
Browsing and Analyzing the Command-Level

Structure of Large Collections of Image Manipulation

Tutorials

Amy Pavel
Floraine Berthouzoz
Björn Hartmann
Maneesh Agrawala

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-167

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-167.html

October 9, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Browsing and Analyzing the Command-Level Structure of
Large Collections of Image Manipulation Tutorials

Amy Pavel, Floraine Berthouzoz, Björn Hartmann, Maneesh Agrawala - UC Berkeley EECS

ABSTRACT
Many people rely on Web-based tutorials to learn how to use
complex software. Yet, it remains difficult for users to sys-
tematically explore the set of tutorials available online. We
present Sifter, an interface for browsing, comparing and ana-
lyzing large collections of image manipulation tutorials based
on their command-level structure. Sifter first applies super-
vised machine learning to identify the commands contained
in a collection of 2500 Photoshop tutorials obtained from the
Web. It then provides three different views of the tutorial col-
lection based on the extracted command-level structure: (1)
A Faceted Browser View allows users to organize, sort and fil-
ter the collection based on tutorial category, command names
or on frequently used command subsequences, (2) a Tutorial
View summarizes and indexes tutorials by the commands they
contain, and (3) an Alignment View visualizes the command-
level similarities and differences between a subset of tutori-
als. An informal evaluation (n=9) suggests that Sifter enables
users to successfully perform a variety of browsing and anal-
ysis tasks that are difficult to complete with standard keyword
search. We conclude with a meta-analysis of our Photoshop
tutorial collection and present several implications for the de-
sign of image manipulation software.

ACM Classification
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

Author Keywords
Web-based tutorials, photo manipulation, faceted browsing

INTRODUCTION
Image manipulation software offers a suite of sophisticated
tools for users to edit their photographs. Yet, these tools
are often very complex and therefore difficult to learn and
use effectively [14]. As a consequence, users commonly
turn to task-centered tutorials to learn how to use the soft-
ware [28, 4]. These tutorials use narrative text along with
interface screenshots to describe the sequence of commands
necessary to achieve a specific goal (Figure 1). Sites such as

Step 3
Now make a mask on the Girl Stock layer. Erase all the
unnecessary space around her using a black round brush. Now
apply a brightness/contrast adjustment and use the settings
shown below. Then, apply a Hue/Saturation adjustment using
(Command/Ctrl + U) and lower Saturation a bit -- to lower some
of the values of colors on this stock.

Figure 1. A step from an example online tutorial. Tutorials use di-
rect references to commands (i.e. exact string matches to the command
name, shown in green) and colloquial/indirect references to commands
(e.g. tutorial says “make a mask” rather than writing the command
name “Layer Mask”, shown in blue)

tutorialized.com or good-tutorials.com con-
tain tens of thousands of such tutorials.

The large number of online tutorials and their diverse formats
can make it difficult for users to systematically browse and
compare tutorials. Current websites simply organize tutori-
als by high-level categories such as “Photo Effects” or “Web
Layouts”. To explore the collection of tutorials users must ei-
ther page through long lists of tutorial titles within each cat-
egory or perform keyword searches on the natural language
tutorial text. None of these websites exploit the underlying
command-level structure (i.e., the sequence of software com-
mands) of the tutorials.

Access to such command-level structure could greatly facili-
tate many search and browsing tasks. Prior work found that
tutorial users are interested in identifying both “useful” and
“familiar” commands [18]. Commercial software expertise
sharing systems are also beginning to emphasize the impor-
tance of commands for searching, filtering and reviewing in-
teractive tutorials [1]. Command-level structure can help a
novice Photoshop user identify frequently used commands;
the novice user may choose to learn them before other, less
common commands. Expert users who are familiar with a
subset of commands could quickly find tutorials that leverage
their existing knowledge in new settings.

Beyond single commands, users may search for subsequences
of commands that appear frequently as these subsequences

1

 Tutorial View

 Alignment View
Sort ButtonsBrowser Facets Table of Commands

 Faceted Browser Viewa b

c

Figure 2. Sifter allows users to explore our collection of 2500 Photoshop tutorials based on their command-level structure. In the (a) Faceted Browser
View users can organize tutorials using the Category, the N-Gram length (i.e. command sequences of length N) and the Command name facets. Clicking
on a tutorial title loads the tutorial webpage and its table of commands into the (b) Tutorial View. Users can also align the command sequences of
multiple tutorials to see the similarities and differences between them in the (c) Alignment View.

may represent successful higher-level strategies. For exam-
ple, many photo adjustment tutorials include the three com-
mand subsequence; “Duplicate Layer”, “Sharpen”, “Paint
Opacity Brush”. This strategy blends the original image
with the sharpened version and allows spatial control over the
strength of the effect. Finally, large collections often contain
multiple tutorials that use different approaches (e.g., differ-
ent commands) to achieve the same goal. Users may wish to
understand the differences between such alternatives.

Today, such command-based search and comparison is
extremely difficult for existing Web-based tutorials because
tutorial browsing interfaces do not capture, analyze or expose
the command-level structure of tutorials. In contrast, online
catalogs in other domains such as e-commerce and libraries
frequently rely on structured meta-data to offer faceted
browsing and feature-based comparison to successfully
navigate and query complex collections. Our research goal is
to bring this flexibility to the domain of software tutorials.

