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Figure 1: Our interactive vectorisation technique lets users vectorise an input bitmap (a) into a stack of opaque and semi-trans-
parent vector layers composed of linear or radial colour gradients (b). Users can manipulate the resulting layers using standard
tools to quickly produce new looks (c). We outline semi-transparent layers for visualisation; these edges are not part of our result.
We rasterised figures to avoid problems with transparency in some PDF viewers. See supplemental material for vector graphics.

Abstract
We present an interactive approach for decompositing bitmap drawings and studio photographs into opaque and
semi-transparent vector layers. Semi-transparent layers are especially challenging to extract, since they require the
inversion of the non-linear compositing equation. We make this problem tractable by exploiting the parametric
nature of vector gradients, jointly separating and vectorising semi-transparent regions. Specifically, we constrain
the foreground colours to vary according to linear or radial parametric gradients, restricting the number of
unknowns and allowing our system to efficiently solve for an editable semi-transparent foreground. We propose a
progressive workflow, where the user successively selects a semi-transparent or opaque region in the bitmap, which
our algorithm separates as a foreground vector gradient and a background bitmap layer. The user can choose to
decompose the background further or vectorise it as an opaque layer. The resulting layered vector representation
allows a variety of edits, such as modifying the shape of highlights, adding texture to an object or changing its
diffuse colour.

1. Introduction
Vector graphics enjoy great popularity in graphic design for
their compactness, editability and scalability. Skilled vector
artists commonly blend multiple layers, each composed of
simple colour and transparency gradients, to represent the
appearance of an object. Each layer typically corresponds to a
single aspect of the shading, such as diffuse shading, specular
highlights, shadows or Fresnel reflections. The challenge is to
fully capture complex shading effects while also maintaining
a small number of layers and gradient parameters so that the
vector representation remains compact and easy to edit.

† Inria authors are at REVES/Inria Sophia-Antipolis Méditerranée.

Automatic image vectorisation techniques convert bitmaps
into a set of editable vector paths and gradients. (We use
the term gradient to refer to the smooth colour variations
encountered in vector graphics; this should not be confused
with the gradient of a function, i.e. the vector of its par-
tial derivatives.) We believe that the use of semi-transpa-
rent layers has largely been overlooked by existing algo-
rithms which focus on the generation of opaque vector graph-
ics [LL06,SLWS07,LHM09,XLY09,LHFY12]. The resulting
vector representation is often very complex and difficult to
edit because it combines all aspects of the shading into a
single opaque layer.
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We present the first interactive decompositing tool that can
generate a simple, editable set of opaque and semi-transparent
vector layers directly from a bitmap. Users progressively se-
lect smooth colour regions in the image, which our system
separates into a foreground region filled with a vector gra-
dient and a background bitmap layer. Users can repeat the
process to further separate the background bitmap into ad-
ditional gradient layers. The final step is to vectorise the
remaining background layer. Figure 1 shows how the result-
ing vector representation separates the transparent highlights,
shadows and liquid for a photograph of a wine glass. Users
can edit each layer independently and then re-composite them
to quickly generate a variety of looks and appearances.

Semi-transparent layers are especially challenging to ex-
tract as they require us to invert the compositing equation
[PD84], a non-linear mixture of foreground and background
colours. While this problem has been considered in the con-
text of alpha matting [SB96, WC07] and reflection separa-
tion [LZW04], existing methods estimate bitmap layers rather
than vector gradients and therefore do not provide a small
set of parameters suitable for editing the matted layers. Our
main technical contribution is a decompositing algorithm that
exploits the parametric nature of vector gradients to jointly
separate and vectorise semi-transparent layers. In particular,
we constrain the foreground colours to vary according to lin-
ear or radial gradients, allowing us to solve for a small set of
parameters per layer instead of the thousands of unknowns
over all pixels in a region. The few degrees of freedom of
linear and radial gradients also offer a good trade-off between
goodness of fit and editability, while simplifying colour vari-
ations in the image to reproduce the clean and sharp look of
hand-made vector art. We have integrated our decompositing
algorithm in Adobe Photoshop and we export our gradients
as Illustrator layers, allowing vector artists to create and edit
semi-transparent layers with the tools they are familiar with.

