
ReVision: Automated Classification, Analysis
and Redesign of Chart Images

Manolis Savva∗, Nicholas Kong†, Arti Chhajta∗, Li Fei-Fei∗, Maneesh Agrawala†, Jeffrey Heer∗

∗Stanford University
{msavva, achhajta, feifeili, jheer}@cs.stanford.edu

†University of California, Berkeley
{nkong, maneesh}@eecs.berkeley.edu

ABSTRACT
Poorly designed charts are prevalent in reports, magazines,
books and on the Web. Most of these charts are only available
as bitmap images; without access to the underlying data it is
prohibitively difficult for viewers to create more effective vi-
sual representations. In response we present ReVision, a sys-
tem that automatically redesigns visualizations to improve
graphical perception. Given a bitmap image of a chart as in-
put, ReVision applies computer vision and machine learning
techniques to identify the chart type (e.g., pie chart, bar chart,
scatterplot, etc.). It then extracts the graphical marks and in-
fers the underlying data. Using a corpus of images drawn
from the web, ReVision achieves an image classification ac-
curacy of 96% across ten chart categories. It also accurately
extracts marks from 79% of bar charts and 62% of pie charts,
and from these charts it successfully extracts the data from
71% of bar charts and 64% of pie charts. ReVision then
applies perceptually-based design principles to populate an
interactive gallery of redesigned charts. With this interface,
users can view alternative chart designs and retarget content
to different visual styles.

ACM Classification: H5.2 [Information Interfaces and Pre-
sentation]: User Interfaces – Graphical User Interfaces.

Keywords: Visualization, chart understanding, information
extraction, redesign, computer vision.

General terms: Algorithms, Design, Experimentation

INTRODUCTION
Over the last 300 years, charts, graphs, and other visual de-
pictions of data have become a primary vehicle for communi-
cating quantitative informationf [28]. However, designers of
visualizations must navigate a number of decisions, includ-
ing choices of visual encoding and styling. These decisions
influence the look-and-feel of a graphic and can have a pro-
found effect on graphical perception [6]: the ability of view-
ers to decode information from a chart. Despite progress in
the development of design principles for effective visualiza-
tion [6, 11, 16, 20, 21, 24, 28], many charts produced today
exhibit poor design choices that hamper understanding of the
underlying data and lead to unaesthetic displays.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

ReVision Gallery
Input Image

Image: pie_44

Data Table
Label % of Total
AIDS
Parkinson'
Prostate
Alzheimer's
Diabetes
Hepatitis C
Hepatitis B
Cardiovascular...

70%
6%

5.2%
5.1%
5.1%

4%
3.5%
1.1%

Color Palettes
Apple Spectrum
Apple Blue
Apple Brown
Apple Green
Apple Grey
R Grey
R Rainbow
Economist
Tableau 10
Tableau 20
ManyEyes
ManyEyes Blue
ManyEyes Green
ManyEyes Yellow
ManyEyes Red

AIDS

Parkinson'

Prostate

Alzheimer's

Diabetes
Hepatitis C

Hepatitis B Cardiovascular...

0% 10% 20% 30% 40% 50% 60% 70% 80%

AIDS
Parkinson'

Prostate
Alzheimer's

Diabetes
Hepatitis C
Hepatitis B

Cardiovascular...

Figure 1: Chart Redesign. Left: A pie chart of NIH expenses
per condition-related death. The chart suffers from random
sorting, highly saturated colors, and erratic label placement.
Right: Plotting the data as a sorted bar chart enables more
accurate comparisons of data values [6, 20].

Consider the pie chart in Figure 1 (left), which depicts data
concerning the 2005 research budget of the National Insti-
tutes of Health (NIH). The design of this chart could be im-
proved in multiple ways: slices are ordered haphazardly, la-
bels are placed erratically, and label text competes with satu-
rated background colors. Moreover, the chart encodes values
as angular extents, which are known to result in less accu-
rate value comparisons than position encodings [6, 16, 24].
Figure 1 (right) shows the same data in a redesigned visu-
alization: the bar chart sorts the data, uses a perceptually-
motivated color palette [26], and applies a position encoding.

For analysts working with their own data, automated design
methods [20, 21] based on visual design principles [6, 11, 16,
28] can lead to more effective visualizations. However, the
vast majority of visualizations are only available as bitmap
images. Without access to the underlying data it is pro-
hibitively difficult to create alternative visual representations.

