
ShowMeHow: Translating User Interface Instructions
Between Similar Applications

Vidya Ramesh, Charlie Hsu, Maneesh Agrawala, Björn Hartmann
University of California,Berkeley — Computer Science Division

533 Soda Hall, Mailcode 1776, Berkeley, CA 94720
{vidyaramesh,cphsu}@berkeley.edu,{maneesh,bjoern}@cs.berkeley.edu

ABSTRACT
Many people learn how to use complex authoring applica-
tions through tutorials. However, user interfaces for author-
ing tools differ between versions, platforms, and competing
products, limiting the utility of tutorials. Our goal is to make
tutorials more useful by enabling users to repurpose tutori-
als between similar applications. We introduce UI transla-
tion interfaces which enable users to locate commands in
one application using the interface language of another appli-
cation. Our end-user tool, ShowMeHow, demonstrates two
interaction techniques to accomplish translations: 1) direct
manipulation of interface façades and 2) text search for com-
mands using the vocabulary of another application. We dis-
cuss tools needed to construct the translation maps that en-
able these techniques. An initial study (n=12) shows that
users can locate unfamiliar commands twice as fast with in-
terface façades. A second study shows that ShowMeHow
enables users to work through tutorials written for one appli-
cation in another application.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors, Documentation

Keywords: tutorials, instructions, mapping, translation

INTRODUCTION
Over the last two decades, we have witnessed a prolifera-
tion of software for creating and editing digital content – im-
ages, audio, video, animation, diagrams, illustrations, and 3D
models. The interfaces of such applications can be daunt-
ingly difficult to learn and use effectively. Often, the more
powerful an application is, the more complex its user inter-
face becomes. As a result, many users rely on tutorials to
learn how to execute procedural tasks in the applications.

Tutorials describe a sequence of steps users must perform
to reach a desired goal. The most effective tutorials contain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Figure 1: ShowMeHow helps users to translate instructions
between applications that offer similar functionality, e.g., the
image editing applications Photoshop and GIMP.

screenshots and use interface-specific operation names to vi-
sually depict the GUI elements that must be manipulated in
each step [10]. Creating high-quality tutorials and other doc-
umentation materials is often time consuming and requires
expertise in the underlying application. As a result, the tuto-
rial space is fragmented — a tutorial in one application often
does not have equivalent counterparts for other, similar ap-
plications or other versions of the same application.

Consider a tutorial on red-eye correction in an image manip-
ulation program. Many applications, including Photoshop,
GIMP, Darkroom, and Aperture, support correction of red-
eye. However, their interfaces are different enough that a
tutorial written for one application is not immediately ap-
plicable to another. Even for the same application, the user
interface often evolves between versions and may be incon-
sistent across different operating systems (e.g., Office 2003
vs 2007, Office on OS X vs Windows). This variety of inter-
faces limits the reach of online tutorials.

In this paper we present UI translation interfaces that enable
users to translate commands in one application to a different
version of the application or to another applications in the
same domain (Figure 1). We focus on the domain of image
manipulation applications, as such applications are complex
and their user interfaces differ widely. Our end-user tool,
ShowMeHow, allows users to to locate commands in GIMP
using the interface language of Photoshop.

ShowMeHow introduces two novel query interactions: First,
users can search for interface commands in one application
through direct manipulation of an interface façade of another

application. Interface façades replicate the look of an ap-
plication (i.e., its menus, toolbars, dialogs) and allow users
to leverage their visual memory. We implement façades us-
ing screen capture images. Second, users can perform text
searches for interface commands in one application using
command names and keyboard shortcuts in another appli-
cation. These techniques are based on interface translation
maps: data structures that relate semantically equivalent ac-
tions in different user interfaces. Maps are based on corre-
spondences between pairs of interface models which capture
the hierarchical structure, visual appearance, and names of
UI elements. Maps are currently authored manually; we dis-
cuss strategies for automating and crowdsourcing the map
construction process.

We conduct two studies showing that ShowMeHow increases
success in locating commands across different applications.
In the first study, twelve users see 20 Photoshop commands
and locate equivalent commands in GIMP, with and with-
out the use of ShowMeHow. When using ShowMeHow UI
façades, participants are twice as fast (µ = 26 seconds vs
µ = 52 seconds, p < 0.0001). However, text search is not
significantly faster than the control condition (µ = 49 sec-
onds). Twelve additional participants, all GIMP novices, ap-
ply tutorials written for Photoshop within GIMP, with and
without ShowMeHow. Participants complete more subtasks
with ShowMeHow and rate the tool highly for ease of use,
speed and utility as a learning aid.