In this paper, we present Sifter, an interface that allows users
to browse, compare and analyze image manipulation tutori-
als based on their command-level structure. Sifter includes
an extraction tool that identifies command sequences in nat-
ural language software tutorials. To build this tool we extend
the machine learning approach of Fourney et al. [11] to auto-
matically identify direct, indirect and colloquial references to
commands (e.g. the tutorial says to “make a mask” instead of
the command name “Create Layer Mask”, Figure 1). We ap-
ply our command extractor to a collection of 2500 Photoshop
tutorials we obtained from the Web and achieve an average
precision of 90% and recall of 99%.

Sifter also provides an interface for exploring tutorial collec-
tions based on three different views of the command-level
structure (Figure 2). The (1) Faceted Browser View allows
users to organize, sort and filter the collection. Filtering
facets include tutorial category, the length of command sub-
sequences (N-Gram length) and command names of interest.
For instance, a user can quickly find the most common multi-
command strategies in the “Photo Effects” category by se-
lecting N-Gram lengths 1 through 4 and the “Photo Effects”
facet. When a user selects a tutorial in the faceted browser
the tutorial webpage appears in the (2) Tutorial View along
with a table of commands that serves as both a summary of
the tutorial and an index into the webpage. The (3) Alignment
View graphically depicts the similarities and differences in the
command structure of a subset of tutorials. Together these
views allow users to find relevant tutorials, understand gaps
in their knowledge of the application commands and explore
the repeated command-level patterns used across a variety of
image manipulation tasks.

In an informal evaluation of Sifter we asked nine first-time
participants to complete a series of tutorial browsing and
comparison tasks using our interface as well as standard key-
word search. Qualitative user feedback indicates that the
Sifter interface is easy for newcomers to learn and understand
and that users find faceted command-level browsing to be
useful for exploring large tutorial collections. Moreover, par-
ticipants successfully completed a variety of novel browsing
and exploration tasks with Sifter. We show that these tasks
are difficult to accomplish with keyword search. Participants
strongly preferred to explore tutorial collections with Sifter

2

Input Tutorials

Command
Extractor

Command Sequences
Database of

Browser
Interface

Figure 3. Sifter includes three main components; a command extractor,
a database of command sequences and a browser interface.

over keyword search. These results suggest that Sifter is an
effective tool for browsing and comparing large collections of
image manipulation tutorials.

We conclude with a meta-analysis of our Photoshop tutorial
collection to better understand the patterns of command struc-
ture both across the collection and within tutorial categories.
Based on this analysis present several implications for the de-
sign of user interfaces for image manipulation software.

RELATED WORK
Sifter builds on two areas of prior work: techniques for cap-
turing or extracting the command-level structure of software
usage and systems that use such data to improve tutorial
search and comparison.

Capturing or extracting command-level structure. Re-
searchers have developed techniques for generating tutorials
from recorded user actions using instrumented software.
This work focuses on generating either static, step-by-step
visual tutorials [13], or interactive tutorials [19, 17, 2, 6]
or even fully automated macros [3]. Others have used the
recordings to create graphical histories that allow nonlinear
undo and replay of commands [29, 16, 25, 15, 5, 8]. All of
these methods require instrumenting the application source
code to record commands. In contrast, our work focuses on
developing a lightweight approach for extracting commands
from pre-existing text-based tutorials.

Our extraction algorithm is inspired by earlier work on us-
ing string matching [27], grammar processing [21] and ma-
chine learning techniques [11, 20] to identify text references
to commands in software tutorials. Laput et al. [20] achieve
the best precision/recall rates using a Conditional Random
Field classifier. However, their method requires a relatively
large set of 400 training tutorials. Fourney et al. [11] focus
on command extraction with sparse training data. They use
a Naive Bayes classifier with Witten-Bell smoothing and re-
quire only 35 training tutorials while still maintaining good
precision/recall. Neither method detects colloquial references
to commands. We extend the approach of Fourney et al. to
identify colloquial references with sparse training data.

Users also share software tutorials as screencast video record-
ings. Sikuli [30], Prefab [9] and Pause-and-Play [26] apply
computer vision techniques to reconstruct GUI-level inter-
face operations (e.g. menu navigation, button presses, widget
clicks, etc.) from such screenshots. However, methods that
rely solely on visual GUI output may not be able to robustly
identify commands like keyboard shortcuts that do not have
visual effects. In contrast, text tutorials usually describe every
command that must be executed.

Figure 4. Clicking on the “Pen Tool” command in the table of commands
scrolls the tutorial to this command and highlights it in the tutorial.

Using command-level structure to improve tutorial search
and comparison. Several previous methods use command
execution histories to provide more effective application help
and tutorial comparison. Ekstrand et al. [10] use the execu-
tion history and currently active tools to augment Web search
and help users find more relevant tutorials. IP-QAT [23] and
LemonAid [7] use recent commands and application con-
text to recommend entries in application-specific question an-
swering systems. CommunityCommands [24] recommends
commands for design software based on collaborative filter-
ing algorithms. Unlike Sifter, these tools do not extract infor-
mation from existing tutorials and they do not enable brows-
ing or analyzing large collections of tutorials.

Closest to our work is Delta [18], an interactive tool that sum-
marizes and compares tutorials based on their command-level
structure. Delta does not extract the commands automatically
and relies instead on manual transcription. It is also explicitly
designed for a small corpus (30 tutorials) and does not allow
faceted browsing. In contrast, Sifter provides automatic com-
mand extraction and includes a browsing interface that scales
to a much larger corpus (2500 tutorials). Sifter’s faceted fil-
tering and frequency-based sorting allow users to better un-
derstand how command subsequences are used across a wide
variety of image manipulation tasks.

