unfortunately, ANN cannot be used when the target
neighborhood has one or more non-texture-region pixels be-
cause the specific pixels to include in the feature vector vary
depending on the neighborhood shape. To avoid perform-
ing a brute-force search over all boundary neighborhoods in
the example texture, we have developed a simple accelera-
tion strategy. The system first counts the number of texture-
region pixels in the target neighborhood. Then, the set of
example neighborhoods with a similar number of texture-
region pixels is found. If there are neighborhoods with an
equal number of texture-region pixels, this set is composed
of these neighborhoods. Otherwise, the set contains all of
the neighborhoods with the next smallest and next largest
number of texture-region pixels. Typically, there are only
a few dozen neighborhoods in this set. Finally, the system
compares each of these neighborhoods against the target to
find the best match. To find the candidate neighborhoods ef-
ficiently, the system stores the example boundary neighbor-
hoods in a map indexed by the number of texture-region pix-
els.

The rationale for this scheme comes from the following
three observations:

1. Neighborhoods with similar shapes have a similar num-
ber of texture-region pixels.

2. If emax is large, only neighborhoods that have similar
shapes will be good matches.

3. Neighborhoods at a similar distance from a texture
boundary have a similar number of texture-region pixels,
even if the neighborhoods have very different shapes.

Based on the first two observations, our search strategy
considers only neighborhoods that have the potential to be
good matches. Thus, if a good match exists in the example
texture, it will be found. If a good match does not exist,
it follows from the third observation that our search has a
good chance of choosing an example neighborhood that is
at a similar distance from the texture boundary as the target
neighborhood.

Progressive synthesis
Even with the aforementioned acceleration techniques, the
synthesis is too slow to enable a responsive painting inter-
action. Thus, we adopt the following incremental synthesis
strategy. As the user paints, the system generates a low-
resolution preview of the painted texture by synthesizing
pixels at the coarsest level of the image pyramid and then im-
mediately splatting them onto the screen. A separate thread
progressively refines the preview at higher resolutions un-
til the full resolution result has been generated. Since the
coarse-level synthesis is typically very fast, preview colours
can usually be computed as quickly as the user paints. How-
ever, if the system is unable to synthesize all the preview pix-
els before the canvas is refreshed, the average texture colour
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Figure 4: Layering modes. Top row shows false-coloured
strokes, and bottom row shows corresponding synthesized
textures. In each case, stroke 1 is painted before stroke 2.
is copied into the unsynthesized pixels to give the user im-
mediate feedback.

To further improve our algorithm’s performance, we bor-
row a technique from texture-by-numbers that reduces the
number of expensive data searches performed during syn-
thesis. The algorithm executes both data and coherence
searches for one out of every k pixels. For the other pixels,
only a coherence search is performed. Since the coherence
search is much faster, this strategy improves performance at
the cost of synthesis quality. In our system, the user can ad-
just the value of k to control this trade-off.

7. Combining strokes
During a typical painting session, the user will apply many
strokes of texture paint to the canvas. As each individ-
ual stroke is drawn, the system generates boundary effects
around the stroke perimeter in the manner described above.
However, when two strokes overlap, it is not immediately
clear where boundary effects should be synthesized. De-
pending on the situation, it may make sense to generate
boundary effects on zero, one, or both sides of an interface
between overlapping strokes.

To give the user control over where boundary effects ap-
pear, our system allows strokes to be assigned to different
depth layers; within this layered painting model, the user can
combine strokes via three distinct layering modes – OVER,
REPLACE, and MERGE – each of which results in different
boundary synthesis behaviour (see Figure 4).

Over. This layering mode is applied when the user paints
over a stroke that resides on an underlying layer. The system
synthesizes the newly painted stroke with boundary effects
while leaving the bottom stroke unchanged.

Replace. This mode is employed when the user paints with a
different texture over a stroke on the same layer, thereby re-
placing a portion of the existing texture. The system synthe-
sizes boundary effects for both textures along the interface
between them. Our system also supports an “eraser brush”
that allows the user to remove (rather than replace) texture,
thereby exposing the underlying paint. Boundaries are syn-
thesized within the perimeter of the erased region.

Merge. This mode is applied when the user paints over a
stroke on the same layer with the same texture. The system
merges the strokes to form a larger region of contiguous tex-
ture and generates boundary effects around the perimeter of
the merged region.

