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Figure 1: Our system automatically computes a predictor from a set of Google StreetView images of areas where a statistic was observed. In this example
we use a predictor generated from reports of theft in San Francisco to predict the probability of thefts occurring in Oakland. Our system can predict high
theft rate areas (a) and low theft rates area (b) based solely on street-level images from the areas. Visually, the high theft area exhibits a marked quality of
disrepair (bars on the windows, unkempt facades, etc), a visual cue that the probability of theft is likely higher. Our method automatically computes machine
learning models that detect visual elements similar to these cues (c) from San Francisco. To compute predictions, we use the models to detect the presence of
these visual elements in an image and combine all of the detections according to an automatically learned set of weights. Our resulting predictions are 63%
accurate in this case and can be computed everywhere in Oakland (d) as they only rely on images as input.

Abstract

We investigate the relationship between visual elements and sta-
tistical quantities in cities. Although certain city statistics like the
presence of trees and graffiti have a natural connection to visual el-
ements, more abstract statistical quantities such as crime rates and
housing prices relate to visual content in a less intuitive way. We
show that there is a strong connection between visual elements and
these statistics and that this relationship is general enough to pre-
dict these statistics in new cities. Given a set of street-level images
and geo-located samples of a statistic we first identify visual el-
ements in the images that are discriminative of the statistic (e.g.
our system determined that rounded windows and doors in Boston
are visually discriminative of affluence). We then build a predic-
tor by learning a weight for each of these elements using a robust
regression technique. To perform these operations efficiently, we
implemented a scalable distributed processing framework that can
process a single statistic (10,000 images) 4x faster than previous
methods. We tested the performance of our computed predictors on
the statistics: theft, affluence, graffiti presence, and tree presence.
We found that at least one predictor for every statistic could inter-
polate that statistic with 67%-81% accuracy. In addition, we found
that we can predict statistics in new cities with up to 76% accuracy.
We also tested human performance for predicting theft based on
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images and found that our method outperformed this baseline with
39% higher accuracy. We present two prototype applications that
use our predictors to provide estimates of city statistics: a statistic-
sensitive wayfinding program capable of routing travelers through
or around statistics of interest (e.g. routing a tourist around a high
theft area), and a user-assisted tool for automatically finding graffiti
in street-level images.

1 Introduction

How much information about city statistics is present in images
alone? If you were asked to decide which of the two locations in
Figures 1(a),(b) were most likely to have a high theft rate, which
one would you choose? One important difference between these
two images is that they contain very different visual elements. For
instance, Figure 1(a) contains visual elements like fire escapes,
storefronts with bars on the windows, buildings in disrepair, etc.
In contrast, Figure 1(b) contains visual elements like trees, flowers,
etc.

In this work, we investigate the relationship between visual ele-
ments and statistical information about cities like theft rates. More
specifically, we consider the question of whether there is a mea-
surable relationship between visual elements and the city statistics
theft, affluence (measured by housing prices), graffiti presence, and
tree presence. We also analyze whether this relationship is general
enough to predict statistics in new cities for which samples of these
statistics may not be available.



Many applications in city planning, city fund allocation, and
wayfinding require a fine-scale representations of statistics like
theft, affluence, etc. For instance, if you were to plan a route
through a city that avoided high theft areas, you would need (at
least mentally) a fine-scale estimate of the likelihood of a theft oc-
curring everywhere in the city. Planning a route sensitive to theft
becomes more difficult in areas that you are not familiar with or in
areas where theft statistics are not available.

In recent years, one source of information that has become pub-
licly available almost everywhere on the planet and at a very fine
scale is street-level imagery (e.g. images in Google StreetView,
Bing Streetside, etc). Recently, Doersch et al. [2012] showed that it
is possible to automatically identify a set of visual elements that
capture the unique visual appearance of cities from these image
sources. We extend their approach by automatically computing a
set of weights associated with visual elements that are discrimina-
tive of a statistic via a robust regression technique called support
vector regression [Smola and Schlkopf 2004]. We combine these
visual elements and their associated weights into a single “predic-
tor” capable of estimating statistics based solely on images.

To compute and analyze the accuracy of our predictors we process
between 30,000 and 170,000 street-level panoramas each of which
is approximately 15 megapixels. Processing this many images ef-
ficiently presents a non-trivial engineering challenge and one that
is often encountered by researchers in the computer graphics and
computer vision domains. One of our contributions in this work is
the development of a scalable distributed processing framework that
can efficiently execute arbitrary computation on a large set of im-
ages. In addition to being efficient, we engineered the framework to
integrate seamlessly with MATLAB so that researchers could more
easily integrate existing systems.

We summarize our main contributions in this work as follows:

1. We describe an extension to the method of Doersch et
al. [2012] and Singh et al. [2012] for automatically comput-
ing predictors capable of estimating statistics based solely on
images (Section 4).

2. We analyze the ability of our predictors to interpolate their
respective statistics in cities that were used to compute them.
We show that at least one predictor for every statistic can in-
terpolate that statistic with 67%-81% accuracy. In addition,
we show that in the case of tree presence in San Francisco, for
which we could actually compute ground truth via Mechani-
cal Turk, we are able to achieve 10% higher accuracy than a
radial basis function interpolation (Section 6.1).

3. We analyze the ability of these predictors to generalize to new
cities. We summarize these results in Figure 13. Of partic-
ular note is our ability to predict the theft rate in downtown
Chicago from visual elements of theft in San Francisco with
39% higher accuracy than humans participating in a Mechan-
ical Turk study (Section 6.2).

4. We present two prototype applications that rely on our predic-
tors to compute a fine-scale representation of certain statis-
tics (Section 7). In Figure 2 we show an example output of
a wayfinding application we built that allows a user to tra-
verse a path through or around a statistic of interest - in this
case around theft. Other statistics can be used in the system
as well, for instance trees (Figure 14). We also built a sys-
tem that allows a user to quickly locate areas where graffiti is
likely to occur in a city using predictors trained in that city. A
result using this system is presented in Figure 15.