FACETED BROWSING WITH SIFTER
Sifter has three components (Figure 3). The command extrac-
tor takes a set of text-based tutorials as input and outputs the
command-level structure of each one into a database of com-
mand sequences. Sifter’s browser interface provides three
different views of the collection that allow users to explore
the tutorials.

The (1) Faceted Browser View allows users to organize, sort
and filter the collection (Figure 2a). The Category facet filters
the collection by a high-level tutorial category (e.g. “Photo
Effects”, “Web Layouts”, etc.). The N-Gram facet filters
the collection by the length of command subsequences. The
Command Name facet allows users to filter the collection to
only include tutorials that contain specific commands as cho-
sen from a list. The order in which the user selects facets
determines the hierarchical organization of the tutorials that
appear in the faceted browser view. The default sort order
for leaf-level tutorials is alphabetical by title. Users can op-
tionally sort tutorials by total number of commands or to-
tal number of unique commands. The default sort order for
selected N-Grams is occurrence frequency so that the most
common command subsequences appear first. If tutorial Cat-
egory facets have been selected, users can optionally sort
command subsequences by uniqueness to the selected cate-
gories.

3

d ea cb

Figure 5. A user explores frequently used subsequences to learn about web layouts. He first explores 1-grams across the entire collection of tutorials
(a), then limits the 1-grams to the Web Layouts category (b), then looks at 1-grams that are unique to the Web Layouts Category (c). He next considers
common 3-grams (d) and 4-grams (e) for Web Layouts.

The (2) Tutorial View shows the original webpage for any se-
lected tutorial as well as a table of commands that lists the
commands in the tutorial (Figure 2b). The table and web-
page are linked so that clicking on a command in the table
scrolls the tutorial webpage to the corresponding location,
while clicking a command in the webpage highlights it in the
table. Users can also select a subsequence of commands in
the table and perform a selection search to retrieve all tuto-
rials containing the chosen subsequence. Finally, users can
select a set of tutorials in the faceted browser and generate
an (3) Alignment View in which each column represents the
sequence of commands for a single tutorial and lines connect
matching commands (Figure 2c). Sibling commands in the
Photoshop menu hierarchy are given the same color (e.g. Col-
orize and Hue/Saturation are both colored white because they
both appear within the set of Image>Adjustment commands).
This view directly reveals the command-level similarities and
differences between the selected set of tutorials.

We describe how a person would use the Sifter interface in
the context of a user scenario.

Locating Commands within a Tutorial
Joe needs to learn how to use Photoshop to create webpage
mockups and perform basic image editing for his job, but has
little experience with the program. He opens Sifter and based
on his interest in web design he first selects the “Web Lay-
outs” facet. As he browses the resulting list of titles, Joe
notices the “Web Logo Design” tutorial. He clicks to load
it into the Tutorial View. Examining the table of commands,
Joe sees that the tutorial makes heavy use of the Pen Tool
command (Figure 4). Clicking on an instance of this com-
mand in the table scrolls the tutorial webpage to show how
the command is used in context. The tutorial describes how
to use the Pen Tool to draw paths. Joe can also click on a
command in the tutorial webpage to highlight it in the table.
Thus, the table of commands summarizes the actions required
to complete the tutorial and can serve as a quick reference as
he works through the tutorial. The table also allows Joe to
skim through parts of the tutorial and quickly access more
information about unfamiliar commands as necessary.

Browsing Frequently Used Subsequences
After looking at a few specific tutorials, Joe decides that he
should first identify the commands that are most frequently
used across the entire collection of tutorials. He infers that
these must be the most important and useful Photoshop com-
mands. He de-selects the “Web Layouts” category facet and
sets the N-Gram facet to select single commands (N-Gram
length=1). The resulting list of commands is ordered by fre-
quency and he finds that “New Layer”, “Opacity” and “Du-
plicate Layer” are the three most common commands (Fig-
ure 5a). He examines a few tutorials containing these com-
mands and finds that they all involve the Photoshop layers
palette and spends some time learning how layers work.

Next, Joe decides to focus on the most frequent commands
within the Web Layouts category (Figure 5b). He re-selects
the “Web Layouts” facet and again sets N-Gram length to 1.
This time he finds that the commands “Rounded Rectangle
Tool” and “Gradient Overlay” appear frequently in Web Lay-
outs, but were not as highly ranked for the entire tutorial col-
lection. He looks at tutorials that contain these commands
and quickly learns that the “Rounded Rectangle Tool” is often
used to draw buttons, while “Gradient Overlay” is commonly
used to give widgets the appearance of 3D depth. To see a
list of commands that are frequently used in “Web Layouts”,
but infrequently in the rest of the corpus, Joe uses the “Most
unique to category” sort option. He finds that the “Paragraph”
command is commonly used in web layout tutorials to format
text while the “Contract” command is often used to shrink se-
lections and create borders on text boxes (Figure 5c). These
commands are far less common in the other Photoshop tuto-
rial categories.

Joe then expands his search to identify repeated patterns of
longer command sequences, by selecting N-Grams of lengths
3 and 4. He notices that many of the frequent three-command
sequences involve a selection command followed by a fill
command such as “Rectangular Marquee Tool, Fill, Color”,
“New Layer, Rectangular Marquee Tool, Fill” or “New Layer,
Elliptical Marquee Tool, Fill”, (Figure 5d). He examines
some of the tutorials for each of these three-command se-
quences and realizes that they all describe ways to create but-
tons of various shapes. In the list of four-command sequences
he sees several that contain styling commands such as “Drop

4

Fill the rectangle with any color then
add the following layer styles.

