
Soft Scissors : An Interactive Tool for Realtime High Quality Matting
Jue Wang

University of Washington
Maneesh Agrawala

University of California, Berkeley
Michael F. Cohen

Microsoft Research

Figure 1: Our system computes a high quality matte (a) and a novel composite (b) in realtime as the user roughly paints the foreground
boundary. Our system makes is easy to create new composites (c) very quickly.

Abstract
We present Soft Scissors, an interactive tool for extracting alpha mat-
tes of foreground objects in realtime. We recently proposed a novel
offline matting algorithm capable of extracting high-quality mattes
for complex foreground objects such as furry animals [Wang and Co-
hen 2007]. In this paper we both improve the quality of our offline
algorithm and give it the ability to incrementally update the matte
in an online interactive setting. Our realtime system efficiently esti-
mates foreground color thereby allowing both the matte and the final
composite to be revealed instantly as the user roughly paints along
the edge of the foreground object. In addition, our system can dy-
namically adjust the width and boundary conditions of the scissoring
paint brush to approximately capture the boundary of the foreground
object that lies ahead on the scissor’s path. These advantages in both
speed and accuracy create the first interactive tool for high quality
image matting and compositing.

1 Introduction
In the foreground matting problem an input image C is formulated
as a convex combination of a foreground image F and a background
image B as Cp = αpFp + (1 − αp)Bp, where p refers to pixel
locations, andαp is the foreground opacity of the pixel. OnceFp and
αp are determined, a novel composite can be created by substituting
Bp with a new background B′

p.
However, solving for both Fp and αp from a single observation

Cp is an underspecified problem. Thus, most previous matting algo-
rithms require the user to roughly segment the image into a trimap in
which pixels are marked as definitely belonging to the background,
definitely belonging to the foreground, or unknown. These algo-
rithms then use information from the known background and fore-
ground regions to compute a matte. If the initial results are not satis-

factory (which is often the case), the user must then refine the trimap
and run the algorithm again until the process converges. This pro-
cess is usually very inefficient for the user.

Recent matting algorithms focus mainly on improving the quality
of the matte by introducing more sophisticated analysis and opti-
mization methods. However they are generally slow to compute a
matte. As a result, the wait time between each iteration of the inter-
active loop described above can be very long. For instance, Bayesian
matting [Chuang et al. 2001] takes 141 seconds of computation time
to generate a result for the example shown in Figure 1. Also, these
techniques recompute the whole matte on each iteration and there
is no good strategy to update the matte incrementally. On the other
hand, earlier approaches such as the Knockout 2 system [2002] are
extremely simple and fast, but are not capable of generating high
quality mattes for complex images.

Our aim is to provide a tool that can generate high quality mat-
tes in realtime. In our system the user roughly specifies the fore-
ground boundary using an intelligent paint stroke (or soft scissor).
The system automatically updates the matte and foreground colors
according to the newly-added information along the stroke to in-
stantly reveal a local region of the final composite. The composite
shown in Figure 1 took about 40 seconds of total interleaved user
and computation time.

Our interactive system extends an offline robust matting algo-
rithm we recently proposed [Wang and Cohen 2007], which is capa-
ble of extracting high quality mattes for difficult foreground objects
such as furry animals1. In adapting this algorithm to the realtime
setting, we make three new contributions:

Incremental matte estimation. Based on newly-added user
strokes, the system first determines the minimal number of pixels
that need to be updated, and then computes their new alpha values.
This is presented in Section 3.4.

Incremental foreground color estimation. In addition to alpha
values, our system also incrementally computes the foreground col-
ors for mixed pixels so the final composite can be updated immedi-
ately. This is presented in Section 3.3.

Intelligent user interface. The soft scissor width and the bound-
ary conditions are automatically adjusted to approximately capture
the boundary that lies ahead on the scissor’s path. This is presented
in Section 4.

1We will briefly describe the offline robust matting algorithm in Sec-
tion 3.2.



Figure 2: A flowchart of our system.

By combining these three novel elements and the robust matting
algorithm, we demonstrate the first system to generate high quality
mattes and composites in realtime.

2 Related Work
Binary Cutout. Classic binary segmentation approaches in-
clude region-based methods such as Photoshop’s magic wand [IN-
CORP. 2002], and boundary-based systems such as intelligent scis-
sors [Mortensen and Barrett 1995]. Recently the LazySnapping [Li
et al. 2004] and GrabCut [Rother et al. 2004] systems have employed
graph-cut optimization to achieve more coherent and higher quality
foreground segmentation. However, none of these approaches deal
very well with large amounts of partial foreground coverage.