2 Related Work

The connection between visual elements and city statistics has been
considered in a variety of different fields. One of the earliest and
most well-known examples of a principled study of this connection

(a) A Typical Route (b) A Theft-Avoiding Route

Figure 2: Figure 2(a) shows a route generated from a typical wayfinding
implementation that attempts to minimize the total travel distance from a
source to a destination. In Figure 2(b), the user has indicated that he/she
wishes to avoid avoid high theft-rate areas in Chicago between the same
source and destination. The left insets show the two routes in more de-
tail, overlayed on our estimates for the probability of theft (light red is low,
bright yellow/white is high) based on a predictor trained in San Francisco.
Although we are using a predictor from a different city, the route still avoids
the thefts that actually did occur in this area (red circles).

is the the famous “broken window theory” [Zimbardo 1969; Wil-
son and Kelling 1982]. The theory states that if a car or building
with broken windows is left unattended, the remaining windows
are much more likely to be broken. In essence, at least some of
the visual elements of cities (e.g. cars and buildings) contribute
significantly to the rate of crime that is observed. This connection
between visual elements and city statistics has been shown to hold
not just for crime, but for a variety of other statistics including obe-
sity [Ellaway et al. 2005], depression [Latkin and Curry 2003], and
sexually transmitted diseases [Cohen et al. 2000]. Researchers in
more recent years have even used Google StreetView to conduct
visual “audits” of statistics in areas of interest either by their own
inspection [Rundle et al. 2011] or via crowd-sourcing [Hara et al.
2013].

Although researchers have shown that these relationships exist, they
have had to rely on their own manual inspection of image data to
derive them. In contrast, our method relies only on samples of sta-
tistical data and an associated set of street-level images to automat-
ically learn the set of visual elements that are discriminative of that
statistic. In addition, we are able to combine detections of these
visual elements allowing us to predict statistics in new areas at the
density of street-level images (usually around 3-4m along streets
in cities), something that would be intractable from a set of human
observations alone.

Researchers have also analyzed the relationship between visual el-
ements and the unique visual appearance of cities [Doersch et al.
2012]. For instance, Paris has a very distinctive visual appearance
compared to London. Our approach leverages the same clustering
approach as their work (developed by Singh et al. [2012]) to extract
machine learning models that detect discriminative visual elements.
We extend their technique by computing a set of weights over the
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Figure 3: To compute a predictor, we first download a set of of statistics from a “Statistic Database” that have been annotated with latitude and longitude
coordinates. We then compute a set of positive and negative image features from Google StreetView panoramas at the locations of the statistics. We use the
image features in a “Clustering Algorithm” designed to recover visual elements that are discriminative of the statistic. One of the outputs of this algorithm is
a set of “Support Vector Machines” (SVMs), each of which can detect the presence of a visual element in an image. We use these SVMs to detect the presence
of the visual elements in a set of images distinct from those used in the clustering algorithm. We also interpolate the value of the statistic at the locations of
these images. We use “Support Vector Regression” to find weights over the visual elements such that their weighted detections match the interpolated values.
The set of SVMs and their associated weights are what we refer to as a “Predictor”.

models to produce a predictor. This extra step is necessary for two
reasons. First, the resulting models from the clustering approach
only provide a binary detection of visual elements (e.g. does this
image contain a window with bars on it or not). Second, there are
potentially hundreds of possible models that are produced via the
clustering technique. Knowing which subset of those is actually
indicative of a particular statistic and how to combine them in a
principled way has not been considered in previous work.

We solve both issues using a regression technique that computes the
weight of each model while removing models that are redundant or
unneeded by setting their weight to 0. The specific regression tech-
nique we use is called support vector regression. This technique
is robust to overfitting and explicitly attempts to compute weights
that remove unnecessary dimensions (i.e. redundant and unneeded
detections) [Boser et al. 1992; Smola and Schlkopf 2004]. Support
vector regression has been applied in a number of different fields in-
cluding graphics for 3D pose estimation [Agarwal and Triggs 2006]
and image restoration [Mairal et al. 2008].

There have been several approaches that use imaging modalities
other than street-level panoramas to predict and detect city statis-
tics. Aerial and street-level lidar has been used to detect trees [Sec-
ord and Zakhor 2007], water and ground coverage [Carlberg et al.
2009], roads [Boyko and Funkhouser 2011], and buildings [Rotten-
steiner and Briese 2002]. Video has been used to categorize traffic
in cities [Koller et al. 1994; Srinivasan et al. 2004] as well as to
track crowds for the purposes of detecting flow patterns, anoma-
lous behavior, etc [McKenna et al. 2000; Hu et al. 2004]. Although
these techniques often produce very accurate results, the availabil-
ity of these sources of data is a limiting factor in most cities. Since
our method relies only on street-level images, we have almost no
limitation on the places we can use our predictors.

3 Overview

Our goal is to create a predictor that can estimate the probability
of observing a statistic in an area based on street-level images from
the area. We define a predictor as a set of support vector machines
(described in Section 4) that detect visual elements and a set of
weights associated with detections. Figure 3 shows an overview of
our approach and includes five steps:

1. We download occurrences of a city statistic that have been an-
notated with latitude and longitude coordinates from an online
“Statistic Database” (Section 3.1).

2. We compute a set of image features from perspective projec-
tions of Google StreetView panoramas where the statistic oc-

curred (positive features) and where the statistic is unlikely to
have occurred (negative features) (Section 3.2).

3. We train a set of support vector machines (SVMs) that de-
tect discriminative visual elements using a “Clustering Algo-
rithm” on the positive and negative features (Section 4.1).

4. We collect a “Regression Training Set” of panoramas not used
to train the SVMs and interpolate them via radial basis func-
tions.

5. We compute a set of weights over the detections of the SVMs
using “Support Vector Regression” to match the interpolated
values (Section 4.2).