Select the rounded rectangle tool
with a radius of 10px.

Use Rounded Rectangle Tool to create a
rectangle with dimensions of 930px by
610px and radius of 30px. Fill it with color
#38301f and rename it to Background.

Using the rounded rectangle tool with a
radius of 10px create boxes.

c2 c3

c5c4

c1 ab

Figure 6. A user selects the command sequence used to create a content box, and clicks on the Selection Search button in the Tutorial View (a). Sifter
returns a list of tutorials that contain this sequence of commands (b). The user can now click through this list of tutorials to find additional styles for
content boxes (c1-c5).

Shadow”, “Blending Mode”, and “Blur” (Figure 5e). He
learns that these command sequences all apply specific styles
to the buttons. For example the 4-gram “Drop Shadow, Color,
Inner Shadow, Color” adds a drop shadow and inner shadow
to a button to give it a 3D appearance.

Finding Tutorials with Specific Commands
Joe decides to follow the tutorial, “How to Design a Web Lay-
out in Photoshop”, step by step. He sees that the tutorial uses
“Rounded Rectangle Tool, Fill, Color” to create a box for
holding pictures and text within the page layout. Joe wants
to use such content boxes on his website, but does not like
the style of the boxes provided in the tutorial. Joe selects the
command sequence “Rounded Rectangle Tool, Fill, Color”
in the table of commands (Figure 6a) and clicks the Selec-
tion Search button. Sifter returns other tutorials that also con-
tain the selected command sequence (Figure 6b). Joe clicks
through them to find additional styles for content boxes (Fig-
ure 6c). Once he finds a style he likes, he creates the con-
tent box using the new tutorial before returning to his original
workflow.

Comparing Tutorials with the Alignment View
Joe finishes designing the webpage mockup and decides to try
a photo manipulation tutorial. Although his hair is blonde,
Joe wonders how he would look with black hair. Within
the “Photo Effects” category he finds seven different hair-
recoloring tutorials. He cannot decide which one to follow,
so he compares them by clicking the Alignment View button.

Joe selects the tutorial titled “Hair Recoloring in Photoshop”
and then flips between two layouts in the Alignment View.
The one-to-all layout orders the tutorials (left-to-right) by
their similarity to the “Hair Recoloring in Photoshop” tuto-
rial, while the pairwise layout builds the ordering by incre-
mentally choosing the next tutorial as the one that is most
similar to the previous tutorial (Figure 7). In the pairwise lay-
out, Joe immediately sees that there are three different ways
to re-color hair. Tutorials a and b primarily use the “Brush
Tool” and “Hue/Saturation” to complete the task. Tutorials
e, f and d all use a similar four-command subsequence of ‘

Invert, New Layer, Fill, Blending Mode, Soft Light”. Tu-
torial c is a combination of these two approaches, while tu-
torial g is completely different from the others. Since the
four-command “Invert, New Layer, ...” is the most common
subsequence for this task, Joe chooses the “How to Change
Hair Color with Photoshop” tutorial from this group. If he
had more time, Joe could try a tutorial from each of the three
approaches to find the best workflow for his image.

ALGORITHMS
Sifter’s faceted browsing interface relies on a set of four
algorithmic techniques for extracting and comparing the
command-level structure of tutorials.

Algorithm 1: Extracting Commands
To extract commands from natural language tutorials we
build on the classifier of Fourney et al. [11]. Their approach
is designed to identify direct references to commands (i.e.,
exact string matches to the command name). We extend their
approach to also handle colloquial references to commands
(e.g., the tutorial says to “make a mask” rather than writing
the command name “Create Layer Mask”, Figure 1). In a
survey of 60 randomly selected tutorials we manually iden-
tified about 18% of the command references as colloquial
rather than direct. Thus, accounting for such colloquial
references is essential for correctly extracting commands
from text-based tutorials.

Fourney et al.’s algorithm first compares each word in a tu-
torial to a list of command names in the Photoshop menu hi-
erarchy using exact string matching. Photoshop directly pro-
vides this list via Edit>Keyboard Shortcuts>Summarize. We
then manually extend the list to include the colloquial refer-
ences we identified in the 60 tutorial survey. We also apply
word stemming to automatically derive indirect references to
commands. For example, applying stemming to the com-
mand name “Scale” produces the derived words “Scaling”,
“Scaled”, etc. The final list contains direct, colloquial and
indirect references to commands.

After the first stage of exact string matching, we follow the
approach of Fourney et al. and apply a Naive Bayes classifier

5

Change
Hair Color
with
Photoshop

How
to
Color Hair

Retouching
Change
Hair Color

Hair
Color

How to
Change Hair
Color with
Photoshop

Change
Hair
Color

Hair
Recoloring
in
Photoshop

afg dfea b ec g

Change
Hair Color
with
Photoshop

How
to
Color Hair

Retouching
Change
Hair Color

Hair
Color

How to
Change Hair
Color with
Photoshop

Change
Hair
Color

Hair
Recoloring
in
Photoshop

d fa b f gec

One-to-Many Layout Pairwise Layout

Figure 7. A user compares seven hair recoloring tutorials using the Alignment View, which displays correspondence lines between the matching
commands. The one-to-all layout (left) orders the tutorials (left-to-right) by their similarity to the first tutorial. The pairwise layout (right) builds the
ordering by incrementally choosing the next tutorial as the one that is most similar to the previous tutorial.

with Witten-Bell smoothing to further eliminate false posi-
tive matches. As training data we again use the 60 tutorials
for which we manually marked all true command references
(direct, colloquial and indirect). Using leave-one-out cross
validation we obtain an average precision of 90% and recall
of 99%. Applying Fourney et al.’s approach without the ad-
ditional entries for colloquial and indirect references, causes
the recall to drop by about 14%.