While our focus is on increasing the utility of tutorials, UI
translation techniques have broader applicability: they may
effectively scaffold the learning of new, unfamiliar applica-
tions by providing access to the interface of a familiar appli-
cation as necessary. We conclude with a discussion of direc-
tions for future work.

RELATED WORK
A sizable body of work exists on the design of application
documentation [2], online help [19, 13, 28], software tutori-
als [17, 10], and application learnability [11].

Early work pointed out the failures of lengthy manuals –
users don’t read them – and argued for task-centered learn-
ing [4]. Tutorials are effective because they teach techniques
in the context of a concrete task. While most tutorials are
created manually, it is possible to automatically generate vi-
sual step-by-step instructions by recording actions users take
in a UI [10]. Graphical histories for image editing show op-
eration histories so users can understand how images came to
be, and reapply these histories in new contexts [21, 12, 23].

Noting that readers have trouble interpreting and follow-
ing tutorials, researchers have proposed interfaces that walk
users through operations step-by-step [3], highlight relevant
operations with stencils [17], or programmatically interpret
and execute how-to instructions [22].

At a lower level, users need to locate and understand individ-
ual commands. Various query mechanisms have been pro-
posed to do so, e.g., a natural language interface for UNIX
commands [30]. Mac OS X 10.5 introduced a menu search
that programmatically opens menu trees and shows the user

where a command is located in the tree. But these techniques
cannot translate between different interfaces.

Little work has addressed the problem of transferring knowl-
edge between user interfaces. Davis et al. [6] studied behav-
ioral differences between initial and subsequent users of an
application, but do not explore the design space of tools to
enable transfer learning. One solution is to change interface
appearance: the open-source GIMPShop project modifies the
GIMP menu structure and application vocabulary to mirror
Photoshop’s UI [1]. GIMPShop required editing the appli-
cation source code. ShowMeHow enables users to translate
commands without modifying the applications.

The ShowMeHow approach is most closely related to the
site-to-service map and introduced by d.mix [14]. In both ap-
proaches, a correspondence map between semantically equiv-
alent actions in two different interfaces is used. d.mix en-
ables programmers to use direct manipulation on web pages
to synthesize equivalent web service API calls. ShowMe-
How uses direct manipulation actions in one graphical inter-
face as query input to retrieve equivalent actions in a second
direct manipulation interface.

UI translation maps also enable retargeting. Bricolage [20]
identifies equivalent DOM elements in web pages to apply
the look and feel of existing pages to new content. UNI-
FORM can adapt user interfaces to match other interfaces
a user is already familiar with [24]. While Bricolage em-
ploys machine learning to identify matches, UNIFORM uses
string and variable type matching combined with manual
editing. ShowMeHow follows UNIFORM’s semi-automated
approach.

Figure 2: The ShowMeHow user interface offers a UI façade
that enables users to locate commands with direct manipula-
tion. Translated commands are shown in the left panel.

SCENARIO: TRANSLATING WITH SHOWMEHOW
Kyle’s company is cutting its software budget and migrating
from Photoshop to the free GIMP application. He is creat-
ing a donation web site for tsunami victims and consults an
online tutorial for creating text embedded in the crest of a
wave. He starts by creating text with a drop shadow. In Pho-
toshop, this command can be invoked through the LAYER–
STYLE–DROPSHADOW menu. Kyle pulls up the ShowMe-
How façade and navigates to the submenu (Figure 2, 3A).
The ShowMeHow sidebar indicates that the equivalent GIMP
command is FILTERS–LIGHTANDSHADOW–DROPSHADOW
menu, under the LIGHT AND SHADOW submenu (Figure 3B).

Figure 3: Users locate corresponding commands through manipulation of an interface façade (A,B); keyboard shortcuts (C,D);
or text search for command names (E,F).

Kyle switches to GIMP and performs this action. Since Kyle
is an accomplished Photoshop user, he performs many op-
erations through keyboard shortcuts. To rotate and translate
the text he created, he presses Cmd+T in ShowMeHow (Fig-
ure 3C) – this is the keyboard shortcut to perform a free
transform operation in Photoshop. ShowMeHow indicates
that there is no direct match for this command in GIMP
but it lists multiple possible alternatives that can be used
to achieve individual aspects of free transform (Figure 3D).
Kyle next wants to distort the text. He types in ”Liquid”
into the ShowMeHow search box as he does not remem-
ber the precise name or location of the filter he wants to
use. As he types, search results update incrementally and
he discovers the FILTER-LIQUIFY command (Figure 3E).
Clicking on the result yields the GIMP command FILTERS–
DISTORT–IWARP (Figure 3F). With a couple of clicks, Kyle
has successfully performed his tasks in GIMP with the help
of ShowMeHow.