Our approach is limited to foreground layers composed
of linear or radial gradients, and therefore cannot capture
complex semi-transparent textures or reflections. However,
vector images are often not meant to have the complexity of
natural images. Instead, vector artists create images that rep-
resent objects with stylised lighting. We facilitate the creation
of similar vector art from studio photographs, with lighting
designed to be simple and effective. We demonstrate that our
approach can successfully vectorise a diverse set of studio
photographs and drawings into a layered representation (Fig-
ures 1 and 6). We also show how the resulting representation
supports a variety of editing operations such as modifying the
shape of highlights, altering the diffuse colour or texture of a
region, or changing the gradient parameters to significantly
alter the surface appearance of an object.

2. Related Work

Image vectorisation The goal of vectorisation algorithms
is to facilitate or automate the creation of vector graphics

from bitmap images. Most methods segment the input image
into smooth colour regions that are then represented by vector
gradients. Lecot and Lévy [LL06] fit linear and radial gradi-
ents to generate vector images in Art Deco style. Gradient
meshes represent complex gradients by interpolating colours
over the faces of a quad mesh, making them a powerful
primitive to capture the smooth colour variations of natural
images [SLWS07]. However, this smooth interpolation is less
effective in representing sharp colour discontinuities, which
require the introduction of holes [LHM09] or closely-spaced
mesh lines on either side of image edges [SLWS07]. This lim-
itation motivates Xia et al. [XLY09] and Liao et al. [LHFY12]
to represent the image as a piecewise-smooth surface whose
control mesh aligns with strong image edges, using a multi-
resolution representation for the latter. These approaches also
share similarities with diffusion curves [OBW∗08], which
vectorise images by storing colours on each side of strong
edges while computing smooth colour variations in-between
the edges using a diffusion process. All of these algorithms
are designed to vectorise opaque objects into a single layer.

Our approach complements these techniques by decom-
positing the image into multiple transparent and opaque lay-
ers. We represent transparent layers with linear or radial gra-
dients because artists often use such simple gradients to rep-
resent reflections and shadows in vector art. We also found
that linear and radial gradients are sufficient to represent the
highlights, shadows and transparency encountered in stock
photographs, which are typically shot using large area light
sources. In contrast, opaque layers often contain more com-
plex shading variations, which we express with any suitable
representation, such as gradient meshes [SLWS07]. The main
advantage of our layered representation is that each layer is
simpler than the composed image.

A few vectorisation algorithms consider the creation of lay-
ered representations for opaque objects, for example relying
on motion detection to separate dynamic foreground objects
from a static background when vectorising cartoon anima-
tions [ZCZ∗09]. Price and Barrett [PB06] decompose objects
into several gradient meshes using a hierarchical segmen-
tation algorithm. In contrast, we focus on semi-transparent
layers, which require inversion of the compositing equation.

The versatility of vector layers motivates Eisemann and
colleagues [EWHS08,EPD09] to convert 3D models into vec-
tor images, separating cartoon shading, highlights, shadows
and occlusions. Lopez-Moreno et al. [LMPB∗13] generate
editable shading effects as vector layers by first building nor-
mal fields from line drawings. We share a similar goal of
generating and editing vector layers, but our input consists of
bitmap images. Thus, we must estimate layers by inverting
the compositing equation rather than rendering them from a
3D model or a normal field.

Image decomposition The key observation that guides our
approach is that complex images often can be explained with
just a few simple layers. In fact, researchers have shown
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(e) Re-composited result(d) Edited vector layers(c) Complete vector layers(b) Vector layer and background bitmap(a) Input image

Figure 2: Interactive workflow. A user selects a region in an image (a), which our algorithm decomposites into a vector
foreground layer and a background bitmap (b). This process is repeated and opaque layers are handled with existing tools to
create a complete set of vector layers (c). Layers can be edited easily (shown as blue lines in d) and added (green lines), and
re-composited to enable powerful editing applications (e).