Foreground Matting. Many matting techniques have been de-
signed to deal with boundaries of fuzzy foreground objects such
as hair and fur. Chuang et al. [2001] proposed Bayesian matting,
which formulates the problem in a well-defined Bayesian frame-
work and solves it using MAP estimation. The iterative matting
system [Wang and Cohen 2005] solves for a matte directly from a
few user specified scribbles instead of a carefully specified trimap.
The Poisson matting algorithm [Sun et al. 2004] assumes the fore-
ground and background colors are smooth. Thus, the gradient of the
matte matches with the gradient of the image and can be estimated
by solving Poisson equations. The closed-form matting [Levin et al.
2006] approach assumes foreground and background colors can be
fit with local linear models, which leads to a quadratic cost func-
tion in α that can be minimized globally. Unlike our system, all of
these approaches work in an offline fashion and generally require
long processing times.

3 The Soft Scissors Algorithms
3.1 Overview
Our system updates the matte in realtime while the user roughly
paints a scissor stroke along the boundary of the foreground object.
A flowchart of each internal iteration of our system is shown in Fig-
ure 2. We assume that the scissor stroke implicitly defines a trimap,
usually with the left edge of the stroke assumed to lie in the back-
ground (blue pixels), the right edge assumed to lie in the foreground
(red pixels), and the middle of the stroke unknown (gray pixels).
Both the boundary conditions and the width of the scissor stroke can
be set manually by the user or dynamically adjusted by our system
based on an analysis of the image statistics (see Section 4).

On each iteration the system determines which pixels were
painted since the previous iteration. This new input region, Mt

(shown in dark green) affects the alpha values of surrounding pixels
in two ways. First, newly marked foreground and background pixels
provide more foreground and background color examples, and also
set new boundary conditions for the local image area. In addition,
the newly marked unknown pixels are likely to be correlated with
nearby pixels. Therefore the alpha values of the newly marked pix-
els should affect all of the correlated pixels which were previously
marked as unknown. To determine the pixels that are affected by

Figure 3: Our system quickly solves the matte under the leading
edge of the soft scissors, constrained by boundary pixels.

the new input region, we use the input region to seed an update-
region solver (see Section 3.4) which computes a small region of
pixels (shown in light green) for which the alpha values need to be
updated. The matting region Ωt (including both the dark green and
light green regions) is generally much smaller than the whole un-
known region in the trimap and therefore solving the matte is signif-
icantly more efficient than re-calculating the whole unknown region
in each iteration.

We estimate the alpha values for pixels in Ωt using a robust matte
solver (see Section 3.2). By treating pixels outside Ωt as boundary
conditions, the solution is guaranteed to be smooth across the bound-
ary of Ωt. Finally, the foreground colors of pixels in Ωt are updated
by a foreground color solver that uses the newly computed alpha val-
ues (see Section 3.3). We then display the updated composite in Ωt.

3.2 Solving for the Matte
The central component of our soft scissors system is a robust mat-
ting algorithm we recently proposed [Wang and Cohen 2007]. For
completeness we briefly summarize the algorithm here.

As illustrated in Figure 3, assume that we have already computed
the matting region Ωt (shown in light and dark green). We treat
the problem of solving for α in this region as a soft graph-labeling
problem. We use the graph structure shown in Figure 4(a), where
ΩF and ΩB are virtual nodes representing pure foreground and pure
background, white nodes represent unknown pixels in the image,
and light red and light blue nodes are boundary nodes whose alpha
values are fixed in this iteration. The boundary nodes for this graph
include not only user marked foreground and background pixels, but
also unknown pixels on the boundary of Ωt whose alpha values have
been estimated in previous iterations. In this way we ensure the
matte is smooth across the entire boundary of the matting region.