Algorithm 2: Comparing Command Sequences
We use the Needleman-Wunsch edit distance algorithm [22]
to compare two sequences of tutorial commands. Like most
edit-distance techniques this algorithm requires a scoring ma-
trix that encodes the penalties for inserting, deleting and sub-
stituting commands. We use a constant penalty for insertion
and deletion, and build a specialized penalty matrix for substi-
tutions based on two objectives; (1) we increase the penalty
for substituting commands that differ significantly in func-
tionality and (2) we increase the penalty for substituting com-
mands that are most important to the tutorial.

To identify commands with similar functionality we adopt the
approach of Kong et al. [18] who observed that the Photo-
shop menu hierarchy groups together similar commands (e.g.,
all filters appear in the same part of the hierarchy). There-
fore, we set the functional similarity penalty PFS to the dis-
tance between commands in the menu hierarchy. To compute
the importance of a command we use term-frequency-inverse
document frequency (tf?idf) which is commonly used in in-
formation retrieval to determine the most descriptive words
within a document (i.e., words that appear multiple times in
the document but rarely appear in other documents). We set
the importance penalty PI to its tf?idf value where we treat
each tutorial as a document. Then given any two commands
we compute the total penalty as PFS ·PI .

Algorithm 3: Computing Frequency of Subsequences
Selecting N-Gram lengths in the faceted browser produces a
list command subsequences of the corresponding lengths. By
default this list of subsequences is sorted by the frequency of

occurrence. To compute this frequency, we first generate ev-
ery command subsequence N-Gram of length 1 to 15 for each
tutorial in the collection. We then build a frequency table by
hashing each resulting N-Gram and incrementing the count
each time we visit the same bin. However, some Photoshop
commands can be executed in arbitrary order and produce the
same results. We use distance-based matching to account for
such swaps. For each subsequence of length N we compute
the edit distance to all other subsequences of length N−2 to
length N+2 (we limit the computation to this range for ef-
ficiency). If the distance is less than a small threshold we
increment the frequencies of both subsequences. We display
this frequency next to the subsequence as shown in Figure 5.

Users can optionally sort the list of commands subsequences
by uniqueness to a selected tutorial Category facet. For
a given command subsequence we compute its category
uniqueness as the number of times it occurs within the
selected category, normalized by the total number of times it
occurs across the collection.

Algorithm 4: Aligning Command Sequences
Our Alignment View allows users to compare a set of tuto-
rials, so that they can easily identify the similarities and dif-
ferences in their command sequences. To align the tutorials,
we first establish an ordering between them. The user may
select the first tutorial in this ordering which we call the base
tutorial. If the user does not select a base then we automat-
ically set the most representative tutorial as the base, which
we compute as the centroid of the tutorial set based on edit
distance.

To construct the one-to-all layout we first sort all the tuto-
rials using their edit distances to the base tutorial and then
display them left to right in increasing order. For the pair-
wise layout we start with the base tutorial and then iteratively
choose the next tutorial as the one that is closest to the pre-
vious tutorial. The Needleman-Wunsch edit distance algo-
rithm [22] also provides correspondences between commands
(either exact matches or substitutions). Our visualization con-

6

UI Elements are Easy to Use
Positive
Negative

0 862 4

Participant Positive/Negative Comments

Strongly
Agree

UI Elements are Easy to Understand

1 2 3 4 5

4.56

4.44

4.33

3.89

1 2 3 4 5
Strongly
Disagree

4.67

4.67

4.67

Strongly
Disagree

Strongly
Agree

4.11

Selection Search

Table of Commands
Alignment View

Browser Facets

Number of Participants

a cb

Figure 8. Participants were asked to rate if they understood each interface element (a) and if each element was easy to use (b) on a scale from 1 -
Strongly Disagree to 5 - Strongly Agree. (c) Number of participants leaving positive or negative comments in the open responses.

nects matching commands with lines and uses color to repre-
sent siblings in the Photoshop menu hierarchy.

Implementation. We collected our corpus of tutorials by
scraping 2500 Photoshop tutorials from eight websites over
three hours. Our command extraction algorithm requires
about 30 seconds per tutorial. Identifying common subse-
quences based on edit distance required about 7 hours for
our collection. These timings are based on our unoptimized
Python code, which we ran on a 2.7GHz Mac Mini with 8GB
of memory. We believe that parallelizing our code to run on
a cluster would significantly reduce these timings.

USER EVALUATION
We conducted an informal evaluation of Sifter with three
goals: (1) to gain feedback on the usability and utility of
its features, (2) to gauge user interest in exploring tutorials
through command-level structure and (3) to compare task per-
formance and user preference between Sifter and keyword
search – today’s status quo technique for browsing online tu-
torial collections.

Method
We recruited nine participants (age range 20-35), who self-
rated their Photoshop expertise on a 5-point scale from novice
to expert. Three rated themselves as Photoshop novices, three
as intermediates and three as in-between. All participants
were Computer Science students. We first led a 7-minute
walk-through of the interface to briefly explain each feature
of Sifter to the participants. Then, we asked the participants to
complete a series of tasks using Sifter. We told them that they
could abandon any task if they estimated it would take over
10 minutes to complete. We designed the tasks to exercise
the four main interface elements of Sifter: browser facets, the
table of commands, selection search and the alignment view.
We expected the tasks would also be difficult to complete with
current search interfaces. The complete set of tasks is listed
in Table 1.