We present ReVision, a system that takes bitmap images of
charts as input and automatically generates redesigned visu-
alizations as output. For example, ReVision produces Figure
1 (right) as a suggested redesign when given Figure 1 (left)
as input. Our system identifies the type of chart, extracts
the marks (visual elements that encode data) and underlying
data, and then uses this information in tandem with a list of
guidelines to provide alternate designs. ReVision also sup-
ports stylistic redesign; users can change mark types, colors
or fonts to adhere to a specific visual aesthetic or brand. We
make the following research contributions:

Classification of Chart Images. ReVision determines the
type of chart using both low-level image features and ex-
tracted text-level features. We propose a novel set of features
that achieve an average classification accuracy of 96%. Our
image features are more accurate, simpler to compute, and
easier to interpret than those used in prior work. While we fo-
cus on the task of chart redesign, our classification method is
applicable to additional tasks such as indexing and retrieval.

Area Graphs (90+17) Bar Graphs (363+81) Maps (249)Curve Plots (318) Pareto Charts (168) Radar Plots (137)Pie Charts (210+21) Scatter Plots (372) Venn Diagrams (263)Tables (263)

Figure 2: Our 10-category chart image corpus. Numbers in parentheses: (strictly 2D images + images with 3D effects).

Extraction of Chart Data. We present a set of chart-specific
techniques for extracting the graphical marks and the data
values they represent from a visualization. Our implementa-
tion focuses on bar and pie charts. We first locate the bars
and pie slices that encode the data. We then apply heuristics
to associate the marks with related elements such as axes and
labels. Finally, we use this information to extract the table
of data values underlying the visualization. We exclude any
bar and pie chart images with 3D effects or non-solid shad-
ing. We achieve an average accuracy of 71.4% in extracting
the marks and an average accuracy of 67.1% in extracting the
data after we successfully extract the marks.

Finally, we demonstrate how these contributions can be com-
bined with existing design guidelines to automatically gener-
ate redesigned visualizations. We have also compiled a cor-
pus of over 2,500 chart images labeled by chart type. We are
making this corpus publicly available in the hope of spurring
further research on automated visualization interpretation.

RELATED WORK
Our ReVision system builds on three areas of related work.

Classifying Visualization Images
Classification of natural scenes is a well-studied problem in
computer vision [1, 3]. A common approach is to use a “bag
of visual words” representation [29] where the “words” are
low-level image features such as gradients or local region
textures. Each input image is encoded as a feature vector
using these words. Machine learning methods then classify
the feature vectors and corresponding images into categories.

Researchers have developed specialized techniques for clas-
sifying chart images by type: bar chart, pie chart, etc. Shao
and Futrelle [23] and Huang et al. [17] extract high-level
shapes (e.g., line segments) from vector images of charts and
then use these shapes as features for classifying six kinds of
charts. Their approach relies on an accurate vectorization of
charts, which can be difficult to generate from chart images.

Prasad et al. [22] classify bitmap images of charts drawn
from five common categories. They apply a series of pre-
processing operations to compute global curve saliency and
local image segment features. These operations require many
input-dependent parameters, complicating generalization to
more categories. Additionally, they use Scale Invariant Fea-
ture Transform (SIFT) [10] and Histogram of Oriented Gra-
dient (HOG) [9] features to represent higher level properties
of image regions. They then compare these features using
multi-resolution pyramidal histograms and use the similarity
scores to train a multi-class Support Vector Machine (SVM),
achieving an average classification accuracy of 84.2%.

The features used by Prasad et al. cannot easily be tied to the
presence of specific graphical marks. We are interested in

image features at the level of graphical marks because they
could be useful in connecting classification to extraction. We
desire highly predictive features that (a) are easier to com-
pute, (b) more readily interpreted, and (c) better inform post-
classification extraction.

Extracting Marks from Charts
Some researchers have investigated techniques for extracting
marks from charts. Zhou and Tan [31] combine boundary
tracing with the Hough transform to extract bars from bar
charts. Huang et al. [17, 18, 19] generate edge maps, vec-
torize the edge maps, and use rules to extract marks from
bar, pie, line, and low-high charts. Yang et al. [30] built a
system incorporating this technique to allow humans to cor-
rect automatically generated vector representations of charts.
However, their work focuses on extracting the mark geome-
try rather than the underlying data. Their techniques rely on
an accurate edge map, which can be difficult to retrieve from
real-world charts, due to large variance in image quality. We
designed our techniques to be more robust to such variance.