IMPLEMENTATION
Translating between different user interface actions requires
the following fundamental building blocks:

• An interface model that describes the structure of the user
interface for each application.

• A translation map that describes correspondences be-
tween elements of two models.

• A query interaction in which users select actions from
the source interface to find corresponding actions in the
target interface.

Interface Models
In order to translate commands, a tool must first have a list
of available commands. ShowMeHow captures this informa-
tion in an interface model. Users invoke commands through
different interface widgets: menus, toolbars, palettes, and di-
alogs. Widgets can be referenced in different ways: by name,
by picture, or by keyboard shortcuts. In addition, widgets
may not be visible on screen at all times (e.g., submenus,
palettes). Therefore, a description of the path required to
make an action visible may be needed. Our model uses a tree
representation: each node is an action, described by name,
image, and optional accelerators. The model does not en-

code command semantics (what commands mean, or what
code they execute).

Many interfaces today are built using declarative specifica-
tions (e.g., HTML, XAML) — these source files can be used
to build interface models. In model-based UI systems, de-
signers author an abstract model, and the system generates a
concrete UI (e.g., [9, 26, 25]). Such systems can also provide
the interface model for free. However, at least some of the
applications we wish to support are closed source and not
model-based. Given a concrete application, how might we
derive a suitable descriptive model of it?

Much of the needed information is available programmati-
cally — through accessibility APIs, UI framework inspec-
tion methods, or interface functions. In our example, both
Photoshop and GIMP can generate complete command lists
(through EDIT–KEYBOARD SHORTCUTS–SUMMARIZE and
HELP–PROCEDURE BROWSER, respectively). For Photo-
shop, we read these lists with a custom parser, then manually
augment them with images of command widgets.

Translation Maps
The translation map relates pairs of interface models. Our
maps support three types of entries: 1 : 1 correspondences
between commands, alternatives where one command has
multiple matches, and workarounds that use plain text to cap-
ture instructions if no direct match is available. Mappings are
expressed in an XML file format that relates model elements
(Figure 4). Correspondences where one command is equiva-
lent to a sequence of steps can be expressed in the map for-
mat, but are not yet supported in the ShowMeHow interface.

Correspondences express semantic equivalence of actions.
Establishing equivalence may require human judgment. Thus
fully automatic map construction may not be possible. We
create maps manually but also examine automatic and crowd-
sourcing techniques to accelerate map creation.

Automation through String Matching Automatic techniques
can be used to seed a map and to aid users in establishing
additional correspondences manually, e.g., through sugges-
tion interfaces. Matching command names is a promising
first step [24], as commands with similar functionality are
likely to have similar names. For different versions of the

<map-direct ps_key="menu_image_rotate_arbitrary"
gimp_key="toolbar_rotate" />

<map-many ps_key="edit_freetransform"
xtra_desc="There is no equivalent Free-Transform tool.
See more about moving selections here: http://...">
<gimp_key id="gimp_toolbar_rotate.jpg"/>
<gimp_key id="gimp_toolbar_scale"/>

</map-many>
<map-missing ps_key="layer_style"
info="There is no layer styling in GIMP.
Some effects can be achieved through filters." />

Figure 4: Examples of map entries.

Figure 5: Results from constructing mapping tables automat-
ically and through crowdsourcing on Mechanical Turk.

Figure 6: Example map entries generated through string
matching, and on Mechanical Turk.

same application, many commands and their position in the
interface hierarchy will remain identical. To understand how
interfaces change across versions, we ran Chawathe’s change
detection algorithm [5] on XML trees of two Photoshop ver-
sions – CS and CS3. 72% of commands remained identical.

When translating between different applications in the same
genre (e.g., Photoshop and GIMP), different naming schemes
and UI organization reduce the number of tree correspon-
dences. To find matches across applications, our string match-
ing algorithm performs a case-insensitive search over leaf
command names, ignoring ancestors and omitting special
characters. As a benchmark, we compared menus and tools
in Photoshop CS3 (670 entries) and GIMP 2.6 (502 entries).
19.9% of Photoshop command names matched GIMP names,
with 12.8% false positives (see Figure 5 for statistics and Fig-
ure 6 for examples of correct and incorrect matches).