3.1 Acquiring the Statistics

In our experiments we downloaded statistics that were annotated
with latitude/longitude coordinates for (1) occurrences of theft, (2)
affluence as measured by the top 20% most expensive homes in dol-
lars per square feet, (3) the presence of graffiti, and (4) the presence
of trees. Note that each of these is a binary value indicating where
the the statistic occurred. We downloaded statistics (where avail-
able) in: San Francisco, Oakland, Seattle, Chicago, Los Angeles
(Inglewood neighborhood), Boston, and Philadelphia.

For crime data, we used two resources freely available on the Inter-
net: CrimeMapping.com and CrimeReports.com. From these sites
we were able to acquire the occurrences of crimes for the past year
in all cities. The housing price data came from the online real es-
tate company Zillow. We were able to find this information for all
of the cities we investigated except in the Inglewood neighborhood
(Los Angeles). We limited our data to only homes that have sold in
the past few years rather than relying on for-sale prices which don’t
necessarily represent the value of a home. We found reported graf-
fiti incidents in San Francisco1, Boston2, and Chicago3. We were
only able to find one data source for tree presence in one city - San
Francisco (UrbanForestMap.org).

3.2 Image Features

Both the clustering algorithm and our predictors operate on im-
age features rather than entire street-level images. We extract these
image features from perspective projections of Google StreetView
panoramas. We project each panorama at 20◦ intervals across the

1https://data.sfgov.org
2https://data.cityofboston.gov
3https://data.cityofchicago.org



entire azimuthal range from 0◦ to 360◦ and from −10◦ to 30◦ in
the elevation angle also in steps of 20◦. In all of our experiments
we used a field of view of 30◦. This gives us an overlap of 10◦
between successive projections maximizing the chance that every
object appears whole in at least one projection (Figure 3).

We compute features using the same method as Doersch et
al. [2012]. We first scale each panorama projection to a resolu-
tion of 400x400 pixels. We construct a Gaussian pyramid from
each downsampled image with an 8x8 patch at the coarsest level.
For each level in the pyramid we compute HOG features [Dalal and
Triggs 2005] over the entire level. We concatenate these features
with the (a∗,b∗) coordinates (in the CIE La∗b∗ color space) of the
original image downsampled to the resolution of the pyramid level.
An image feature is an 8x8 patch of the concatenated features from
one of pyramid levels. This produces features of dimension 2112.

To compute our predictor we split the image features into a positive
set and a negative set. If the image feature is from a panorama that is
co-located with an occurrence of the statistic (e.g. theft, affluence,
etc), we put the feature in the positive set. Defining the negative
set of features requires more work since more of the data on city
statistics only specifies where the statistic occurred.

To generate the negative set our goal is to extract features from
panoramas that correspond to locations (x,y) where a statistic is
unlikely to be observed. Since the set of all locations that meet this
criterion could produce more locations than our system can handle,
we define a probability distribution over the negative locations and
generate the necessary number of samples from it.

To generate the samples, we first compute a 2-dimensional his-
togram over the positive locations. Since each statistic is a binary
value, every positive location (i.e. a latitude/longitude coordinate
of an occurrence of the statistic) contributes a value of 1 to the his-
togram. We use a bin size of 0.0005x0.0005 with respect to latitude
and longitude. We then blur this histogram with a Gaussian filter
(σ = 3) to build a continuous probability distribution g (x,y).

We define the probability that a location (x,y) should be considered
a negative as:

P [(x,y) is negative location] =

{
1 if g (x,y) < t
0 otherwise

We set the threshold t to 0.0001 in all our experiments. To gen-
erate negative locations, we sample this probability distribution us-
ing the common inverse cumulative distribution sampling method,
more formally referred to as the probability integral transforma-
tion [Casella and Berger 1990]. Panoramas from these locations
generate the negative set of features. An example of the positive
and negative locations used for the theft statistic in San Francisco
is shown in Figure 4.

(a) Positive Samples (b) Negative Samples (c) Overlayed Samples

Figure 4: An example of locations generated for the theft statistic in San
Francisco. Negative locations, which are often not measured, are defined
as locations where the statistic is unlikely to occur. Panoramas from these
locations supply the negative image features.

(a) Two examples of higher-ranked nearest neighbor sets for the tree pres-
ence experiments in San Francisco.

(b) Two examples of lower-ranked nearest neighbor sets for the tree pres-
ence experiments in San Francisco.

Figure 5: A few examples of the nearest neighbor sets used to seed the clus-
tering process for the tree presence statistic in San Francisco. The first two
rows are higher ranked based on the number of nearest neighbors that are
from the positive set versus the negative set. The bottom rows are some of
the lowest rankings. Although the nearest neighbor does find good exam-
ples of the statistics, it lacks enough uniformity to be used directly to detect
a single visual element.

4 Building the Predictor

To analyze the relationship between visual elements and city statis-
tics we compute a predictor that is capable of estimating locations
where a statistic is likely to occur based on street-level imagery.
The predictors that we compute are comprised of (1) a set of sup-
port vector machines (SVMs), each of which detects the presence
of a single visual element discriminative of a statistic, and (2) a set
of weights associated with the SVM detections.

An example of the visual element “high density apartment win-
dows” in Chicago is shown in the top row of Figure 6. Each row
represents a visual element and each image in the row represents
a single detected region in a panorama from Chicago. These de-
tections were computed using an SVM trained using our system.
Since all of the detections are examples of high density apartment
windows, we say that the SVM detects the presence of this visual
element.

4.1 Computing the Visual Element Detectors

In this work we use linear SVMs which attempt to find a hyperplane
(defined by a vector normal to the plane n and an offset from the
origin o) that separates a particular set of features from another set
of features with the largest separation distance. We refer to the
computation of these hyperplanes as training the SVM. Our goal is
to train SVMs that separate features corresponding to a single visual
element from all the other features and that detect visual elements
that are discriminative of a particular statistic.