Automated Visualization Design
Researchers have applied graphical perception principles to
automatically produce effective visualizations. Mackinlay’s
APT [20] generates charts guided by rankings of visual vari-
ables for specific data types such as nominal, ordinal, or
quantitative data. Stolte et al.’s Polaris [25] is a system
for generating small multiples [28] displays based on user
queries of a multidimensional data table. Mackinlay et al. [21]
extend this work to support a range of automated visualiza-
tion designs. These systems assist users in producing visual-
izations directly from data; we seek to first extract data from
chart images and then redesign the visualizations. Our cur-
rent work is complementary to these earlier systems: once
we have extracted a data table, we could feed it into any of
these systems to generate improved alternative designs.

SYSTEM OVERVIEW
ReVision is comprised of a three stage pipeline: (1) chart
classification, (2) mark and data extraction, and (3) redesign.
In stage 1, ReVision classifies an input image according to
its chart type. This stage uses a corpus of test images to learn
distinctive image features and train classifiers. In stage 2,
ReVision locates graphical marks, associates them with text
labels, and extracts a data table. In stage 3, ReVision uses the
extracted data to generate a gallery of alternative designs.

STAGE 1: CLASSIFYING CHART IMAGES
While classification of natural images is a well-studied com-
puter vision problem, chart images are unlike natural images
in several important ways. First, marks within data graph-
ics are more discrete and more frequently repeated than tex-
tured regions in photographs. Second, there are many areas
with constant color, so pixel neighborhoods with low vari-
ances are common. Finally, text occurs more frequently and

2. Patch Extraction

4. Patch Clustering

2. Text Region Binary Mask

3. Text Density Matrix

5. Textual Feature Vector6. Image Feature Vector

1. Image Normalization

3. Patch Standardization

5. Patch Response Computation

1. Text Region Tagging

4. Text Region Histograms

Chart Image Corpus

Textual FeaturesImage Features

Classification

Figure 3: The ReVision classification pipeline, including both
image (left) and textual (right) features.

prominently than in natural scenes. The following sections
describe how we account for these differences to achieve
classification accuracy superior to previous work [22].

Learning Low-Level Image Features
Figure 3 illustrates our classification pipeline. Coates et
al. [7] found that random sampling of image patches (small
rectangular image regions), followed by K-means clustering
of the patches and then classification achieves state of the
art performance for classifying natural images. We extend
their approach to classifying chart images using a sequence
of 7 steps: (1) normalize the input images, (2) extract image
patches, (3) standardize the patches, (4) cluster the patches
to form a “codebook”, (5) compute a “codebook” patch re-
sponse for each image, (6) formulate a feature vector for each
image from the response, and (7) perform classification.

1. Image Normalization. We normalize images to a constant
size of D×D pixels to ensure homogeneous sampling and
equivalence of each exemplar in the corpus. We preserve the
aspect ratio of the original image by padding with the back-
ground color. We convert color images to grayscale, as color
is rarely indicative of visualization category. Note that we
use the original color images in the mark and data extraction
stage of our system. We considered image sizes from D = 32
up to D = 512 and found that D = 128 achieves the best clas-
sification accuracy. We believe this is due to the reduction of
noise and compression artifacts in the down-sampled images
(the average image size is roughly 300×400 pixels).

2. Patch Extraction. We extract square patches from the
images by uniform random sampling for 100 locations per
image. We tested patch sizes over the range from 2×2 up to
20×20 pixels and found that a patch size of 6×6 pixels gave
the best classification performance. The optimal patch size
was consistently about 5% of the normalized image dimen-
sions. To filter out frequently occurring constant color re-
gions, we reject sample patches with variance less than 10%
of the maximum pixel value.

3. Patch Standardization. For classification, absolute pixel
values are not as important as variation within a patch. Thus,
we normalize the contrast of each patch by subtracting the
mean and dividing by the standard deviation of the pixel val-
ues in that patch. This normalization ensures that a single ap-
propriately weighted patch can represent patches with differ-
ent absolute intensities but similar variations. We perform a
“whitening” procedure on the entire patch set which reduces
the cross-correlation between patches and improves classifi-
cation performance [7].