Crowdsourcing the Map Semantically identical commands
can be described in syntactically different ways, so string
matching has limited reach. To find additional equivalences,
we investigated whether non-expert users can match com-
mands. This process lends itself to crowdsourcing as it is em-
barrassingly parallel: map entries are independent of each
other and can be provided by different users. ShowMeHow’s
Web-based authoring tool presents users with a single com-
mand in a source application and asks them to identify a
match in a target application (Figure 7). We deployed this
tool on Amazon’s Mechanical Turk labor market, paying
$0.11 each for 1000 mappings from Photoshop to GIMP. A
total of 941 jobs for 513 distinct Photoshop commands were
completed by 45 workers. We analyzed mappings where

Figure 7: Users author correspondences in a Web interface.
The UI shows a source command (A) and asks users to find an
equivalent target command (B). Incremental auto-completion
shows potential matches. Automatic search over application
documentation helps users to verify chosen commands (C).
Users also indicate their confidence (D) and workaround in-
formation if no match exists.

multiple workers agreed on the target command and map-
pings where workers indicated high confidence in their an-
swer (see Figure 5). The results suggest that non-expert
workers can add a significant number of useful entries not
found by string matching, but that additional verification
(e.g., voting) is necessary to limit false positives.

To quantify the cost of building a map by experts, we also
hired three freelancers with Photoshop experience on oDesk.
At $5-$15 per hour, these workers created 31-41 mappings
per hour, leading to a price per map entry of $0.12-$0.41.
The best worker had 94% accuracy on mappings where she
indicated high confidence in her answer.

Query Interaction
Query interaction techniques have two phases: query speci-
fication, and translation result display. Queries can be speci-
fied through interface façades and text search.

Building Interface Façades Façades enable users to leverage
visual memory; this is especially valuable for commands in-
voked through tool icons. Interface façades should let users
explore the user interface as if the façade were the real ap-
plication — to the extent necessary so the user can locate
commands. This implies that menus should unroll; toolbar
buttons should expand; dialogs should appear at the appro-
priate times.

To achieve these goals, we execute each command and screen
capture the entire application. To add interactivity, different
images have to be hyperlinked to each other — specifically,
nodes in the UI model have to link to their children. We
use image maps to express these links: polygons in image
coordinates that describe both the location of hot spot areas
and the a target state in the UI model (i.e., the identifier of
an XML node). We created a tool to generate these image
maps: the tool presents the user with a captured application
image, and prompts the user to draw a bounding box for a
given child command.

At runtime, façades implement a variation of event bubbling:
the façade keeps track of the last active node. When the
user clicks, the façade hit-tests cursor locations against all
hot spots on the current node. If a hot spot is hit, the façade
navigates to the correct child node in the interface tree. If no
hot spot is hit, the façade bubbles the event upwards in the
tree, repeating hit tests on each parent until the root. This
algorithm allow users to jump between different tree levels.

Text Search: Commands and Shortcuts ShowMeHow pro-
vides a text search box with incremental search. As char-
acters are entered, ShowMeHow searches the source appli-
cation’s UI model and shows all matches in a result list.
ShowMeHow currently uses regular expression matching to
find results. Clicking on any of the results is equivalent to
selecting a command in the façade — it updates the façade
view appropriately.

Expert users commonly rely on keyboard shortcuts for fre-
quently used commands. To handle keyboard shortcuts,
ShowMeHow intercepts keystrokes outside the search box
and finds equivalent accelerators in the UI model. Again, to
provide appropriate feedback, the façade view is updated to
the corresponding model state whenever keyboard shortcuts
are received.

Presenting Translated Commands ShowMeHow provides
realtime translation correspondence back to the user. The
result panel displays how to achieve the equivalent command
in GIMP. It provides menu traversal instructions, a keyboard
shortcut, a description of the current state, and a thumbnail of
a GIMP screenshot corresponding to the current façade state.
To see results in more detail, the thumbnail can be clicked to
toggle the main display between the Photoshop façade and a
full-size version of the GIMP screenshot.

USER EXPERIENCES WITH SHOWMEHOW
Our evaluation of ShowMeHow seeks to answer the follow-
ing questions:

• Utility: Given instructions for a source application, are
users able to operate a target application effectively with
the aid of ShowMeHow?

• Productivity: Can we quantify the productivity gain of
using ShowMeHow?