We asked participants to answer 5-point Likert-scale ques-
tions on their understanding of the Sifter interface elements
and the ease of use of these elements. We also asked about
the usefulness of a variety of browsing tasks enabled by Sifter.
Finally, participants could provide longer open-ended feed-
back and the first author manually categorized each response
about an interface element as positive or negative.

Evaluation Tasks
1. Find a common command in the category of Web Layouts.

(Find a common command)
2. Find a command used more often in Photo Editing than in Web Layouts.

(Compare single commands between categories)
3. Find a command unique to the category of Photo Editing.

(Find a unique command)
4. Find two uses for the Gradient Overlay command.

(Find different uses of a command)
5. Given one tutorial with the subsequence Round Rectangle, Fill, Color for

creating a content box, find two more examples of this task.
(Find multiple examples of a 3-Gram command sequence)

6. Given a task, list tutorials that follow the most common method for this
task.“Method” refers to a series of commands shared by one or more tu-
torials as shown in the Alignment View.
(Find the most common method to perform a task)

7. Given a task, list tutorials with the three most different command flows.
(Find different methods for a task)

Table 1. The evaluation tasks asked users to perform a variety of brows-
ing and analysis tasks based on the command-level structure of tutorials.

User Feedback

Sifter’s Interface is Easy to Understand and Use
Participants understood Sifter’s interface elements and found
them easy to use, giving relatively high ratings to all four
of them (Figure 8a-b). However, the browser facets ranked
lower than the other three elements in both understanding and
ease of use. Nevertheless, eight of nine participants men-
tioned positive aspects of the faceted browser in the open-
ended feedback (Figure 8c). The three participants who left
negative comments in the open feedback mentioned low-level
usability concerns; they thought the term “N-Gram” was too
technical and found that filtering by facets was somewhat
slow. These results suggest that participants were unfamil-
iar with faceted browsing based on command subsequences
and found using facets to be more complex than the other in-
terface elements. However, they recognized that facets also
enable more powerful search and exploration of the tutorial
collection.

Tasks Enabled by Sifter are Useful
Participants generally rated the browsing tasks enabled by
Sifter to be useful (Figure 9).

In the open responses many participants mentioned that
browsing and comparing tutorials based on command struc-
ture gave them a new way to approach Photoshop. Seven
users mentioned they would like to use the alignment view

7

1 2 3 4 5

Compare frequency across categories

Find commands unique to a category

 Find the most di�erent
methods with the alignment view

Find N-Gram uses with selection search

 Find the most common
method with the alignment view

Explore command uses

View commonly used N-grams

Compare tutorials with alignment view

Explore a collection of tutorials
with facets

Navigate tutorials with the
table of commands

4.67

4.44

4.43

4.11

4.00

3.89

3.56

3.56

3.44

2.89

Strongly
Disagree

Strongly
Agree

Figure 9. Participants were asked to rate usefulness of different brows-
ing tasks on a scale from 1 - Strongly Disagree to 5 - Strongly Agree.

for assessing the similarities and differences between tutori-
als, finding the most common command flow to complete a
task, and previewing the command flows to gauge familiarity.
Five users wanted to use the Browser Facets to find more
examples of unfamiliar commands and to refine tutorial
search by command or domain. As one user suggested,
“Sometimes I just want to know how to use one tool and I
can’t find a good tutorial just by Googling it”. A single user
was not interested in command structure as they only wanted
to search by task. Nevertheless eight of the nine participants
explicitly stated that they would use Sifter if they could.

Comparison of Sifter and Keyword Search
Our evaluation of Sifter was designed to assess performance
on tasks we believe to be difficult with current tutorial brows-
ing tools. To verify this intuition, we also asked our partici-
pants to execute each task (Table 1) with a keyword search
interface limited to the tutorials in the Sifter corpus. By
comparing task accuracy between interfaces, we evaluated
whether Sifter provides additional functionality over keyword
search. To create a keyword search interface we used the
Google Custom Search tool [12]. We ran a within subject
evaluation so that each participant performed the same set
of tasks using both the Sifter and keyword search interfaces.
However we changed either the concrete tutorial category or
the command name mentioned in the task so that subjects
couldn’t directly reuse their work. To measure task accuracy
we first enumerated all possible correct answers for each task.
If the participant gave an answer in this set, we marked it as
correct. We again told users that they could abandon tasks
that would take longer than 10 minutes. Finally, we asked
users to rate interface preference for each task.

Participants are More Successful and Accurate with Sifter
Participants completed all tasks with Sifter, but only 70% of
the tasks with keyword search (Figure 10). They were also
far more accurate with Sifter (97% vs 35% using keyword

0%
20%
40%
60%
80%

100%

Sifter Keyword Search

Correct

Incorrect

Abandoned

35% 35% 30%

97%

3% 0%

Figure 10. Correct, incorrect, and abandoned task percentages for Sifter
and keyword search tasks.

0%

50%

100%

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Keyword
Search
Sifter0.0% 0.0%

22%

100% 89%

11% 22%

89%100%100%100% 100% 89%100%

Figure 11. Percentages of correct answers for Sifter and keyword search
tasks.

search). A one-way ANOVA finds that this difference is sig-
nificant (F(1,12) = 15.12, p = 0.0029).