We selectively sample a group of known foreground and back-



Figure 4: The matte (a), foreground colors (b) and the update region
(c) are solved as soft graph-labeling problems.

ground pixels from the boundary of the trimap to compute non-
parametric models of the foreground and background color distribu-
tions. We then assign data weights Wi,F ,Wi,B between pixel i and
the virtual nodes based on these distributions. The data weights con-
strain pixels that are similar in color to the foreground(background)
to have a strongerWi,F (Wi,B) and therefore make them more likely
to have a higher(lower) alpha values. We use the formulation pro-
posed in the closed-form matting paper [Levin et al. 2006] to set
the edge weights Wi,j between each pair of neighboring pixels i
and j. Note that each pixel is connected to its 25 spatial neighbors
in this formulation. The edge weights constrain nearby pixels to
have similar alpha values. Once the graph is constructed, we solve
the graph-labeling problem as a Random Walk [Grady 2006], which
minimizes the total graph energy over real values.

Intuitively the Random Walk solver determines the alpha values
by placing a random walker at pixel i that can walk to any neighbor-
ing node j (i.e. any node connected to i including the two virtual
nodes) with probability Wi,j/

∑
j
Wi,j . The walker then moves

from j to another neighbor k in the same manner and this process
iterates until the walker reaches one of the boundary nodes. The
probability that the walker ends up at the foreground virtual node de-
termines the alpha value of pixel i. This probability can be naively
estimated by simulating the random walk process a large number
of times, and counting how many times it arrives at the foreground
node. In practice, however, we calculate the unknown alphas in
closed-form by solving a large linear system using the random walk
algorithm outlined in [Grady 2006].

3.3 Solving for the Foreground Colors
In addition to computing alpha values we also estimate the true
foreground color F for each pixel in the unknown region. This al-
lows the foreground to be composed onto a new background without
bringing the colors of the old background into the new composite.
Although we select a few foreground samples for each pixel in the
matte estimation step, these samples are chosen individually without
enforcing smoothness constraints. As a result, after the matte esti-
mation step, the composite may contain visual artifacts, as shown in
Figure 5.

To achieve higher quality composites, we refine the estimated
foreground colors by solving a second graph-labeling problem us-
ing Random Walk, as shown in Figure 4(b). Only those pixels in
Ωt whose alpha values are strictly between 0 and 1 are treated as
unknown pixels in this step, and each unknown pixel is connected to
its 4 spatial neighbors. We define a color edge weight W c

i,j between
two neighbors as W c

i,j = |αi − αj | + ε, where ε is a small value
ensuring the weight is greater than zero. This edge weight encodes
explicit smoothness priors on F , which are stronger in the presence
of matte edges (where αi and αj have a larger difference).

The boundary pixels in this step are either foreground pixels(α =
1) or background pixels(α = 0). For foreground pixels(red out-

Figure 5: Left: Initial estimates of foreground colors after the matte
estimation step; Right: Final foreground colors after optimization.

line nodes in Figure 4(b)), we use their true colors as boundary
conditions, while for background pixels(blue outline nodes in Fig-
ure 4(b)), we use their initially estimated foreground colors in the
matte estimation step as boundary conditions. The initial estimates
are shown as the node colors in Figure 4(b). We then solve for
the three foreground color channels individually using the Random
Walk solver.

3.4 Solving the Update Region
A key feature of our system is that it is incremental – we only up-
date the alpha and foreground colors for a small portion of the im-
age on each iteration. Given a new input region we compute the
set of pixels that might be affected by the new information as the
update region Ωt. To determine the update region, Ωt, we again
solve a graph-labeling problem as shown in Figure 4(c). All pix-
els that have been newly marked by the user in the current iteration
are treated as boundary pixels with an assigned label of 1 (the dark
green nodes in Figure 4(c)). Note that in this step the label does not
correspond to the alpha value of the pixel, but rather represents the
impact of the new input region on the pixel. All other pixels that
were marked in previous iterations are treated as unknown pixels in
this step (white nodes in Figure 4(c)). Similar to the alpha estimation
graph in Figure 4(a), each pixel is connected to its 25 spatial neigh-
bors with the same edge weights Wi,j as we defined in the matte
estimation step. We again solve the graph using the Random Walk
solver. Each pixel is assigned a label measuring how much impact it
receives from the new input region. Those pixels assigned non-zero
(in practice greater than a small threshold δ = 1/255) labels form
the new update region Ωt.

Intuitively, the Random Walk solver determines how far potential
changes of alpha values due to the newly marked pixels should be
propagated towards the boundary of the image. A smoother local
image region will result in a larger Ωt since the weights between
neighboring pixels are high, and vice versa. This solver is similar in
spirit to the region solvers employed in the interactive tone mapping
system [Lischinski et al. 2006], but with different graph topologies
and edge weights.