• Usability: What are the unique benefits and shortcom-
ings of the different interaction techniques to access the
translation map?

We conducted two user studies with 12 participants each,
all recruited from UC Berkeley. Participants were required
to have some expertise in Photoshop, but little or no exper-
tise with GIMP. Participants self-rated their Photoshop pro-
ficiency on a scale from 1 (Novice) to 5 (Expert). For study
1, µ = 3.2, σ = 0.7; for study 2, µ = 3.0, σ = 0.7.

Study 1: Measuring Performance
In the first study, 12 participants were asked to translate in-
dividual commands from Photoshop to GIMP. Participants
saw the name of the command and a screenshot of it. In
our within-subjects design, participants completed half of
the translations with ShowMeHow, and half without. Par-
ticipants performed 20 translations of commands in Pho-
toshop that existed in different UI locations in GIMP. For
example, the FILE–OPEN action is the same in both inter-
faces, and thus was not used. Chosen commands included
the MAGNETIC LASSO (maps to INTELLIGENT SCISSORS)
and IMAGE– ADJUSTMENTS–LEVELS (maps to COLORS–
LEVELS).

In each task we gave participants a Photoshop command and
asked them to identify and execute the equivalent command
in GIMP. Users alternated between using ShowMeHow and
the control (no ShowMeHow) every 5 tasks. Start conditions
were counterbalanced. We measured the time taken to suc-
cessfully identify the command in GIMP and, for ShowMe-
How trials, the type of query mechanism used (façade, text
or shortcut). Time was measured from the moment of view-
ing the command to the moment when the user located the
command in GIMP and hovered. The experimenter did not
suggest which interaction method to use. If a participant had
not identified the correct command after 90 seconds, the task
was terminated and counted as a failure. Incorrect command
choices were counted as false attempts.

Performance Results
Users identified GIMP commands more quickly when using
ShowMeHow (see Figure 8). Without ShowMeHow, users
took µ = 52 seconds to successfully identify a command
in GIMP. With ShowMeHow’s Photoshop UI façade, users
were twice as fast, taking µ = 26 seconds to find a task. (two-
sample t(216) = 6.64, p < 0.0001). When using ShowMe-
How’s text search, users averaged 49.7 seconds to find a task
(not significant, two-sample t(137) = 0.31, p > 0.05). We
hypothesize that the slower time for text search was due to
engineering issues; some users remarked that the text search
was slow and only searched for exact substring matches.

Figure 8: UI façades are significantly faster than text search
and aid users in finding commands faster.

Figure 9: Histogram of task times in the control and façade
conditions. Façades have a greater minimum cost; but without
Façades, users are often lost.

Figure 10: Participants had more false attempts and misses
without ShowMeHow. Error bars show 95% CI.

Figure 9 compares search time histograms for ShowMeHow
façades and the control condition. ShowMeHow has a larger
minimum task time, because of the extra interaction steps and
application switching. Without ShowMeHow, some com-
mands are found quickly, but users are often lost if they can-
not find the command right away.

ShowMeHow also led to fewer false attempts (µ = 1.4 vs
8.1, two-tailed t(22) = 3.40, p < 0.01) and fewer failed tasks
(µ = 0.3 vs 3.2 per participant, two-tailed t(22) = 4.19,
p < 0.001, see Figure 10). For example, when attempting
to replace a range of colors in an image with another (Pho-
toshop: IMAGE–ADJUSTMENTS–REPLACE COLOR, GIMP:
COLORS–MAP–ROTATE COLORS), users without ShowMe-
How would tend to incorrectly identify commands such as
COLORIZE or COLORIFY as equivalents. Participants still
made some false attempts with ShowMeHow; we believe
these are due to participants forgetting query results while
switching between ShowMeHow and GIMP.

Study 2: Translating Entire Tutorials
In the second study, participants completed a multi-step im-
age manipulation tutorial written for a familiar interface (Pho-
toshop) within an unfamiliar interface (GIMP). Participants
performed this task twice, with two different tutorials: once
with the aid of ShowMeHow and once without. Condition
order and assignment of tutorial to condition were counter-
balanced. Tutorials were taken from public web sites. After-
wards, participants completed a survey with Likert-scale and
free-response questions.

Experimenters gave participants a brief overview of GIMP

Figure 11: Likert scale ratings for ShowMeHow in study 2
Ratings range from 1:Strongly disagree to 5:Strongly agree.
Error bars show 95% CI.

that introduced major tools and fundamental differences from
Photoshop. Participants had 20 minutes for each tutorial and
were stopped if the tutorial was not completed at this point.
The tutorials comprised 9 and 12 steps; each step had 2 to
3 subtasks. Participants were encouraged to move on to the
next subtask if they were unable to complete a subtask.