Singh et al. [2012] have recently developed a method for computing
linear SVMs that satisfy these two conditions. Their technique uses
an iterative approach to find clusters of image features that represent
a single visual element and an associated linear SVM capable of
detecting whether that visual element is present in an image. We
use a version of this clustering technique implemented by Doersch
et al. [2012] to train our linear SVMs.

To initialize the clustering algorithm, we randomly sample 25,000
positive image features (defined in Section 3.2) and compute their
nearest neighbors in feature space across the entire dataset (pos-
itives and negatives). Each set of nearest neighbors becomes an
initial cluster.

To reduce the number of clusters that we have to process, we sort



(a) Visual Elements for Theft in Chicago

(b) Visual Elements for Theft in Boston

Figure 6: Some of the visual elements for the theft statistic in Chicago and
Boston. In both cities, high-density windows and windows with no extra
additions (balconies, planters, window sills, etc) are likely to be detected
where thefts occur. Although these visual elements may not seem intuitively
indicative of theft, the resulting predictors are both capable of estimating
the probability of crime with nearly 80% accuracy.

the initial 25,000 positive features based on the number of their
closest 20 nearest neighbors that came from the positive feature set
and only use the top 800 nearest neighbor sets as the initial clusters.
This ranking helps to produce good initial candidate clusters be-
cause a set of nearest neighbors that consists mostly of positives is
likely to be discriminative of the statistic. If a set of nearest neigh-
bors is not discriminative they will be more randomly distributed
amongst the positive and negative set.

Figure 5 shows some of the nearest neighbor sets that we use to de-
fine the initial clusters in our tree presence experiments (Section 6).
The nearest neighbor sets in Figure 5(a) are ranked higher than the
nearest neighbor sets in Figure 5(b). Red boxes indicate nearest
neighbors from the negative set. The higher ranked clusters are
more visually similar to the kinds of visual elements that are dis-
criminative of trees.

The details of the iterative clustering algorithm that we use are the
same as Doersch et al [2012] and Singh et al. [2012]. We elide the
details of this method for brevity, but summarize the critical steps in
Figure 7. We represent each cluster as an SVM that detects whether
an image feature is a member of the cluster. To refine the clusters
we iteratively compute the “SVM Detections” across the negative
set and then “Re-Train” the SVMs so that they avoid detecting these
negatives. This approach is referred to as the hard-negative mining
technique [Felzenszwalb et al. 2008] and helps to quickly refine
the SVMs so that they don’t erroneously label negative features as
positive features. The SVMs associated with the final set of clusters
are what we use to construct our predictors.

Figure 8 shows some examples of the initial and final iterations
of this approach. Note that the initial clusters from just the near-
est neighbor sets contain many members from the negative set and
lack a consistent appearance. We run the iterative approach for 2
iterations, after which we find the final clusters exhibit a lot more
uniformity and more members from the positive set.

...
SVM Detections

NegativesClusters/SVM’s

Re-Train

...

Refined Clusters/SVM’s

Figure 7: A detailed view of the iterative nature of the clustering algorithm.
We represent each cluster as an SVM capable of determining whether an
image feature is a member of the cluster. The SVMs are used to compute
detections in the negative set. The resulting detections are used to re-train
the clusters to avoid detecting negatives that the SVM is likely to erroneously
detect as positives. The refined SVMs are then fed back into this loop for
further refinement.

4.2 Computing the Predictor

Statistics are represented by a complicated combination of many
visual elements, not the presence (or lack thereof) of a single visual
element. Thus, we cannot directly use the linear support vector ma-
chines (SVMs) trained by the clustering algorithm to predict them.
Much in the same way that attribute classifiers [Kumar et al. 2009]
are built from a set of simpler classifiers, we compute our predic-
tors by learning a set of weights over the SVM’s detection scores.
By combining the weighted detection scores of each SVM, we can
compute an estimate of the probability of observing a statistic based
on an image’s content.

Since the SVMs are linear, we can compute the detections scores
as:

di,j = f i · nj − oj (1)

Where di,j is the score for SVM (nj , oj) on image feature f i.

The particular method we use to determine the weights is called
support vector regression [Smola and Schlkopf 2004] and is inten-
tionally engineered to be sensitive to over-fitting. This is an im-
portant issue in our context since the raw detection scores are not
meant to represent the probability of observing a visual element and
thus can be unreliable.

In SVR, the goal is to find a function that approximates a set of
training outputs yi given a set of training input vectors xi. In our
case, each coordinate of a training input vector is the detection score
of a single SVM in a single image of the “Regression Training Set”
depicted in Figure 3. In our experiments we use the top 3 detection
scores from each SVM to keep the optimization well conditioned.

To generate the training outputs yi, we interpolate the original
statistic locations at the locations of the panoramas in the “Regres-
sion Training Set” using radial basis functions (RBFs). To compute
the basis functions, we initialize a multiquadric RBF with weight
1 at each of the original statistic locations. These RBFs have the
following form:

f (r) =
1√

1 + (εr)2
(2)



(a) Top: An initial cluster for affluence (houses worth more than $850/sqft) in San Francisco. Bottom: The corresponding final cluster.

(b) Top: An initial cluster for affluence in Boston (houses worth more than $500/sqft). Bottom: The corresponding final cluster.

Figure 8: A visualization of the iterative clustering technique. The goal of the clustering technique is to compute a set of linear support vector machines that
can detect visual elements that are likely to be present in images containing a house worth more than $850/sqft in San Francisco and $500/sqft in Boston. The
top row in each example is the set of patches comprising the initial cluster (the nearest neighbor set). The bottom rows are the final clusters after the iterative
approach. Image features that are part of the negative set are highlighted in red. The clustering approach removes negative examples and produces clusters
(and their associated SVMs) with more consistent detections that are visually related to the statistic (e.g. shrubs in Francisco and protruding window facades
in Boston).

We tried several different RBFs but found that the multiquadric
RBF with ε = 2 worked well in practice.