In the keyword search condition, participants only performed
well on two of the tasks: Find different uses of a command
(Task 4) and Find multiple examples of a 3-Gram command
sequence (Task 5) with 100% and 89% accuracy, respectively
(Figure 11). For these tasks participants directly entered ei-
ther a single command or a command subsequence as the
query and keyword search usually returned a set of matching
tutorials. Participants then opened each tutorial and used text
search within the page to find the command locations in the
tutorial. All but one user preferred to use Sifter over keyword
search for the evaluation tasks, even for tasks where keyword
search performed well.

In aggregate, our results suggest that Sifter’s interactions are
accessible, useful, and provide the preferred interface for the
evaluation tasks. However, we believe a larger-scale longitu-
dinal evaluation would be necessary to rigorously verify these
findings for daily work.

CORPUS ANALYSIS AND UI DESIGN IMPLICATIONS
In addition to assessing the usability and utility of Sifter,
we have also analyzed the higher-level patterns in the com-
mand structure across our corpus of 2500 Photoshop tutori-
als. Based on this analysis we suggest several ways to extend
Photoshop with a more efficient or task specific user interface.

Using Sifter we have found that each tutorial category con-
tains some commands that appear more frequently within that
category (Table 2). For example, 79% of the uses of the
“Clone Stamp Tool” appear in tutorials within the “Photo Ma-
nipulation” category, but only 9% appear within the “Web
Layouts” category. This tool enables photo retouching and is
therefore less useful in the context of web design. Similarly,
some command subsequences occur primarily within particu-
lar categories. For example, the three-command subsequence
“Adjustment Layers, Clipping Mask, Black & White” occurs
only within the “Photo Manipulation” category and does not
appear in any other category. This subsequence selectively
desaturates the image and thereby highlights the remaining
colored region.

8

80

60

40

20

 0
200 400 600 0 0

 0
 0

 0
 0

 0

 100

 200

 300

 400

 800

 1200

 100 200 20 40 50

 400

 800

1200

 4 8 12 16 18
Frequency of Occurrence

N
um

be
r o

f N
-G

ra
m

s

Frequency of Occurrence Frequency of Occurrence Frequency of Occurrence

2-Grams 3-Grams 4-Grams 5-Grams

75 2-Grams appear
134 times

Figure 12. Number of N-Grams that appear at each frequency greater than one for N equals 2 to 5.

Command(s) Drawing/ Web Photo Text
Painting Layouts Manipulation Effects

Clone Stamp Tool 9 9 79 3
Perspective 22 14 61 4

Adjustment Layers,
Clipping Mask,
Black & White 0 0 100 0

Copy, Paste,
New Layer 15 18 55 12

Select, Rounded
Rectangle Tool, Fill 0 100 0 0

New Layer,
Pen Tool, Fill 10 40 50 0

Table 2. Examples command sequences and their distribution across the
different tutorial categories.

This data suggests that for users who primarily work on prob-
lems that fall into one category it may be worth designing
custom UI panels that contain the most commonly used com-
mand subsequences. Quick access to these common com-
mand strategies could simplify workflows and help novice
users learn the most efficient way to complete tasks.

We have also analyzed the frequency of all N-Grams of length
2 to 5 across the complete tutorial corpus. In Figure 12 we
plot the number of N-Grams that appear at each frequency
greater than one. For example, 75 different 2-grams appear
134 times. Not surprisingly, the rightmost tails of these plots
are low, indicating that there are few command subsequences
that appear at high frequency. Since these are the most com-
mon N-Grams and there are relatively few of them, novice
users could focus on learning these command subsequences
first to quickly become proficient with Photoshop. We also
find that the number of N-Grams that appear at the lowest
frequencies is relatively small, indicating that if an N-Gram
appears in a tutorial, it is likely to appear many times in other
tutorials. Since many command patterns occur frequently, it
may be possible to watch users as they execute commands
and infer the command-level strategies they are applying. The
Photoshop interface could then highlight the next commands
in the sequence, suggest related tutorials for the task, or notify
users if they deviate from a sequence.

CONCLUSION
We have presented Sifter, an interface that allows users to
browse and analyze a large collection of image manipulation
tutorials based on their command-level structure. To build
this interface, we first extract the command sequences from
a collection of 2500 tutorials. We then provide an interface
with three views; a (1) Faceted Browser View for organiz-
ing, filtering and sorting the tutorials by their commands, a

(2) Tutorial View for examining individual tutorials and an
(3) Alignment View for comparing the similarities and differ-
ences in the command structure between a subset of tutori-
als. User feedback suggests that Sifter’s interface is relatively
easy to understand and use. Users also recognized that the
faceted browser enables a new way to search and explore a tu-
torial collection based on command-level structure. As more
and more instructional material appears online, we believe
that making use of the underlying command-level structure
will be essential for helping people learn software tools.

REFERENCES
1. AutoDesk, Inc. Project Chronicle.

https://chronicle.autodesk.com/, 2013.

2. L. Bergman, V. Castelli, T. Lau, and D. Oblinger.
Docwizards: a system for authoring follow-me
documentation wizards. In Proceedings of UIST, pages
191–200. ACM, 2005.

3. F. Berthouzoz, W. Li, M. Dontcheva, and M. Agrawala.
A framework for content-adaptive photo manipulation
macros: Application to face, landscape, and global
manipulations. ACM Transactions on Graphics (TOG),
30(5):120:1–120:14, Oct. 2011.

4. J. M. Carroll. The Nurnberg funnel: designing
minimalist instruction for practical computer skill. MIT
Press, Cambridge, MA, USA, 1990.