4. Patch Clustering. Given an extracted patch set, we per-
form K-means clustering to obtain a set of “centroid” patches
that correspond to the most frequently occurring patch types.
We use a Euclidean L2 distance metric over the pixel values.
In practice we set the number of centroids K to 200 as we
found that larger numbers of centroids did not achieve better
performance. The centroid patches constitute a feature set, or
“codebook”, which we can use to describe our image corpus.

These codebook patches capture frequently occurring graph-
ical marks such as lines, points, corners, arcs and gradients.
By independently extracting codebooks from each visualiza-
tion category, we obtain patch sets that reflect the occurrence
frequencies of marks characteristic of each category. As an
example, in Figure 4 we compare the centroids for 3 cate-
gories from the corpus of [22]. We invite the reader to guess
which categories are represented.1

Using Low-Level Image Features for Classification
To classify an input image, we first normalize it to a 128×
128 grayscale image and extract 6×6 sized patches centered
on each pixel. We then perform the following steps:

5. Codebook Patch Response. For each extracted patch, we
determine the nearest codebook patch by Euclidean distance.
We thus obtain a D2 centroid response map over the entire
image, where D (= 128) is the normalized image dimension.

6. Feature Vector Formulation. We reduce the dimension-
ality of the codebook patch response map by dividing the
image into quadrants and summing the activations for each
codebook patch in a given quadrant, similar to constructing
a histogram of activated patches. We thus obtain a 4K-length
feature vector for each input image. Since we set K = 200,
we obtain an 800 element image feature vector which is
much smaller than the set of all 128×128 patch responses.

7. Classification. We use the feature vectors to perform clas-
sification using Support Vector Machines (SVMs) [8] with a
quadratic kernel function. We use the SVM implementation
provided by the WEKA [14] framework.

Figure 4: Codebook patches for 3 different visualization categories. We invite the reader to guess which categories were sampled.1

Using Text-Level Features to Improve Classification
While image features offer powerful cues to determine the
category of a chart image, text-level features are also infor-
mative. The position and size of text regions in chart images
may correlate with the visualization type. We show that tex-
tual information can further improve classification accuracy.

We designed a tagging interface to annotate chart images
with the position, size, angular orientation and content of text
regions. Our tool extracts the text image region and performs
OCR using the Tesseract open source OCR engine; the user
can correct the OCR output if desired. While manual text an-
notation is tedious, it is amenable to crowdsourcing and we
designed the tagging UI with this scenario in mind. Further-
more, connected components analysis or more sophisticated
approaches [4] can extract text region bounding boxes au-
tomatically. These methods could allow fully unsupervised
textual feature extraction from a visualization corpus.

To capture the distribution and density of text regions in an
input image, we construct a binary mask indicating which
pixels belong to text regions (step 2 in Figure 3, right). We
subdivide the mask into N×N blocks, calculate the propor-
tion of text region pixels in each block (step 3), and linearize
the values into an N2 element vector. We found that N = 8
maximizes classification accuracy. However, at this resolu-
tion the exact positions, sizes and relative orientations of text
regions are abstracted. To retain this information we com-
pute normalized 10-bin histograms of the distributions of text
region length, width, center position, as well as pairwise ori-
entation and pairwise distance between text region centers
(step 4). We concatenate these histograms with the text den-
sity vector to create a final textual feature vector (step 5).

Classification Performance
We used three collections of chart images to evaluate our
system. To compare our classification results with those of
Prasad et al. [22], we used their corpus of 667 images drawn
from 5 categories: bar charts (125), curve plots (121), pie
charts (134), scatter plots (162) and 3D surface plots (125).
We also obtained the corpus of Huang et al. [17], which con-
tains 200 images in 4 categories: 2D bar charts (80), 2D pie
charts (48), 3D pie charts (12), and line plots (60). Finally,
we compiled a new corpus containing 2,601 chart images
labeled with 10 categories using a semi-automated tool for
querying Google image search. Example images from each
category are given in Figure 2. We use this larger corpus to
evaluate how our system scales to classifying images from
larger sets of visualization categories.

1Bar Charts (left), Pie Charts (middle), Scatter Plots (right). Bar corners,
pie arcs and scatter points are prevalent within their respective categories.