that the human visual system infers transparent layers if
they result in a simpler explanation of the visual stimuli
[Ade93, LZW02]. Vector graphics represent transparency us-
ing alpha compositing [PD84], which composites the fore-
ground colour F over the background B using the fore-
ground’s opacity channel α:

I = F◦B = α ·F+(1−α) ·B. (1)

Matting algorithms aim to invert this equation in order to
recover the RGB colours F and B and the scalar α at each
pixel of an input image I. Existing algorithms solve this
problem using assumptions on the colour distributions of the
foreground and background layers [SB96, CCSS01, WC07,
LLW08]. While we adopt a similar strategy, we adapt it to
our context by constraining smooth regions to be filled with
linear or radial gradients, allowing us to jointly separate and
vectorise the foreground layer into commonly used vector
gradients.

Reflection-separation methods handle semi-transparent lay-
ers by estimating colour channels pre-multiplied by the alpha
channel, reducing the image formation model to a sum of
two layers I = F+B [LZW04, LB14]. While this approach
linearises the problem and facilitates its resolution, it prevents
the subsequent independent manipulation of colour and trans-
parency as is common in vector graphics applications. Yeung
et al. [YTBK11] describe a user-assisted method to extract
semi-transparent objects from photographs and re-composite
them. They introduce a three-layer bitmap representation to
capture bright highlights, smooth colour transmission and
refractive deformations. While we do not support refractive
deformations, we unify highlights and colour transmission
by expressing both effects as parametric gradients.

3. Overview

A layered image consists of multiple layers Li that are com-
posited from back to front onto the bottom-most layer L1.
Thus, each pixel x of an image In composed of n layers is
formed recursively as

In(x) =

{
Ln(x)◦ In−1(x) n > 1
L1(x) n = 1.

(2)

Radial gradient
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Linear gradient
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Three-stop gradient

0 1

θs1

θc2 θc3θc1

θs2 θs3

β

Two-stop gradient

0 1

θs1

θc2θc1

θs2

β

Figure 3: We define parametric gradients by composing a
gradient function g (left) with a colour function c (right), that
encodes colour and transparency as an (r,g,b,α) tuple.

To decomposite an image into its constituent layers, we must
invert this equation. However, the inverse problem is under-
determined as n layers result in n unknown RGB colours
and n−1 unknown alphas to explain one RGB observation –
per pixel. We adopt a greedy approach, removing one layer
at a time in their reverse compositing order, from front to
back. That is, at each step, we separate the image Ik into a
foreground vector layer Lk with its alpha channel and the
remaining background bitmap Ik−1, which we further decom-
pose in subsequent steps.

We additionally constrain each semi-transparent fore-
ground layer by modelling it as a parametric gradient func-
tion f =c◦g=c(g(x,θ),θ), composed of a gradient function
g(x,θ) that maps a pixel coordinate x∈N2 to a parametric
value β∈R, and a colour function c(β,θ) that maps this para-
metric value to an (r,g,b,α) colour, all based on a set of
parameters θ. As shown in Figure 3, these parameters encode
the colours of a gradient as well as their transition, through
the colour and gradient functions, respectively. The gradi-
ent function g defines linear gradients by a direction vector
θv and signed offset distance θo from the origin, and radial
gradients are defined by centre θp and radius θr:

glinear(x,θ) =
x ·θv

‖θv‖2 +θo and (3)

gradial(x,θ) =
‖x−θp‖

θr
. (4)

The colour function c maps the parametric gradient to colours
using piecewise-linear interpolation between gradient stops
with colours θci (i=1, . . . ,k) at offsets θsi ∈ [0,1], such that
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θs1 :=0, θsk :=1. We express gradients with 2 and 3 stops as

c2(β,θ) = mix(θc1,θc2,β) and (5)

c3(β,θ) =

mix
(

θc1,θc2,
β

θs2

)
β≤ θs2

mix
(

θc2,θc3,
β−θs2
1−θs2

)
β > θs2

, (6)

with mix(a,b, t)= (1− t) · a+ t · b for linear interpolation.
The colour functions can easily be extended to more stops.

We represent opaque layers with arbitrary colour fills,
which include constant colour, linear and radial gradients
of multiple colours, and gradient meshes.