We can parametrize the functions that approximate the yi’s given
the xi’s as f(xi) = w ·φ (xi)+b, where φ (xi) is a (possibly non-
linear) map on the xi’s that can help find a better approximation.
The w in this parametrization is what we refer to as the weights in
the predictor. In the simplest case, φ is just the identity map and
f (xi) reduces to the standard equation for a hyperplane. Figure 9
shows a visualization of these quantities and the relevant parameters
of the approach in a simplified 2-dimensional case.

The goal of SVR is to determine the parameters (w, b) that are
as “compact” as possible while minimizing the loss of a particular
parametrization (w, b) in predicting the training outputs yi. This
loss is defined as:

Lε (yi, (xi, b)) = max (|yi − f (xi) | − ε, 0) (3)

Here, we have introduced a new parameter ε which controls the
magnitude of error that we tolerate in our fitted model. Any yi that
are within a distance ε of the fitted model are considered equally
well approximated. In Figure 9 this property means that no yi in
the gray shaded region contribute to the error of the fit. We set ε to
be 0.1 in all of our experiments.

A compact model is defined as having the fewest number of degrees
of freedom in the feature space as possible. Hence, the objective in
SVR is to minimize the L2 norm of w subject to the constraints
imposed by the loss function.

One important detail here is in the selection of the map φ, which
typically transforms input points into a higher dimensional space
enabling non-linear regression. In order to define this map φ, we
need only to define a so-called “kernel function” K (xi,xj) oper-
ating on pairs of training inputs. We considered the following three
forms of K:

Linear: K (xi,xj) = xTi xj

Polynomial: K (xi,xj) =
(
γxTi xj + r

)d
Radial Basis Function: K (xi,xj) = exp

(
−γ||xi − xj ||2

)

yi φ (xi)

w

ǫ

ǫ

Figure 9: A visualization of the support vector machine regression opti-
mization in 2D with the linear map φ(xi) = xi. The goal of the optimiza-
tion is to find a hyperplane defined by (w, b), such that all of the distances
from this plane to the training data points xi are within ε of their actual
distance given by yi. The red points in the diagram illustrate points that
don’t fit this criterion and therefore contribute to the error or loss of the fit.

All of our experiments use the radial basis function form with γ
equal to 1/D, where D is the number of dimensions in the training
vectors xi. It’s worth noting that the radial basis function used in
regression is unrelated to other references in the paper regarding
radial basis functions used for interpolation, although they all have
this basic form.

The resulting (w, b) along with the associated SVMs define a pre-
dictor. We use the popular library libsvm [Chang and Lin 2011]
to perform the support vector regression step and to compute pre-
dictions in new images. We use the default settings of the library
unless otherwise noted. It’s important to note here that this pre-
dictor can be used in any image, which means we can predict the
occurrence of statistics anywhere there is street-level imagery avail-
able regardless of the city that was used to generate it (results and
applications are presented in Sections 6 and 7 respectively).



5 Implementation

Computing the linear support vector machines (SVM) via the clus-
tering method described in Section 4 requires performing a number
of compute and data-intensive operations. The input to the algo-
rithm in our experiments is a set of 10,000 Google StreetView pro-
jections (2,000 positive locations, 8,000 negatives), each of which
is 640x640. Every image contributes 7,700 image features, each of
which is comprised of 2112 floating-point numbers. This amounts
to about 650GB worth of image data that we must process. In addi-
tion, each iteration of the algorithm depicted in Figure 7 can require
upwards of 26GB to be processed and around 2GB to be transferred
between the detection step and the re-training step. When we com-
pute predictions of our statistics in new cities we have to compute
detections for all of the models that comprise the predictor in every
street-level image in the city, which ranges from 30,000 to 170,000
panoramas that have a resolution of 5324x2867 each. This is nearly
2.5TB worth of data that must be processed in some cases.

In order to efficiently process all of this data, we developed a scal-
able distributed visual processing framework. We have used our
framework on both a local heterogeneous 40 core cluster and on
Amazon’s Elastic Compute Cloud. Our framework can compute
the SVMs via the clustering method described in Section 4.1 for a
single statistic in about 12 hours on a cluster with 40 total cores
(480 CPU hours). This is a 3.75x speedup over the previous imple-
mentation [Doersch et al. 2012]. We can compute predictions over
an entire city of 80,000 panoramas in 196 CPU hours, or about 5
hours on our 40 core cluster.

Although there have been a number of implementations for per-
forming distributed tasks on a heterogeneous/homogeneous cluster
of computers, our implementation leverages certain assumptions
about common visual processing tasks to increase efficiency that
more general frameworks cannot. Specifically, we assume that all
data being passed between processors can be encoded in a matrix
and that the order of that data is inconsequential. This last assump-
tion means that the matrices don’t need to be sorted, shuffled, or
reduced, which is a common costly operation in many popular pro-
cessing frameworks [Dean and Ghemawat 2008; White 2012].

We implemented our framework in C++ and used the standard mes-
sage passing interface (MPI) library as our communication proto-
col. In order to make our framework easier to use in the scientific
community, we added support for MATLAB matrices to be used
directly in our system. In fact, all variables passed between nodes
are wrapped in a MATLAB matrix, with extra functions to make
serialization and deserialization efficient.

We added several features to our framework to make it more robust
and efficient. We briefly outline these below.

Scheduling: The main purpose of our framework is to maximize
the throughput of tasks. Since not all pieces of a task necessarily
take the same amount of time and not all nodes are guaranteed to
process tasks at the same rate, scheduling becomes an important
aspect of distributed processing. Our restriction that all variables
must be expressed as matrices allows us to easily break up inputs
by columns or rows and iteratively send these out to be processed.
Nodes that are slow will simply receive fewer rows/columns. This
avoids a very common issue in first-order implementations of dis-
tributed processing frameworks wherein a job’s execution time is
equal to the execution time of the slowest node.

Checkpointing: Whenever enough of an output matrix has been
computed, the partially completed matrix can be saved to disk. If a
job dies during execution for any reason, it can be restarted where
it left off by loading the checkpoint before resuming computation.