Prasad [22] Image Text All Binary
Bar 90% 85% 57% 89% 95%
Curve 76% 75% 50% 83% 92%
Pie 83% 93% 84% 95% 97%
Scatter 86% 91% 64% 91% 97%
Surface 84% 90% 71% 94% 97%
Average 84% 88% 66% 90% 96%
Table 1: Classification accuracy for the corpus from Prasad
et al. [22]. We compare Prasad et al. to our method using
image features (first two columns), text features (1st and 3rd),
and both (1st and 4th) in multi-class SVMs. The last column
shows results for both features using binary SVMs.

Multi-Class Binary
Area Graphs 88% 98%
Bar Graphs 78% 95%
Curve Plots 73% 91%
Maps 84% 97%
Pareto Charts 85% 97%
Pie Charts 79% 97%
Radar Plots 88% 93%
Scatter Plots 79% 93%
Tables 86% 97%
Venn Diagrams 75% 97%
Average 80% 96%

Table 2: Classification accuracy on our 10-category corpus
(2,601 images) using only image features.

We first tested the performance of the learned image fea-
tures for classification by training a multi-class SVM classi-
fier through 5-fold cross-validation on the 5 category image
corpus. In each fold, we randomly picked 4/5 of the images
for training and the remainder for testing. We then averaged
results over the 5 folds. The first two columns of Table 1
summarize our results in comparison to Prasad et al. [22].
Our average classification accuracy was 88%, compared to
Prasad et al.’s 84%. Incorporating text features further in-
creased our accuracy to 90% (the third column of Table 1
uses only text features, while the fourth column uses both
text and image features). For the 200 image corpus used by
Huang et al. [17] our average accuracy was 94%, exceeding
the 90% reported by those authors. We used the same proce-
dure on our larger 10-category corpus where we obtained an
average classification accuracy of 80% (see Table 2).

We have found that charts of different categories often in-
clude visually similar elements such as axes, grid lines, and
legends. Some charts are hybrids of multiple categories (e.g.,
a combination bar and line chart). The multi-class SVM clas-
sifier we have proposed so far enforces disjoint classification
(e.g., the image is purely a bar chart or purely a line chart).

(a) Input chart (b) Connected components (c) Rectangular components (d) Candidate Bars

Figure 5: Bar extraction procedure. We compute connected components (shown false-colored) and discard non-rectangular components.
We keep rectangles whose color differs from surrounding colors (see inset figure on this page), that touch the baseline x-axis, and whose
height is greater than 2 pixels or whose width is near the average width of the other candidate bars.

The classifier must learn to ignore common elements and
cannot handle hybrid charts. A bank of 1–vs–all binary clas-
sifiers (1 classifier per class) is more appropriate for a system
like ReVision. Each binary classifier computes whether the
image contains a visualization of a given class but does not
prevent the other classifiers from also labeling the image. A
hybrid chart for example might be labeled as both a bar and
line chart. We train a binary SVM for each category using in-
category images as positive examples and all others as nega-
tive examples. Results obtained using this method are given
in the rightmost columns of Tables 1 and 2. We achieve an
average accuracy of 96% for both our corpus and the Prasad
et al. corpus, and 94% for the Huang et al. corpus.

The total time for image feature learning, feature vector ex-
traction and classifier training on the Prasad et al. corpus was
144s on an Intel Xeon E5540 2.53GHz workstation. We clas-
sified new images in less than a second.

STAGE 2: MARK AND DATA EXTRACTION
After categorizing charts by type, ReVision proceeds to lo-
cate graphical marks and extract data. Our current imple-
mentation focuses on mark and data extraction for bar and
pie charts, two of the most popular chart types.

We have found that chart images from the web are often
heavily compressed and noisy. To reduce such artifacts, we
first apply the bilateral filter [27] to each bar or pie chart im-
age given by our classifier. The bilateral filter smooths away
small variations in color but retains sharp edges in the image.
Next we perform mark extraction, which locates graphical
marks such as bars and pie slices by fitting models of ex-
pected shapes to image regions. Finally, we perform data
extraction, which infers the mapping between data space and
image space, associates labels with marks, and then extracts
a data tuple for each mark.

Our algorithms are based on a few simplifying assumptions:

• Charts contain 2D marks and do not contain 3D effects.

• Each mark is solidly shaded using a single color. Marks
are not shaded using textures or steep gradients.