Our interactive method proceeds as follows. The user first
selects a smooth image region for decompositing using Adobe
Photoshop’s selection tools. The user additionally indicates
if the region is opaque or semi-transparent, if it is a linear or
radial gradient, and how many stops it has (we have presets
for two and three). The user can optionally indicate that a
region is a highlight or a shadow, which further constrains
the decomposition. Our algorithm then separates the selected
region from its background and vectorises it. It first converts
the boundary to a Bézier spline using the open-source vectori-
sation tool Potrace [Sel03]. It then separates the region into a
foreground gradient layer, by fitting a gradient to the colours
inside the region (Section 4.1), and a background bitmap
layer (Section 4.2). The user can choose to further decom-
posite the background bitmap into additional gradient layers
by repeating this procedure, or vectorise the background as a
one or more opaque layers.

4. Decompositing

Extracting a semi-transparent gradient layer requires us to
estimate the parameters θ of the foreground gradient f as
well as the bitmap background B that together best explain
the input image. We cast this estimation as a least-squares
minimisation over the selected region R:

argmin
θ,B

∑
x∈R

(
I(x)− f (x,θ)◦B(x)

)2, (7)

where the compositing implicitly involves the foreground
alpha:

f (x,θ)◦B(x)= fα(x,θ) · frgb(x,θ)+(1− fα(x,θ)) ·B(x),
(8)

and subscripts select (r,g,b,α) channels: fα(x,θ) is the alpha
component of the foreground gradient, while f rgb(x,θ) is its

RGB colour vector
(

fr(x,θ), fg(x,θ), fb(x,θ)
)

.

Finding the foreground gradient parameters θ and back-
ground image B that minimise Equation 7 requires solving an
under-determined system. Each input pixel in I provides one
colour and we must recover one colour for each background
pixel as well as the set of foreground gradient parameters for
the region. Our algorithm tackles this problem in two steps,
by first estimating the foreground gradient (Section 4.1) and
then the background bitmap (Section 4.2).

(b) Radial gradient(a) Linear gradient

Figure 4: We can separate the foreground 2-stop gradient if
at least two iso-contours (dashed lines) are observed over
two different background colours. This condition extends
to each linear piece of multi-stop gradients. We assume the
background is continuous across the region boundary, so blue
locations approximate the background at the green locations.

4.1. Solving for a semi-transparent foreground
Equation 7 corresponds to the matting problem, which Smith
and Blinn [SB96] proved to have a unique solution in the
context of bitmap images if each pixel of the foreground is ob-
served over at least two different known background colours.
In our context, the foreground pixel values are the same along
each iso-contour of the gradient, which implies that we can
solve for the matting problem along an iso-contour if we
observe at least two of its pixels over different background
colours. Furthermore, two different iso-contours are sufficient
to constrain the location and colours of two-stop gradients
(Figure 4). Our problem is hence well-posed if we observe
at least two different iso-contours, each with at least two pix-
els on different backgrounds, for each linear segment of a
multi-stop gradient.

hard
selection

dilated
boundary

eroded boundaryWhile in theory the background
colour is unknown over the entire
region, we make the additional
assumption that it is continuous
across the boundary of the region,
which allows us to approximate
the background colour of each
pixel x along the boundary with the image colour at the
closest location b(x) outside the region boundary (see inset).
In practice, we erode and dilate the hard selection by a few
pixels to account for anti-aliasing or blurry edges in the im-
age, sampling x along the boundary ∂R of the eroded region
(shown in green in the inset) and b(x) outside the dilated
boundary (shown in blue). We then solve for the optimal
parameters Θ of f solely based on the boundary pixels as

Θ = argmin
θ

∑
x∈∂R

(
I(x)− f (x,θ)◦ I(b(x))

)2. (9)

We minimise Equation 9 using a standard non-linear least-
squares solver. We found that the IPOPT solver [WB06],
wrapped by the CoMISo package [BZK12] with automati-
cally differentiated Jacobians and Hessians, achieves good
convergence. We constrain variables expressing colours, opac-
ities and stop offsets (i.e. θci and θsi) to the unit range to
produce valid vector gradients.