Caching: Variables that need to be repeatedly sent to processing
nodes within a single job and across jobs can be flagged to be
cached on the nodes’ local filesystem. For large data that remains
the same across jobs or across a single job (e.g. a list of all of

the images being processed with metadata), the framework can in-
struct the nodes to load the variables from the cache rather than
re-transferring them.

Partial Variables: In many visual processing tasks a large output
is computed. For instance, the result of computing the detections
from the negative set (the “Cluster Detections” block of Figure 7)
can easily require several dozen gigabytes to be in use on the master
node of the cluster. To avoid using this much memory, a variable
can be marked as “partial” indicating that either rows or columns
of the associated matrix can be saved to disk once they have been
computed.

6 Results

We use the predictors generated via the method described in Sec-
tion 4 to analyze the relationship between visual elements and city
statistics. Recall that our predictors are comprised of a set of lin-
ear support vector machines (SVMs) that detect visual elements that
are discriminative of a particular statistic along with a set of weights
that encode the importance of each of the detections.

Our results indicate that in many cases there is a quantitatively rel-
evant relationship between visual elements and city statistics. In
Section 6.1 we analyze the strength of this relationship by interpo-
lating theft, affluence, graffiti presence, and tree presence in cities
using predictors generated in the same city. To evaluate the abil-
ity of these relationships to generalize to new cities, we analyze
the performance of predicting statistics in “target” cities based on
predictors trained in “source” cities. Results are presented in Sec-
tion 6.2. We used San Francisco, Chicago, and Boston as source
cities and San Francisco, Oakland, Seattle, Chicago, Los Ange-
les (Inglewood neighborhood), Boston, and Philadelphia as target
cities, although some results don’t contain all target cities because
the data was not always available.

The four statistical quantities that we tested were:

1. Theft rate measured as locations where thefts have occurred
in the past year.

2. Affluence measured as locations where homes have sold for
more than 80% of all sold homes in a city in the past several
years.

3. Graffiti presence measured as locations where graffiti has
been reported as being offensive.

4. Tree presence measured as locations where people have noted
a tree that was larger than 70 centimeters (∼ 27 inches).

Some examples of visual elements that we automatically deter-
mined were discriminative of theft are shown in Figure 6, affluence
in Figure 8, and graffiti in Figure 10. More resulting visual elements
are available in the supplementary material.

The evaluation metric we use in our analysis is the area under the
receiver operator characteristic (ROC) curve. The ROC curve is de-
fined as the relationship between the true positive rate (TPR) and
the false positive rate (FPR) of a binary classifier for any prior dis-
tribution on the negatives and positives. The true positive rate and
the false positive rate are related to the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives
(FN) of a binary classifier compared to ground truth via the follow-
ing two equations:

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(4)

To determine true positives, false positives, etc. we derived ground
truth estimates for each of the statistics in every city the same way
we generated positive and negatives samples used during training
(see Section 3.2 for details).



(a) Top Visual Elements for Graffiti in Chicago

(b) Top Visual Elements for Graffiti in Boston

Figure 10: (a) shows some of the top visual elements for the graffiti statistic
in Chicago. The second row in (a) is actually an architectural style that is
very common around the “East Village” neighborhood of Chicago, which
we only realized upon inspecting the source locations of these images. (b)
shows some top elements from Boston. The bottom row appears to be just
bricks, however, when we inspected their corresponding locations we found
nearly all of them were in alleyways.

This metric is useful in our context as it measures the probability
that a random positive sample is classified correctly with a higher
confidence than a randomly chosen negative sample. Moreover, it
has been shown that if the area under the ROC curve is equal to
0.5 then the classifier is not discriminative at all i.e. it’s a random
classifier, regardless of the prior distribution on positives and neg-
atives. Anything above 0.5 is considered discriminative with some
accuracy up to a maximum value of 1.0 [Hanley and McNeil 1982].

We convert our predictions to binary classifications by simply clas-
sifying predictions above a certain value as positive and those be-
low as negative. To produce the curves in our plots, we varied this
threshold from 0 to 1 and computed the true positive rate versus and
false positive rate for each threshold value.

The results of our experiments are summarized in Tables 1 (graffiti
presence) , 2 (theft), and 3 (affluence), and in Figures 11 (tree pres-
ence) and 13 (ROC curves). Each entry in the tables represents the
area under the ROC curve of a source/target city pair. Diagonals of
the tables correspond to the intracity interpolation experiments and
represent the area under the bolded ROC curves in Figure 13.

6.1 Intracity Prediction Results

In our first set of experiments, we analyze the ability of predictors
generated in a source city to predict where statistics are likely to be
observed in that same city, but at different locations than were used
to compute the predictors. We are effectively testing the ability for
our predictors to interpolate statistics based on images alone. We
considered the four statistics theft, affluence, graffiti presence, and
tree presence in San Francisco, Boston and Chicago.

In almost all cases the area under the ROC curves for every city
and statistic pair was above 68% prediction accuracy with several
around 77%. The best interpolation result was the affluence statis-
tic in Boston (Table 3), which was 81.5% accurate. To provide an
intuition for the significance of these numbers, we deployed a Me-
chanical Turk experiment asking workers to examine a series of 15
Google StreetView images from Chicago and “decide based on the
image alone whether [they] would feel safe in the area or not at any
time of day.” We tested a total of 970 images. For each image we
averaged the responses of 5 workers and thresholded the averages
to generate the ROC curves in Figure 13 in the row for theft and the
column for Chicago. Our predictor’s interpolation of this statistic
outperforms the human performance by 39%.

The only statistic/city pair that did not perform well was graffiti in
Chicago. We believe that this is most likely due to the fact that we
are recovering visual elements that are correlated to graffiti rather
than representative of it (see Figure 10). Notice that none of the
detections for the visual elements contains graffiti. Rather the vi-
sual elements seem to be attributes of the cities that are likely to be
present in areas where graffiti would be observed (e.g. alleyways,
particular neighborhoods). According to our analysis, this corre-
lation is seemingly weaker in Chicago than in San Francisco and
Boston.