• Marks encode a data tuple, where at least one dimension is
quantitative and one dimension is nominal. For example,
in a bar chart the height of a bar represents a quantitative
value, while a nominal label often appears below the bar.

• Bar charts do not contain stacked bars.

• Bar chart axes appear at the left and bottom of the chart.

Based on these assumptions we develop simple, robust data
extraction algorithms that apply to a significant number of
real-world charts. For example, 42% (52/125) of the bar and
43% (53/125) of the pie charts in the Prasad et al. corpus [22]
follow these assumptions.

Mark Extraction
In this step, we locate the marks. For bar charts, we extract
the bars and axes. For pie charts, we extract the pie location
and slice borders. We discuss each in turn.

Bar Charts
Figure 5 shows the steps of our bar extraction algorithm. We
identify bars by looking for rectangular connected compo-
nents and then use the bar locations to extract the axes.

Find rectangular shapes. We first extract connected com-
ponents from the filtered image by grouping adjacent pixels
of similar color, i.e., those with an L2 norm less than 0.04 in
normalized RGB space (Figure 5b). We then identify rectan-
gular connected components by computing how much each
component fills its bounding box. If component pixels fill
more than 90% of the bounding box, we classify the com-
ponent as a rectangle; otherwise, we discard the component.
We also discard very small and thin rectangular components
(with width or height less than 2 pixels), as such small com-
ponents are unlikely to represent bars and are often due to
image artifacts (Figure 5c). However, some of these compo-
nents do represent very small bars, and we add them back to
our set of candidate bars later in the extraction procedure.

x

x

x x

Bar Background

xx

x

x

Remove background rectangles.
The remaining rectangles are
likely to include all data-encoding
bars, but may also include back-
ground rectangles formed by grid-
lines. In Figure 5c, the back-
ground rectangles are colored
white, while the true bars are orange or red. Background
rectangles are usually shaded with the same color as adja-
cent rectangles, since they adjoin other background rectan-
gles. On the other hand, bars tend to be shaded with different
colors than adjacent rectangles, due to bars being shaded dif-
ferently or gaps between bars. We test for background rect-
angles by comparing each rectangle’s color to the color of
four points outside the rectangle, as shown in the inset fig-
ure. We choose outside points by first finding the color of
pixels bordering the rectangle. We then move away from the
rectangle until we find a pixel whose color differs from the
border pixel, or is 5 pixels away from the rectangle. If any

(a) Candidate bars (d) y-gradient image(b) Width and height histograms (c) Histogram of top and bottom
y-values of candidate bars

y-‐
gr
ad

ie
nt
	 h
ist
og
ra
m

!"#$%&'()'*(#+(,%,-.'

Figure 6: Inferring the orientation of the chart and locating the baseline axis. (a) Candidate bars. (b) Histograms of widths and heights
of the bars. Note that the mode of the width histogram (red) is stronger than the mode of the height histogram (blue), indicating that the
chart is vertical. (c) To estimate the baseline axis, we build a histogram of the top and bottom y-values of candidate bars and treat the
mode of this histogram as our initial estimate of the baseline axis. (d) Many charts draw the baseline axis as a solid line. To refine the
axis location, we compute the y-gradient image of the initial chart and then sum the rows to create the y-gradient histogram. We treat
the peak of this histogram located nearest our initial estimate as the final baseline axis.

one of the outside points has the same color as the interior of
the rectangle, we classify the rectangle as part of the
background and discard it; otherwise, we classify it as a can-
didate bar.

Infer chart orientation. Bar charts may be oriented horizon-
tally or vertically. Since bars encode data using length, they
vary in one dimension and remain fixed in the other dimen-
sion; e.g., vertical bars vary in height but maintain a fixed
width. To identify which dimension varies most we build
histograms of the widths and heights of the candidate bars
and find the mode of each histogram (Figure 6b). The his-
togram with the strongest mode represents the constant di-
mension and gives us the orientation of the chart: vertical
if the width histogram has the strongest mode, horizontal if
the height histogram has the strongest mode. For brevity, we
will describe our algorithms assuming a vertical bar chart,
but our system works with horizontal bar charts using analo-
gous analysis techniques.