© 2014 The Author(s)
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hard trimap matte

(e) With Poisson
blending

(d) With TV
smoothing

(c) With matted
boundary

(b) With hard
boundary

(a) Input
photo (crop)

Figure 5: Background estimation using Equation 10 for im-
age (a): a hard region boundary causes halo artefacts (b) that
are removed with a matted boundary (c). A smoothness term
suppresses noise (d) and combined with Poisson blending
produces the final result (e). To clearly see the differences,
please view this figure on a monitor.

When the background is uniformly coloured, we cannot ob-
tain two observations of the foreground on different back-
ground colours and therefore cannot uniquely solve Equa-
tion 9. In this case, we offer users two additional constraints.
Users may choose to fix the foreground to have a known
constant colour so that only the alpha channel is unknown.
We provide this constraint to users in the form of two presets:
a white colour for highlights and a black colour for shadows.
Users can alternatively choose to favour a semi-transparent
solution, which we express as an additional weak regularisa-
tion term ε| fα(x,θ)−0.5|2 in Equation 9.

Limitation Our assumption of a continuous background
across boundaries may not hold when the background con-
tains strong edges that are coincident with the region bound-
ary. We later account for incorrect background pixel estimates
in a subsequent step (Section 4.3).

4.2. Recovering the background

Given the foreground gradient f (x,Θ), we estimate the back-
ground bitmap B from the image I by inverting the composi-
tion equation (1) at each pixel of the selected region as the
background estimate

B̃(x) =
I(x)− fα(x,Θ) · frgb(x,Θ)

1− fα(x,Θ)+ ε
, (10)

with ε=10−20 for robustness to opaque pixels.

However, the resulting background layer can be polluted
with three types of artefacts (Figure 5). First, while the user
specifies a hard selection boundary, the region often has a
blurry boundary in the original bitmap, which produces halo
artefacts after foreground removal (Figure 5b). We address
this problem by computing the alpha matte M(x) of the soft
boundary in the image, and then replacing fα(x,Θ) with
M(x) fα(x,Θ) in Equation 10. We use the Laplacian matting

algorithm to compute the matte [LLW08], dilating and erod-
ing the user-specified region boundary to generate a suitable
trimap (see Figure 5c).

The two other artefacts we observe are noise from the input
bitmap, which is amplified by the inversion of the composit-
ing equation, and a low-frequency residual due to smooth
variations in the foreground that are not modelled by a linear
or radial gradient, producing a colour mismatch on the border
of the region. We treat both artefacts using smoothing (Fig-
ure 5d) and Poisson blending [PGB03] (Figure 5e), solving
for the background that minimises

argmin
B

λc ·∑x∈∂R
(
B(x)− I(b(x))

)2

+ λp ·∑x∈R
(
1− fα(x,Θ)

)
·
(
∇B(x)−∇B̃(x)

)2

+λv ·∑x∈R ‖∇B(x)‖2, (11)

where the first term favours continuous colours across the
region boundary, the second term preserves variations of
the initial estimate B̃ within the region, and the third term
penalises variation overall. We additionally weight the second
term by (1− fα) because the division by the same factor in
Equation 10 amplifies noise in the image, such as sensor noise
or quantisation, particularly for more opaque foregrounds.
The optimisation can be solved using a standard linear least-
squares solver, such as the backslash operator in MATLAB.
We use weights λc=10, λp=1 and λv=0.1 for all results.

We also experimented with total-variation (TV) denois-
ing |∇B| that better preserves sharp edges but is non-linear
[ROF92]. We use ‖∇B‖2 by default and allow users to apply
total variation if they are not satisfied by the diffused result.
We solve the optimisation with total-variation denoising using
iteratively reweighed least-squares [RW09].