Target Cities
Source Cities San Francisco Chicago Boston

San Francisco 0.682 0.553 0.615

Chicago 0.492 0.559 0.550

Boston 0.560 0.496 0.686

Table 1: Graffiti Prediction Performance: Graffiti relates to visual ele-
ments with lower performance than our other statistics. While graffiti has
an obvious visual appearance, our algorithm is not able to capture the nec-
essary fine-scale details. With better image features or more specific train-
ing examples, the performance of our method would likely improve.

6.1.1 Errors in the Ground Truth Data

One of our motivations for pursuing this research is that online
databases of city statistics can be very unreliable. Figure 11 shows
both the ROC curves and the area under those ROC curves for the
tree presence statistic. The green curve in leftmost plot of Figure 11
represents our method with respect to ground truth derived via the
method described in the introduction to this section. Compared to
a radial basis function interpolation of the statistic (purple curve),
our method seemingly does much worse. However, when we asked
Mechanical Turk workers and Facebook friends to decide whether
a set of images contained “at least 50% of a single tree” and com-
pared our method versus radial basis functions to their answers, we
found that our predictions were more than 10% more accurate than
the radial basis function interpolation. In this experiment we tested
1000 images and an average of 10 people marked each image.

This result is an important illustration of the shortcomings of online

Mechanical Turk

0.5 10
0

0.5

1

Random PredictionOur Predictions RBF Predictions

Original Statistics

Original Statistics Mechanical Turk

Our Predictor 0.750 0.811

RBF Predictor 0.944 0.698

Figure 11: For the second column of the table (corresponding to the ROC
curves in the left plot) the ground truth was derived from the statistical infor-
mation downloaded from UrbanForestMap.org. In this case a radial basis
function interpolation of the statistic performs exceptionally well. However,
when we generated a dataset from a crowd-sourced labeling experiment
(right plot and third column of the table), our predictor showed a 10% per-
formance gain over the standard interpolation approach.



Figure 12: The top image shows a heat map of our predictions of affluence
in Philadelphia based on a predictor trained in Boston. On the bottom we
have overlayed the actual locations of affluence (measured by the price of
homes). The predictions are very similar to the ground truth data despite the
fact that the predictions rely solely on images and were trained in a different
city.

databases of statistics; sometimes they are imprecise or difficult to
interpolate in a principled way. Fortunately, our predictors rely only
on images and thus can potentially outperform these standard inter-
polation approaches.

6.2 Cross-City Prediction Results

For the statistics theft, affluence, and graffiti presence, we estimated
the probability that the statistic would be observed in a target city
based on a predictor trained in a source city (i.e. cross-city predic-
tions).

For every statistic, we found at least one example of a predictor that
generalized well to a new city. For the theft statistic (Table 2), the
predictor trained in Chicago was 76% accurate in San Francisco, al-
most as accurate as the predictor trained in San Francisco. Figures 1
and 2 shows two qualitative examples of our theft predictions.

In Table 3 we summarize the performance of our cross-city pre-
dictions for affluence. The affluence predictor for Boston shows a
strong generalization to Philadelphia, which seems reasonable con-
sidering both cities were founded at roughly the same time (mid
15th century) and exist in the same general geolocale. Figure 12
shows these predictions overlayed with the actual locations of af-
fluence in Philadelphia. Our predictions are very accurate in this
case despite being estimated from images.

Graffiti had the lowest cross-city prediction performance. We at-
tribute this to two factors. First, the visual elements that we de-
termined are discriminative of graffiti are all correlated to graffiti
rather than actually representative of it (see Figure 10). Second,
graffiti occurs at very specific locations in an image, but the statis-
tics we use only specify the latitude and longitude where graffiti
was reported. Thus, we can’t provide very specific examples of
what graffiti looks like, only what the areas that contain graffiti
look like. If we had access to more precise locations our predic-
tors would likely generalize better.

The Los Angeles crime statistic was notably difficult to predict.
When we looked into the nature of thefts in the area of Los An-
geles we considered, we noticed that the ground truth theft data
was always sampled at intersections instead of at specific lati-
tude/longitude coordinates, which may have contributed to our poor
performance. This lack of fine-scale statistical samples is one of the
motivations for this work.

The Mechanical Turk study described in Section 6.1 shows the per-
formance of humans at predicting theft in Chicago. The area under
this ROC curve is 0.368 (37% accuracy). Somewhat unexpectedly,
the workers do worse than random (see Figure 13). Compared to
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Figure 13: The ROC curves for the theft, affluence, and graffiti presence
statistics. Each row is a statistic, each column is a source city, and each
plotted line is an ROC curve for a source city’s predictor of a statistic in a
target city (colored consistently throughout the plots). Bolded lines corre-
spond to intracity predictions and dotted yellow lines correspond to human
predictions. In almost every case our prediction accuracy is significantly
better than random and well above the performance of humans in estimat-
ing crime in Chicago.

this baseline, almost all of our predictors are significantly more ac-
curate.

Our results indicate that humans lack the ability to correctly identify
high theft areas based on images This is most likely due to our
inability to identify visual elements that are indicative of theft. This
makes some intuitive sense since criminals would not operate in
areas people avoided because they felt unsafe. Hence it’s likely that
areas that look safe but aren’t are actually the most likely areas for
crimes (including theft) to occur.

7 Applications

The results we present in Section 6 show that in many cases we are
able to reliably predict thefts, affluence, and graffiti presence in a
target city from predictors computed in a different city. To illustrate
the applicability of these predictors, we implemented two prototype
applications: a statistic-sensitive wayfinding system allowing a user
to find directions between locations in a city whilst attempting to
avoid or encounter a desired statistic and a system for finding areas
in cities where graffiti is likely to be present intended to facilitate
graffiti removal efforts.