Baseline axis extraction. For most vertical bar charts the
baseline axis is the x-axis that touches the bottom of the bars.
However, in some bar charts (e.g., those with negative val-
ues), the top of some bars may touch the baseline instead of
the bottom of the bars. We therefore build a histogram of the
top and bottom y-values of the candidate bars. The mode of
this histogram represents the horizontal line that most bars
touch, and we use the mode as an initial estimate of the base-
line axis (Figure 6c). In practice we have found that noise,
antialiasing, and other pixel level artifacts in the charts can
sometimes lead to small inaccuracies (e.g., a few pixels) in
our estimate of the position of the baseline axis. However,
many charts draw the baseline x-axis as a solid line. Thus,
we further refine our baseline axis estimate by computing the
y-gradient of the original chart and summing the rows of this
image to form the y-gradient histogram (Figure 6d). We then
treat the peak of this histogram located nearest our estimated
baseline axis position as the final baseline position.

We do not extract the y-axis for bar charts. As we will show
in the data extraction section, we can extract data values for
the bars without knowing the location of the y-axis.

Recovering small bars. Recall that when initially finding
rectangular shapes we discard very small rectangles. How-
ever, we have found that in a few cases these rectangles may
be legitimate bars representing small values. Since bars in a

(a) (b) (c) (d)

Figure 7: A low scoring ellipse and three high scoring ellipses.
(a) A low scoring ellipse maximizes circularity, goodness of
fit and coverage. (b) An ellipse with high circularity score, (c)
high fit score, and (d) high coverage score.

vertical bar chart almost always have the same width, we re-
cover small bars by first computing the average width of the
remaining candidate bars and then re-introducing any bars
we previously discarded with the same width. Finally, we
discard any bar that does not touch the baseline axis. This
step leaves us with the final set of candidate bars (Figure 5d).

Pie Charts
Mark extraction in pie charts involves two phases. We first fit
an ellipse to the pie. We then unroll the pie and locate strong
differences in color to locate the pie sector edges.

Fitting the pie. Although most pie charts are circular, some
are elliptical. For greatest generality, we model the pie as an
ellipse. Our goal is to fit the ellipse to the set of pixels at the
edge of the pie. We start by thresholding the gradient magni-
tude of the chart to extract gradient pixels (i.e., pixels where
the color changes sharply), as these are likely to lie at edges.
We set the threshold such that gradient pixels comprise at
least 1/30 of the image pixels, as we empirically found this
parameter to be sufficient to fit the ellipse. We use the text
region tags to remove gradient pixels due to text.

While the set of gradient pixels is likely to include the pix-
els at the edge of the pie, it is also likely to include many
additional pixels where the color changes sharply. Thus, we
adapt the RANSAC [12] algorithm to robustly fit an ellipse
to the gradient pixels that are most likely to lie at the edge
of the pie while rejecting the other outlier pixels. Our algo-
rithm works as follows: we first randomly select four gradi-
ent pixels and compute an ellipse that passes through them
using Fitzgibbon et al.’s [13] direct least-squares ellipse fit-
ting method. We then find the set of gradient pixels that are
at most 10 pixels away from the ellipse and call them in-

(a) Chart (b) Unrolled ellipse and
difference image

(c) Unrolled pie using ellipses at
different radii

Figure 8: Unrolling the pie. Consider the inner ellipse marked
in (a). We unroll the ellipse by sampling points at constant
angular intervals (b). Peaks in the horizontal derivative occur
at sector edges. To improve edge estimation, we unroll mul-
tiple ellipses and sum their horizontal derivatives (c). Peaks
in the summed horizontal derivatives occur at sector edges.

liers. Next we check how well the ellipse explains the inliers
by computing an ellipse score, which is a weighted sum of
three components: the circularity of the ellipse (ratio of the
minor to major axis), how tightly it fits the inliers (average
distance of an inlier to the ellipse), and coverage (how much
of the ellipse is not near inliers). Lower scores indicate bet-
ter ellipses. Examples of high scoring ellipses are shown in
Figure 7. On each iteration, we keep the ellipse if its score is
lower than the previous lowest score. We iterate this process
20,000 times, which we experimentally found to work well
for the chart images in our corpora.