Participants were able to accomplish 3.6 more subtasks with
ShowMeHow than without for the first tutorial. However,
we observed that participants used ShowMeHow to find only
the most difficult commands; many opted to directly struggle
with the GIMP UI for commands they perceived as easier to
find. Actively encouraging use of ShowMeHow by detecting
when users ”fumble” is an area for future work. On average,
a participant looked up 6.74 commands in ShowMeHow. We
also noticed that participants tended to strongly prefer one
query technique — though there was no clear favorite across
users. Only 2 participants preferred using keyboard shortcuts
over the other methods while 5 participants each favored ei-
ther the mock interface or text search.

In our post-test survey Likert questions, participants gave the
highest marks to ShowMeHow for three dimensions: ease
of use, speedup, and helping them learn how to use GIMP
(Figure 11). Users felt that ShowMeHow helped them and
made it easier to accomplish tasks in GIMP, even though our
quantitative analysis did not show a statistically significant
difference in time. One user remarked that “it was quite clear
what I had to do in order to make something work in GIMP”
and another that “ShowMeHow was really helpful for quick
[lookups]”. Participants were less enthusiastic about using
ShowMeHow as a tool to openly explore how the two inter-
faces differed: it’s main benefit is to quickly look up com-
mands on demand, then disappear.

Participants also suggested usability improvements: search
should cover keywords and related words, as web search en-
gines do; our implementation only searched for exact com-
mand names. This limitation was partially ameliorated by the
display of incremental results, which allowed participants to
refine their search as they saw possible results.

We found that differences in parameters and parameter pre-
sets caused the biggest amount of confusion for our partici-
pants once they located the correct command. This suggests
mapping command parameters in future work.

LIMITATIONS
There are several limitations of our approach that we plan to
address in future work.

Multi-Step Translations Not Supported
Our current approach only handles single-step correspon-
dences: one command in the source interface corresponds to
one command (or a set of alternative commands) in the tar-
get interface. This limitation is primarily due to the chosen
query interaction techniques. It is straightforward to describe
multi-step sequences in the translation map. However, the
current query interactions do not lend themselves to express-
ing multi-step queries: because the façade is not a functional
interface, it is awkward to perform multiple steps in a row as
the user cannot see the result of any one step.

Command Parameters Not Supported
ShowMeHow matches high-level commands, but does not
handle parameters for those commands. However, most com-
mands are parameterized. For example, the Rotate Canvas
dialog takes an angle parameter It is possible to extend the
current map syntax to cover parameters, but this would sig-
nificantly increase the effort needed to capture correspon-
dences. When parameters do not map directly onto each
other, human expertise will be needed. We also observed that
participants in our study tended to copy values from the tuto-
rials directly into the application. If parameters do not match
between programs, this practice yielded unexpected results.

User Must Switch Applications Frequently
Once a user has found a translated action, she still has to
switch to the target application and perform the command
displayed by ShowMeHow. This leaves a sizable gulf of
execution [15]: the user may forget the precise menu path
or shortcut during the application switch, especially if both
applications cannot be shown side-by-side. Such short-term
memory problems occurred repeatedly in our evaluation. They
stem from the decision to implement ShowMeHow as an in-
dependent application. Integrating ShowMeHow into a target
application could enable directly showing and executing ac-
tions in context. However, some authoring tools do not per-
mit extensions to receive UI events. Accessibility APIs can,
but many complex UIs do not use platform widgets. Pixel-
based reverse engineering techniques like Prefab [7] might
be able to extract event data at the appropriate level.

Façades Only Offer Partial Functionality
Users expect façades to act like the real application. Our Pho-
toshop façade implements basic interactions with menus and
toolbars. However, interactions that depend on application
state are not yet supported. For example, users might try to
add a new layer and then access layer-specific commands in
context menus. Since our façade does not model application
state, we are unable to translate such actions.

Users May Not Learn Target Interface
One unintended side-effect observed in our evaluations is
that once users have located the appropriate command in the
target application, they often proceeded to take the shortest
possible path to execute that action — copying the keyboard
shortcut. However, the shortcut does not help users under-
stand how to locate the action inside the UI. Users who take
advantage of the menu traversal instructions reap additional
learning benefits. Unintended side-effects caused by assis-
tive interfaces have been observed elsewhere and termed the
“paradox of the assisted user” [29].