4.3. Iterative gradient refitting

Image pixels outside a region are not always similar to the
background colour behind the region, for example if the re-
gion boundary aligns with an edge in the background. These
incorrect background samples are outliers that bias the estima-
tion process and therefore need to be excluded. We iteratively
exclude these outliers and refit the gradient until convergence.
Specifically, we compare the sampled image colour I(b(x))
to the initial background estimate obtained from Equation 10
and remove any samples that differ significantly. The com-
plete inlier criterion is

(1− fα(x,Θ)) ·
∥∥∥I(b(x))− B̃(x)

∥∥∥< τ, (12)

where we weight the Euclidean colour difference with a (1−
fα) term as the background estimate is less accurate for more
opaque pixels. We use ten iterations and a default value of
τ=0.2. Users can alternatively refine this outlier rejection by
interactively erasing samples along boundaries that should
not contribute to the estimation. We also provide controls
for users to directly constrain the background to a specific
constant colour where necessary.

© 2014 The Author(s)
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lines traced
separately

Vectorised result: 8 opaque & 15 transparent layers Edited layers and resultInput drawing

4 opaque & 2 transparent layersInput vector drawing

text and
lines traced
separately

Vectorised result: 6 opaque & 18 transparent layersInput drawing

Edits and result2 opaque & 6 transparent layersInput photoVectorised result: 20 transparent layersInput photo

Edited layers and resultVectorised result: 5 opaque & 6 transparent layersInput photo

Figure 6: Decompositing and editing results. For each result, we show the input photo or drawing on the left, and on the right an
exploded view of all layers as well as editing results for some of the images. We added outlines to semi-transparent layers for
visualisation; these lines are not part of our results. We use blue lines to show edited layers, green lines for added layers, and the
re-composited result in the centre. Most gradients have two stops, except for the camera lens where three-stops gradients capture
saturated and coloured highlights.
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White linear gradient

Estimated foregroundEstimated (RMSE: 0.0185) Ground-truth foregroundGround-truth backgroundInput

White radial gradient

Input Ground-truth
background

Estimated
(RMSE: 0.0198)

Ground-truth
foreground

Estimated
foreground

Input Ground-truth
background

Estimated
(RMSE: 0.0103)

Ground-truth
foreground

Estimated
foreground

Yellow-to-white radial gradient

Figure 7: Ground-truth comparison on vector art: our decompositing results are close to the ground-truth decompositions as
indicated by the low root-mean-squared errors (RMSE) of the background bitmaps. The vector gradients are correctly estimated
despite the textured background and the subtle colour gradients in the two radial gradient examples.

4.4. Separating opaque layers

Opaque layers can be captured by any existing vectorisation
algorithm. In our implementation, we provide users with the
ability to vectorise an opaque region as either a linear or
radial gradient, or a gradient mesh [SLWS07]. Users can also
use the image tracing tools in Illustrator or Inkscape for this
task. As opaque regions fully obscure the background, they
leave a hole that we fill with a colour diffusion [OBW∗08].

4.5. Implementation

We use Adobe’s publicly available ExtendScript Toolkit to
communicate with Photoshop. Using a script, we export the
current image and selection (as a binary mask), and pass them
to our program that implements the decompositing steps. The
resulting foreground vector and background bitmap layers are
loaded back into Photoshop, and control is returned to the user.
We use Scalable Vector Graphics (SVG) as an interchange
format for all vector layers, which we finally load into Adobe
Illustrator to create the final vectorised result.

5. Results

Figures 1, 2, 6 and 7 show layers extracted from input bitmaps
with our decompositing algorithm. All results have been pro-
duced with 2-stop gradients, except the camera lens and traffic
cone that contain multiple 3-stop gradients. Most layers are
linear gradients; some highlights in the glass (Figure 1) and
the shadow of the vacuum cleaner (Figure 6) are radial gra-
dients. While shadows and highlights are mainly black and
white, the liquid in the glass and reflections in the lens, among
others, are colour gradients. Our layers capture effects like
Fresnel reflections on the side of the wine glass, but we do not
recover and store the relationship between the colours of the
reflection and the background. However, users can manually
adjust the colours of gradient stops in the reflection layers to
match the appearance of a new background.