7.1 A Statistic-Sensitive Wayfinding System

When a person is new to a city or less familiar with a particular
city statistic it can be hard to generate routes that either avoid or
encounter that statistic. Using our predictors for theft and tree pres-
ence, we built a system that allows a user to route him/herself be-
tween two points in a city while either avoiding or encountering one
of these statistics. Extending the system to other statistics would be
a relatively trivial effort.

Given a source and a destination in a city, we compute the shortest
path in a weighted graph where the weights are proportional to the
distance between nodes, the estimates of a set of chosen statistics of
interest, and the weight assigned to those statistics by the user. We



Target Cities
Source Cities San Francisco Chicago Boston Oakland Los Angeles Seattle Philadelphia

San Francisco 0.772 0.639 0.653 0.625 0.516 0.616 0.597

Chicago 0.760 0.798 0.652 0.650 0.512 0.660 0.599

Boston 0.694 0.629 0.779 0.598 0.487 0.621 0.575

Table 2: Theft Prediction Performance: The theft statistic generalized relatively well in almost all cities. The performance of the Chicago predictor in San
Francisco is our best cross-city accuracy. Los Angeles seemed to be a difficult city to generalize to, but we found that the ground truth data was only recorded
at intersections, potentially polluting our results.

Target Cities
Source Cities San Francisco Chicago Boston Oakland Seattle Philadelphia

San Francisco 0.712 0.495 0.493 0.631 0.615 0.592

Chicago 0.584 0.647 0.577 0.571 0.545 0.650

Boston 0.599 0.542 0.815 0.472 0.444 0.722

Table 3: Affluence Prediction Performance: The ROC curves for the affluence statistic indicate that it generalizes only in certain circumstances. The Boston
predictor generalizes with 72% accuracy in Philadelphia most likely due to their spatial proximity and similar architectural history. For similar reasons the
San Francisco predictor generalizes well to Seattle and Oakland. The Chicago predictor shows relatively low performance even in Chicago, although it is just
as accurate in Philadelphia implying that improving the predictor’s accuracy in Chicago could improve its performance there as well.

Figure 14: Visitors to new cities often want to see elements of nature while
they explore. In this case, our system has re-routed a user through down-
town Chicago, exposing them to more trees along their route. Our statistic-
sensitive route is shown on the bottom along with an image of a location
along that route that the original route doesn’t contain. The top row con-
tains a route optimized for distance only and routes the user through a more
urban part of the city.

use Dijkstra’s shortest path algorithm [Dijkstra 1959] to compute
the route in realtime as the user adjusts the weights and locations.

To highlight the generalizability of our predictors (analyzed quanti-
tatively in Section 6.2), our wayfinding application uses predictors
from a different city than the city we generate the directions in.

Figure 2 shows an example of a route computed that attempts to
avoid theft in Chicago based on predictions from a predictor gen-
erated in San Francisco. We have plotted the actual instances of
crime in Chicago for reference. Our path correctly avoids many
of the theft occurrences that would have been encountered if the
shortest spatial path were taken.

Our system can also be used to encounter attributes rather than
avoid them. It’s often desirable to find good walking paths through
cities, especially if you’re on vacation or simply want to see the
more beautiful parts of the city. We use our tree predictor trained in
San Francisco to find a path between two points in Chicago. Fig-
ure 14 shows an example of a Google StreetView panorama along

our computed route as well as one along the original route. The
system correctly identifies a path that exhibits a tree coverage. It’s
worth noting that our computed route is passing by a park but the
system is choosing that path automatically, based on images alone.

7.2 User-Assisted Graffiti Locator

Graffiti is a common problem in most cities. One of the chal-
lenges that city officials face is simply locating the instances of
non-sanctioned graffiti. Typically local governments rely on resi-
dents to report instances of illegal graffiti. Unfortunately, a lot of
graffiti goes unreported according to our results.

We developed a system that enables a user (such as a government
employee) to locate areas in cities that are likely to contain graffiti.
Since our visual elements (see Figure 10) are not directly related to
graffiti, we cannot find the exact region in an image that contains
graffiti. However, in most cases we can reliably predict locations
in a city where graffiti is likely to occur given examples of where it
has occurred before (see Section 6.1).

In Figure 15 we show an example of graffiti in San Francisco that
we found within minutes of using our system that was not present in
the data we downloaded from their graffiti reporting database. We
also show an image of an area where we predict a low chance of
graffiti. Note that the two images have a similar visual appearance
(relatively flat, gray walls and large, open spaces) and come from
locations that are within a block of each other. Despite these two
potentially confounding factors, our system correctly identifies the
area that contains graffiti and identifies the other region as being
graffiti-free.

8 Conclusions and Future Work

We have presented a method for automatically computing predic-
tors capable of estimating the probability of observing a statistic
in a city based only on street-level images of the city. We used
a set of predictors that we computed for theft, affluence, graffiti
presence, and tree presence to analyze the relationship between vi-
sual elements and city statistics. Our results indicate that there is
a relationship between the visual elements and city statistics, and
that the relationship is general enough to predict statistics in new
cities. Finally, we presented two applications that use our predic-
tors demonstrating the applicability of this work.



Figure 15: Using a predictor for graffiti computed from San Francisco data,
we are able to find new locations in the city that are likely to contain graffiti.
On the right we show our predictions plotted as a heat map (top) versus
actual reported instances of graffiti plotted as red circles (bottom). Notice
that the region that we predict has graffiti in it was not originally reported.

We imagine that our predictors could be used in other applications
in graphics such as creating visual snapshots of different areas in
a city based on a co-occurrence of statistics (e.g. some neighbor-
hoods contain many trees and no graffiti, while others exhibit the
opposite) or for rendering a city block with stock 3D models of
homes based on our predicted prices. In future work we would
like to investigate new ways to extract better models of visual el-
ements that are more discriminative of statistics. In addition, we
are interested in the potential applications of our distributed visual
processing framework in computer graphics.
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