FUTURE WORK
Future work should investigate alternative approaches to gen-
erating user interface translation maps as well as additional
interaction techniques.

Automate Map Construction
Two avenues for automation appear feasible. First, it may
be possible to learn correspondences from pairs of demon-
strations of the same task in different UIs. Application in-
strumentation can be be used to record what users do; in
fact, some applications already have recording facilities for
user-defined macros. Second, it may be possible to mine
Web pages for correspondences. Command names appear
on official documentation sites, blogs and forums. Corre-
spondences be established from pages with similar features.
Query-feature graphs [8] which relate application functions
to search queries are a first step in this direction.

Further inspiration for automating map creation can be taken
from analogous problems in multi-version program analy-
sis in software engineering [18] and schema matching in
database systems [27]. In particular, Potluck shows that bet-
ter interaction techniques can reduce the cost of authoring
equivalences [16].

New Query Interactions: Translate Tutorials
If ShowMeHow is predominantly used to translate tutori-
als found on the Web, the translation functionality could
be built directly into the Web browser. We envision that
ShowMeHow could automatically parse a loaded tutorial in
the browser, find command names contained in the tuto-
rial, and annotate these commands with possible translations.
Such an annotated tutorial would obviate the need for an ex-
tra translation application, but poses the additional challenge
of robustly identifying commands in unstructured text.

CONCLUSION
This paper introduced UI translation interfaces. These inter-
faces can help users adapt tutorials from one application ver-
sion to another, and between different applications within the
same genre. Translation interfaces can also help users lever-
age existing knowledge when users change software ver-
sions. UI translation interfaces are based on interface mod-
els and maps which relate pairs of models. We introduced
interface façades which model the appearance, but not the
functionality, of an application. Façades require more effort
to construct, but yield larger gains. In our study, façades ef-
fectively reduced the time it took users to locate commands
in an unfamiliar interface and eased the frustration of deal-
ing with complicated, foreign interfaces. ShowMeHow is a
first step in studying the translation of user interface actions
between applications in a similar genre.

ACKNOWLEDGMENTS
We thank Intel and Google for their support. This research
was supported by NSF grant CCF-0643552

REFERENCES
1. GIMPshop. http://www.gimpshop.com/. Retrieved 4/2011.
2. Ron Baecker. Showing instead of telling. In Proceedings of

the 20th annual international conference on Computer
documentation, SIGDOC ’02, pages 10–16, New York, NY,
USA, 2002. ACM.

3. Lawrence Bergman, Vittorio Castelli, Tessa Lau, and Daniel
Oblinger. Docwizards: a system for authoring follow-me
documentation wizards. In Proceedings of the 18th annual
ACM symposium on User interface software and technology,
UIST ’05, pages 191–200, New York, NY, USA, 2005. ACM.

4. John M. Carroll. The Nurnberg funnel: designing minimalist
instruction for practical computer skill. MIT Press,
Cambridge, MA, USA, 1990.

5. Sudarshan S. Chawathe, Anand Rajaraman, Hector
Garcia-Molina, and Jennifer Widom. Change detection in
hierarchically structured information. SIGMOD Record,
25:493–504, June 1996.

6. Sid Davis and Susan Wiedenbeck. The mediating effects of
intrinsic motivation, ease of use and usefulness perceptions
on performance in first-time and subsequent computer users.
Interacting with Computers, 13(5):549 – 580, 2001.

7. Morgan Dixon and James Fogarty. Prefab: implementing
advanced behaviors using pixel-based reverse engineering of
interface structure. In Proceedings of the 28th international
conference on Human factors in computing systems, CHI ’10,
pages 1525–1534, New York, NY, USA, 2010. ACM.

8. Adam Fourney, Richard Mann, and Michael Terry.
Queryfeature graphs:bridging user vocabulary and system
functionality. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, UIST
’11, New York, NY, USA, 2011. ACM.

9. Krzysztof Z. Gajos, Daniel S. Weld, and Jacob O. Wobbrock.
Automatically generating personalized user interfaces with
supple. Artificial Intelligence, 174(12-13):910–950, 2010.

10. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. Generating photo
manipulation tutorials by demonstration. ACM Transactions
on Graphics, 28:66:1–66:9, July 2009.

11. Tovi Grossman, George Fitzmaurice, and Ramtin Attar. A
survey of software learnability: metrics, methodologies and
guidelines. In Proceedings of the 27th international
conference on Human factors in computing systems, CHI ’09,
pages 649–658, New York, NY, USA, 2009. ACM.