Decompositing a single semi-transparent layer takes a few
seconds to a minute, depending on the size of region and
background estimation approach, which makes our interactive
approach practical. The examples we show were created from

scratch in a few minutes to an hour, depending on the number
of layers and complexity of regions and images. Typical
times for each region are: <10 s for selection in Photoshop,
<1 s outline vectorisation using Potrace, 1−10 s foreground
fitting (Equation 9), 1−5 s Laplacian matting and 5−30 s
background estimation (Equation 11). The current bottleneck
is the background estimation (Poisson and denoising) which
could be accelerated with a multi-grid GPU solver [MP08].

Our current implementation vectorises each region inde-
pendently. As a result, boundaries of regions do not always
match up perfectly. We manually adjusted the boundaries
between regions of the shoe, and the shadow and body of the
vacuum cleaner in Figure 6. Automatic snapping could auto-
mate this task. To decomposite a hand-drawn bitmap, we first
applied morphological closing to remove the contour lines
(vacuum cleaner and purifier in Figure 6). The corresponding
layers are provided in the supplemental material.

Evaluation For ground-truth evaluation, we process a
bitmap generated from vector art. We show two examples in
Figure 7: a linear gradient on a textured button and two radial
highlight on a round button. The results of decompositing are
very close to the original layers used to create the illustration.

Limitations To make the decompositing problem tractable,
our approach makes some assumptions (Section 4.1). While
these assumptions are often satisfied for two-stop linear gradi-
ents, failure cases are more frequent for radial and multi-stop
gradients as more iso-contours are susceptible to be missed.
If the assumptions are violated, our approach may produce
undesirable decompositions that nonetheless are often still
valid, as shown in Figures 8 and 9. Adding additional con-
straints, such as a white gradient colour or medium opacity,
often resolves existing ambiguities.

Vector editing applications The layered vector art created
using our approach can be edited with conventional vector
graphics tools such as Illustrator or Inkscape. In Figure 6,
we change the shape of the large highlight on the left of the
bottle, and the texture of the shoe. We change the colour of
the liquid layer in Figure 1 and introduce a layer for the straw.

© 2014 The Author(s)
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Input image Ground-truth decomposition Our decomposition

(c)

(a)

(b)

Figure 8: Examples of failure cases, for which our approach
produces valid but undesirable decompositions. If gradient
iso-contours (dashed lines) are not observed over two dis-
tinct backgrounds (a), the gradient colours and opacities are
underconstrained. If only one iso-contour is observed (b), we
obtain a constant-opacity gradient. Quadratic gradients (c)
can be approximated as piecewise linear, but leave a residual
in the background.

Our decompositionRecompositedInput photo

Figure 9: Example of a real-world failure case. If an image
layer cannot be represented well by a colour gradient, our
method tends to leave residual foreground colours in the
background layer. However, we observed that these residuals
are often smoothed away by subsequent vectorisation steps.

Similarly, a layer is added in Figure 2 for the moustache. All
of these edits are difficult or impossible to achieve starting
from just a bitmap, but using our layered image vectorisation
approach, they become much easier.

Potential automation Users of our tool currently need to
manually select the gradient type (linear or radial), number of
stops (two or three) and any other constraints (black, white or
constant colour) of each region. Our framework can in princi-
ple allow for an automatic selection of these parameters, for
example by selecting the gradient that minimises Equation 9.
However, we found the choice of gradient primitive fairly
easy; it also leaves artistic freedom to the user, for instance to
constrain a highlight to be white even if it is slightly coloured
in the input.

6. Conclusion

Vector artists create complex artworks by stacking simple
layers. We have demonstrated the benefit of this strategy for
image vectorisation, both to capture and edit transparency

effects in drawings and photographs. Our approach facilitates
the creation of such layered vector graphics from bitmaps,
and we thus see our method as a valuable tool for professional
artists and novice users alike.

While we focused on alpha compositing, our framework
should easily extend to other popular blending modes, such
as screen and overlay. Another extension of our work would
consist in casting the decompositing problem as a global op-
timisation across multiple layers to better capture residual
colour variations, potentially using our greedy solution as
an initial solution. Finally, our layered representation could
facilitate the creation of vector shade trees [LMPB∗13] from
existing drawings and photographs, which would represent a
first step towards the capture and transfer of material appear-
ance in illustrations.
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