8. Results
To demonstrate the different types of boundary effects that
our system can reproduce, we present a few texture paintings
that we generated using our interactive painting application.
For all of the synthesized textures shown in our results, we
used a coherence factor κ between 0 and 5 and a neighbor-
hood radius between 1 and 4.

To produce the watercolour paintings shown in Fig-
ure 5(a), we scanned in five watercolour strokes and created
the segmented 155×322 input image shown on the left side
of the figure. Using this palette, we painted two different
trees by layering the textures in a series of washes. Notice
that the system is able to reproduce the feathered borders
of the top two strokes, as well as the edge-darkening effects
exhibited by the other examples in the palette.

The paper collage shown in Figure 5(b) was generated
using a palette of different paper textures with torn edges.
Each of the three scanned input textures is approximately
200× 200. The synthesized result successfully captures the
appearance of the torn paper boundaries. Also, by including
alpha information with the inputs, we were able to generate
semi-transparent paper textures. In particular, notice how un-
derlying colours are visible through the paper edges.

To produce the orange texture result shown in Figure 5(c),
we provided the system with two small input textures: a
175× 131 image of a piece of orange peel, and a 125× 64
image of the orange pulp texture. Note that our system was
able to capture the variations in width of the white fibrous
material at the edge of the orange peel. Since the pulp tex-
ture does not include any boundary effects, none were syn-
thesized in the final result.

To evaluate our algorithm against the Image Analogies
texture-by-numbers technique, we performed the following
comparison. In our system, we painted an image comprised
of five textures taken from various medical illustrations. We
then recreated the image using texture-by-numbers by pass-
ing in a false-coloured label image, the corresponding med-
ical illustration textures, and the label map associated with
our texture painting. The inputs and results generated by our
system and texture-by-numbers are all shown in Figure 6.

As illustrated in Figure 6(b), texture-by-numbers does not
consistently reproduce the appropriate boundaries at inter-
faces that do not exist in the example texture, such as the one
between the “muscle” texture (light blue label) and the “fat”
texture (green label). Since texture-by-numbers considers
the actual label colours during synthesis, specific configu-
rations of labels (combined with the propagation of coherent
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(a) watercolour trees

(b) paper collage

(c) skillfully peeled orange
Figure 5: Texture painting results. For all three results, the
input palette inset and reduced for size considerations. Wa-
tercolour trees generated using a palette of scanned water-
colour strokes (a). Paper collage generated using three scans
of torn paper as input (b). Skillfully peeled orange generated
using orange pulp and peel textures as input (c).

patches) can result in some boundary pixels being correctly
synthesized. For instance, Figure 6(b) exhibits boundary ef-
fects along portions of the interface between bone and fat.
However, the borders are not reliably synthesized. In con-
trast, the result generated by our system exhibits the correct
boundary effects at all interfaces, as shown in Figure 6(c).

(a) input

(b) texture-by-numbers result

(c) our result
Figure 6: Comparison with texture-by-numbers. Input
palette and label image passed in to texture-by-numbers (a).
Texture-by-numbers does not reliably reproduce boundary
effects at interfaces not present in the input, like the one be-
tween “muscle” (blue label) and “fat” (green label) (b). Our
result exhibits appropriate boundary effects everywhere (c).

9. Conclusions

In this paper, we have described a system that enables paint-
ing with texture. In particular, we have identified the impor-
tance of texture boundaries and presented a synthesis algo-
rithm for generating textures with boundary effects at inter-
active rates. As part of this algorithm, we have described
a novel energy function that represents the primary techni-
cal innovation of this work. Finally, we have defined a few
useful ways in which strokes of texture can interact and de-
scribed an intuitive painting model that allows the user to
induce these interactions.

While our system works well for a broad class of tex-
tures, we plan to extend it to handle more structured bound-
ary effects. Currently, our system has difficulty synthesizing
highly oriented or anisotropic textures as well as texture re-
gions with wide boundary effects. We believe the addition
of some “control channels” (as suggested in Image Analo-
gies) might help solve this problem. Additionally, it might
be possible to relieve the user of having to specify texture re-
gions manually by incorporating segmentation and matting
techniques into our system. We would also like to improve
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the responsiveness of our system by investigating additional
acceleration techniques such as hybrid patch/pixel-based ap-
proaches.
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