4 The Soft Scissor Interface
As the user paints along the boundary of the foreground object
our system dynamically adjusts two properties of the Soft Scissors
brush; 1) brush width and 2) boundary conditions for the trimap that
is implicitly defined by the brush strokes. The adjustments are based
on local statistics near the current brush stroke. In addition, users can
manually adjust these parameters if necessary.

4.1 Choosing the scissor brush width
Wider scissors are appropriate for object edges that are very fuzzy
while narrower scissors are better for sharper edges as they provide
tighter bounds on the solution and greatly improve computation ef-



Figure 6: (a). Our system can automatically determine the soft scis-
sor width and boundary conditions. (b). An example of enlarging
the width to cover the mixed foreground/background region. (c). An
example of changing the boundary condition.

ficiency. We automatically determine brush width as shown in Fig-
ure 6(a). At each time t, we first compute the current scissor path
direction, then create a wide “look-ahead” region (shown in purple)
by extending the current path of the scissor along that direction. The
width of the “look-ahead” region is fixed to a maximum value set by
the user (generally 60 pixels in our system) so it can capture almost
all types of edges. We treat all pixels in this region as unknowns
and include them in Ωt for alpha estimation. Then, to estimate the
matte profile we sample a group of pixels sparsely distributed along
lines perpendicular to the current scissor path direction(shown as
dash black lines in Figure 6(a)). The scissor width is set so that it
covers all of the sample pixels with fractional alpha estimates.

Specifically, for each sampled point on a line we first com-
pute a weight as wp = 0.5 − |αp − 0.5|, where αp is the es-
timated alpha value of the point. Then the center of the 1D dis-
tribution along the line is computed as x̄ =

∑
p
wpxp/

∑
p
wp,

where xp is the distance from a sampling point to the extended
scissor path. The width of the alpha profile is then estimated as

4
√∑

p
wp(xp − x̄)2/

∑
p
wp.

4.2 Determining the boundary conditions
We initially assume that the user orients the scissor brush strokes so
that the left edge of the brush is in the background region and the
right edge of the brush is within the foreground region. However,
at times users need to follow thin structures (e.g. single hairs). In
this case they require a brush for which both sides are marked as
background as in Figure 6(c). In other situations users will paint
back and forth over the foreground object and the brush must be able
to reverse the background/foreground edges as the user reverses the
brush direction.

We dynamically adjust the scissor boundary conditions by build-
ing color models of the foreground and background colors. Once
the user has created a short stroke and marked enough fore-
ground/background pixels under the initial assumptions we use
Gaussian Mixture Models (GMM) to build foreground and back-
ground color models. Each GMM has 5 components with full co-
variance matrices. Then, for each new brush position we classify
the brush edges based on whether their average color is closer to
the foreground or background GMM. Specifically, as shown in Fig-
ure 6(a), we sample a group of pixels along the newly added left
edge, and compute a foreground and background probability ψFl and
ψBl by fitting samples with foreground and background GMMs, and
normalize them so they sum to 1. We set the left edge to be fore-
ground if ψFl > ψBl + δψ , or background if ψBl > ψFl + δψ , where
δψ is a difference threshold we typically set at 0.3. If the difference

Figure 7: Test data set. (a). Original image. (b). Ground-truth matte.
(c). Target image on which we apply matting algorithms.

between the two probabilities is smaller than δψ , we then keep the
current boundary condition unchanged. We classify the right edge
in the same way.

In addition, the GMMs are updated periodically using recently
marked foreground and background pixels. After a set number (typ-
ically 400) of new foreground and background samples are marked
by the user, we re-compute the GMMs using the new samples. An
example of dynamically changing brush condition is shown in Fig-
ure 6(c).

4.3 Automatic vs. Manual Parameter Selection
Automatic adjustment of brush parameters will not always be op-
timal, especially for images with high-frequency textures and com-
plex foregrounds. To minimize abrupt, erroneous parameter changes
we constantly monitor the automatically estimated brush width over
a short period of time (t − δt, t). If the variance of the estimated
width is large, the estimate is not considered reliable and the width
is left as is. The user can always manually adjust the brush width.
Similarly, we discard the automatically determined boundary condi-
tions if |ψB − ψF | < δψ as described in previous section. Again,
the user can set the appropriate conditions. At any time the user
can disable either automatic algorithm to regain full control over the
brush parameters.