12. Tovi Grossman, Justin Matejka, and George Fitzmaurice.
Chronicle: capture, exploration, and playback of document
workflow histories. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology, UIST
’10, pages 143–152, New York, NY, USA, 2010. ACM.

13. Susan M. Harrison. A comparison of still, animated, or
nonillustrated on-line help with written or spoken
instructions in a graphical user interface. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, CHI ’95, pages 82–89, New York, NY, USA, 1995.
ACM Press/Addison-Wesley Publishing Co.

14. Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R.
Klemmer. Programming by a sample: rapidly creating web
applications with d.mix. In Proceedings of the 20th annual
ACM symposium on User interface software and technology,
UIST ’07, pages 241–250, New York, NY, USA, 2007. ACM.

15. Edwin L. Hutchins, James D. Hollan, and Donald A.
Norman. Direct manipulation interfaces. Human-Computer
Interaction, 1:311–338, 1985.

16. David F. Huynh, Robert C. Miller, and David R. Karger.
Potluck: semi-ontology alignment for casual users. In
Proceedings of the 6th international The semantic web and
2nd Asian conference on Asian semantic web conference,
ISWC’07/ASWC’07, pages 903–910, Berlin, Heidelberg,
2007. Springer-Verlag.

17. Caitlin Kelleher and Randy Pausch. Stencils-based tutorials:
design and evaluation. In Proceedings of the SIGCHI
conference on Human factors in computing systems, CHI ’05,
pages 541–550, New York, NY, USA, 2005. ACM.

18. Miryung Kim and David Notkin. Program element matching
for multi-version program analyses. In Proceedings of the
2006 international workshop on Mining software
repositories, MSR ’06, pages 58–64, New York, NY, USA,
2006. ACM.

19. Kevin Knabe. Apple guide: a case study in user-aided design
of online help. In Conference companion on Human factors
in computing systems, CHI ’95, pages 286–287, New York,
NY, USA, 1995. ACM.

20. Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and
Scott R. Klemmer. Bricolage: Example-based retargeting for
web design. In Proceedings of the 29th international
conference on Human factors in computing systems, CHI ’11,
New York, NY, USA, 2011. ACM.

21. David Kurlander and Steven Feiner. A history-based macro
by example system. In Proceedings of the 5th annual ACM
symposium on User interface software and technology, UIST
’92, pages 99–106, New York, NY, USA, 1992. ACM.

22. Tessa Lau, Clemens Drews, and Jeffrey Nichols. Interpreting
written how-to instructions. In Proceedings of the 21st
international jont conference on Artifical intelligence, pages
1433–1438, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

23. Toshio Nakamura and Takeo Igarashi. An
application-independent system for visualizing user operation
history. In Proceedings of the 21st annual ACM symposium
on User interface software and technology, UIST ’08, pages
23–32, New York, NY, USA, 2008. ACM.

24. Jeffrey Nichols, Brad A. Myers, and Brandon Rothrock.
Uniform: automatically generating consistent remote control
user interfaces. In Proceedings of the SIGCHI conference on
Human Factors in computing systems, CHI ’06, pages
611–620, New York, NY, USA, 2006. ACM.

25. Fabio Paterno. Model-Based Design and Evaluation of
Interactive Applications. Springer-Verlag, London, UK, 1st
edition, 1999.

26. Angel R. Puerta. A model-based interface development
environment. IEEE Software, 14:40–47, July 1997.

27. Erhard Rahm and Philip A. Bernstein. A survey of
approaches to automatic schema matching. The VLDB
Journal, 10:334–350, December 2001.

28. Christian Spannagel, Raimund Girwidz, Herbert Löthe,
Andreas Zendler, and Ulrik Schroeder. Animated
demonstrations and training wheels interfaces in a complex
learning environment. Interacting with Computers,
20:97–111, January 2008.

29. Christof C. van Nimwegen, Daniel D. Burgos, Herre H. van
Oostendorp, and Hermina H. J. M. Schijf. The paradox of the
assisted user: guidance can be counterproductive. In
Proceedings of the SIGCHI conference on Human Factors in
computing systems, CHI ’06, pages 917–926, New York, NY,
USA, 2006. ACM.

30. Robert Wilensky, Yigal Arens, and David Chin. Talking to
unix in english: an overview of uc. Communications of the
ACM, 27:574–593, June 1984.