5. H. Chen, L. Wei, and C. Chang. Nonlinear revision
control for images. ACM Transactions on Graphics
(TOG), 30(4):105, 2011.

6. P. Chi, S. Ahn, A. Ren, M. Dontcheva, W. Li, and
B. Hartmann. Mixt: Automatic generation of
step-by-step mixed media tutorials. In Proceedings of
UIST, pages 93–102. ACM, 2012.

7. P. Chilana, A. J. Ko, and J. O. Wobbrock. Lemonaid:
Selection-based crowdsourced contextual help for web
applications. In Proceedings of CHI, pages 1549–1558,
2012.

8. J. Denning, W. Kerr, and F. Pellacini. Meshflow:
interactive visualization of mesh construction sequences.
ACM Transactions on Graphics (TOG), 30(4):66, 2011.

9. M. Dixon and J. Fogarty. Prefab: implementing
advanced behaviors using pixel-based reverse
engineering of interface structure. In Proceedings of
CHI, pages 1525–1534. ACM, 2010.

9

https://chronicle.autodesk.com/

10. M. Ekstrand, W. Li, T. Grossman, J. Matejka, and
G. Fitzmaurice. Searching for software learning
resources using application context. In Proceedings of
UIST, pages 195–204. ACM, 2011.

11. A. Fourney, B. Lafreniere, R. Mann, and M. Terry.
”Then click ’OK!’” extracting references to interface
elements in online documentation. In Proceedings of
CHI, pages 35–38, 2012.

12. Google, Inc. Google Custom Search Engine.
https://www.google.com/cse, 2013.

13. F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and
T. Igarashi. Generating photo manipulation tutorials by
demonstration. ACM Transactions on Graphics,
28(3):66:1–66:9, July 2009.

14. T. Grossman, G. Fitzmaurice, and R. Attar. A survey of
software learnability. In Proceedings of CHI, pages
649–658. ACM Press, 2009.

15. T. Grossman, J. Matejka, and G. Fitzmaurice. Chronicle:
capture, exploration, and playback of document
workflow histories. In Proceedings of UIST, pages
143–152. ACM, 2010.

16. J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala.
Graphical histories for visualization: Supporting
analysis, communication, and evaluation. Visualization
and Computer Graphics, IEEE Transactions on,
14(6):1189–1196, 2008.

17. C. Kelleher, C. Forlines, and R. Pausch. Stencil-based
help and tutorials. In Proceedings of CHI, pages
541–550, 2005.

18. N. Kong, T. Grossman, B. Hartmann, G. Fitzmaurice,
and M. Agrawala. Delta: A tool for representing and
comparing workflows. In Proceedings of CHI, pages
1027–1036, 2012.

19. B. Lafreniere, A. Bunt, M. Lount, F. Krynicki, and
M. A. Terry. AdaptableGIMP: designing a
socially-adaptable interface. In Adjunct Proceedings of
UIST, pages 89–90. ACM, 2011.

20. G. Laput, E. Adar, M. Dontcheva, and W. Li.
Tutorial-based interfaces for cloud-enabled applications.
In Proceedings of UIST, pages 113–122. ACM, 2012.

21. T. Lau, C. Drews, and J. Nichols. Interpreting written
how-to instructions. In Proceedings of IJCAI, pages
1433–1438. Morgan Kaufmann Publishers Inc., 2009.

22. C. Manning and H. Schütze. Foundations of statistical
natural language processing. MIT Press, 1999.

23. J. Matejka, T. Grossman, and G. Fitzmaurice. Ip-qat:
in-product questions, answers, & tips. In
Proceedings of UIST, pages 175–184. ACM, 2011.

24. J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice.
Communitycommands: command recommendations for
software applications. In Proceedings of UIST, pages
193–202. ACM, 2009.

25. T. Nakamura and T. Igarashi. An
application-independent system for visualizing user
operation history. In Proceedings of UIST, pages 23–32.
ACM, 2008.

26. S. Pongnumkul, M. Dontcheva, W. Li, J. Wang,
L. Bourdev, S. Avidan, and M. F. Cohen.
Pause-and-play: automatically linking screencast video
tutorials with applications. In Proceedings of UIST,
pages 135–144. ACM, 2011.

27. V. Ramesh, C. Hsu, M. Agrawala, and B. Hartmann.
Showmehow: translating user interface instructions
between applications. In Proceedings of UIST, pages
127–134. ACM, 2011.

28. M. Rettig. Nobody reads documentation.
Communications of the ACM, 34(7):19–24, July 1991.

29. S. Su. Enhanced Visual Authoring Using Operation
History. PhD thesis, Massachusetts Institute of
Technology, 2009.

30. T. Yeh, T. Chang, and R. Miller. Sikuli: using gui
screenshots for search and automation. In Proceedings
of UIST, pages 183–192. ACM, 2009.

10

https://www.google.com/cse

	INTRODUCTION
	RELATED WORK
	FACETED BROWSING WITH SIFTER
	Locating Commands within a Tutorial
	Browsing Frequently Used Subsequences
	Finding Tutorials with Specific Commands
	Comparing Tutorials with the Alignment View

	ALGORITHMS
	USER EVALUATION
	Method
	User Feedback
	Sifter's Interface is Easy to Understand and Use
	Tasks Enabled by Sifter are Useful

	Comparison of Sifter and Keyword Search
	Participants are More Successful and Accurate with Sifter

	CORPUS ANALYSIS AND UI DESIGN IMPLICATIONS
	CONCLUSION
	REFERENCES