5 Results and Evaluation
The images in Figure 1 show one example of the Soft Scissors in
use. Figure 8 shows three more challenging examples of our system
running on complex images and the resulting high quality mattes.
We refer the readers to the accompanying video for a better demon-
stration of the realtime performance of our system.

The system not only runs in realtime, but also generates higher
quality results than previous approaches. To evaluate our system,
we constructed a test data set of 5 examples as shown in Figure 7.
Each foreground object was originally shot against a solid colored
background and we extracted a high quality matte using Bayesian
matting. We used the resulting matte as the ground-truth and com-
posited the foreground object onto a more complex background to
synthesize a “natural” image as a test image. Finally we applied
various matting approaches on these test images.

We compare mattes extracted using Soft Scissors with five pre-
vious matting approaches: Bayesian matting [2001], iterative BP
matting [2005], closed-form matting [2006], knockout 2[2002] and
global Poisson matting [2004]. We also compare the mattes with
our offline Robust Matting approach [Wang and Cohen 2007]. All
of these techniques were run using the same trimap created using our
interactive system. Figure 9 shows the Mean Squared Error(MSE)
of the extracted mattes against the ground-truth. Two visual exam-
ples are shown in Figure 10. These results suggest that our system
extracts mattes with the highest quality. Note that Soft Scissors gen-
erates slightly better results than our previous offline robust matting
approach [Wang and Cohen 2007]. The total processing time of



Figure 8: Three examples. From left to right: original image, snapshots of extracting the matte in realtime, and the new composite.

Figure 9: Comparing different algorithms on the data set in terms of matte errors and processing time.

Figure 10: Partial results on test image “man” and “woman” in Figure 7.

different approaches are also shown in the figure. For fair timing
comparisons we fixed the total number of iterations in the offline ap-
proaches to 4 (this means modify the trimap and run the algorithms
4 times). Not surprisingly, Soft Scissors takes the least amount of
time to extract high quality mattes.

Our system also works well with more solid foreground objects.
In Figure 11 we compare our algorithm with binary cutout tools on
extracting the rabbit. Note that the results generated by Intelligent
Scissors and GrabCut suffer from inaccuracies along the boundary

as well as “color bleeding”, where the boundary pixels represent a
mixed foreground-background color due to partial pixel coverage
(see the greenish boundary pixels in the binary results). In contrast,
our system is able to fully extract the rabbit without such artifacts.

6 Preliminary User Study
We conducted an informal usability study comparing our system
with Bayesian matting, Knockout 2 and our previous offline robust



Figure 11: Comparing our system with Intelligent Scissors and GrabCut on extracting the foreground rabbit.

matting system. Three subjects, none of which had experience using
any of the matting systems, were first instructed how to use each of
the systems, and practiced using each of them for 10 minutes. These
users were then requested to extract the foregrounds from three im-
ages: “bird”, “baby” and “man” (see Figure 7a-c). They worked for
as long as they wanted until they felt they could not generate more
accurate mattes.

We collected three types of data from these three users; the to-
tal time they spent, the error in the final mattes they generated, and
their subjective preferences for each interface (a score for each in-
terface on a scale from 1=worst to 5=best). The results are shown
in Figure 12. Users found it difficult to achieve good results for
the “bird” image using Bayesian matting and gave it the lowest sub-
jective preference rating. Although soft scissors and offline robust
matting generated similar quality results, all users gave soft scis-
sors higher scores because it was faster to use and provided realtime
feedback. While these results clearly suggest that soft scissors pro-
vides an effective interface for foreground matting, a more extensive
and formal user study would be required to draw solid quantitative
conclusions.

7 Conclusion
We have demonstrated the first realtime tool for generating high
quality mattes and composites as the user roughly paints along the
foreground boundary. The scissor brush width and boundary condi-
tions adjust automatically as the user draws the scissor stroke. Our
evaluation demonstrates that Soft Scissors outperform previous mat-
ting techniques both in quality and efficiency.

Currently we rely on the user to trace the foreground edge. One
could imagine a hybrid system that first performs a quick binary seg-
mentation to further guide the user and the underlying algorithms.
However, for still images the speed and simplicity of the current ap-
proach may not warrant the complexity such an approach would add
to the system. For video matting however, some hybrid of a fully
automated and a user guided system will be needed. We feel the soft
scissors approach can provide the basis for the user guided aspect of
such a system.
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