Locating sector edges. To extract the pie sector edges we
first “unroll the pie”: we sample an ellipse located inside the
pie at constant angular intervals to create a one-dimensional
ellipse image (Figure 8a). We then take the horizontal deriva-
tive of this ellipse image to identify strong changes in color.
Color changes indicate transitions between pie sectors, and
so the peaks in the derivative give us estimates for the sector
edge locations (Figure 8b). To increase robustness of our
estimates, we unroll multiple concentric ellipses and sum
their horizontal derivatives (Figure 8c). We identify peaks
in the summed derivatives by looking for zero crossings of
its first derivative, which we find by convolving the summed
derivatives with a derivative of a 3-pixel wide Gaussian. This
smoothing handles noise and pixel-level artifacts. Some pies
include thin borders between pie slices and the smoothing
aggregates the peaks at either edge of the border into a single
peak. Finally we retain all peaks that are more than one stan-
dard deviation above the mean of the summed derivatives.

Data Extraction
In the data extraction step, our goal is to recover the data en-
coded by each mark. We assume that a mark encodes a tuple
of data, where one dimension is quantitative and one is nom-
inal. We recover these tuples by using the geometry of the
extracted marks and the text region tags from the classifica-
tion stage. The output of our data extraction step is a table
that contains an ID and a data tuple for each mark.

Bar Charts

d=
60

m
=
11
9

X

To recover the data from a bar chart,
we first infer the mapping between
image space and data space. We
assume a linear mapping, but we
believe our data extraction tech-
niques are amenable to other map-
pings (e.g., logarithmic). The lin-
ear mapping is fully defined by (1)

a scaling factor between image space and data space, and (2)
the minimum value (usually the value at the x-axis).

We first recover the scaling factor by considering the y-axis
labels. We identify the y-axis labels that encode data values
by finding text regions that are equidistant from the leftmost
bar and line up vertically. We then estimate the scaling fac-
tor using each pair of value labels, as illustrated in the inset
figure. We assume the labels were recovered by our text ex-
traction procedure in the classification stage. The pixel dis-
tance between labels “5” and “10” is d = 60 pixels, and the
estimated scaling factor is 60/(10−5) = 12 pixels/data unit.
We compute the scaling factor for each pair of labels and take
the median as our final estimate. For this chart, the median
scaling factor across all label pairs is 12.5 pixels/data unit.

We then find the minimum value. We begin with the y-axis
label vertically closest to the x-axis. If this label is “0”, we
set the minimum value to 0. Otherwise, we compute the min-
imum value using a similar procedure to computing the scal-
ing factors. For each label, we estimate a minimum value by
using the y-distance (in pixels) from the label’s center to the
x-axis, and the chart scaling factor. For example, using the
location of the “10” label in the inset figure, we find the pixel
distance is m = 119. Assuming a chart scaling factor of 12.5,
we find X = 119/12.5−10 =−0.48. The actual minimum is
0; our result is not exact, but close. We set the chart’s mini-
mum value to the median of these minimum value estimates.
For this chart, the median minimum value was −0.2.

Finally, we assign a nominal value to each bar by associating
it with the nearest label below the baseline x-axis.

Pie Charts
Each sector of a pie encodes two data values: (1) a quantita-
tive value representing the percentage of the whole pie cov-
ered by the sector, and (2) a nominal value representing the
label of the sector. We compute the percentage as the angular
extent between the edges of the sector. We treat the text label
nearest the elliptical arc spanning the sector as the nominal
label for the sector.

Extraction Results
To test our extraction algorithms, we used the subset of
Prasad et al.’s [22] corpus that met our assumptions, which
resulted in 52 bar charts and 53 pie charts. For this test we
also assumed the chart type was known a priori, noting that
our classification stage provides this information.

To generate ground truth, we manually identified the marks
and generated data tuples for each mark based on nearby text
labels. We used sector labels (for pie charts) and axis labels
under the baseline (for bar charts) as the nominal values. If
a quantitative label was located near a mark we treated it as
the quantitative value of the mark (e.g., Figure 11 left and
Figure 12 left). Otherwise, we did not generate a ground truth
quantitative value. For pie charts, we converted quantitative
values to percentages. For bar charts, we directly used the
labeled values.

Using the ground truth data, we found that ReVision success-
fully extracted all the marks for 41/52 (79%) of bar charts

(a) Small bars are missed (c) Mislabeled bars due to rotated labels(b) Small sectors are missed (d) Mislabeled sectors due to callouts

Figure 9: Mark and data extraction failures. If marks are very small, our algorithms fail to extract them. For example, we fail to extract
the circled bar in (a) and the circled sector in (b). Data extraction failures occur when marks are mislabeled, e.g., (c) when labels are
rotated, or (d) if the chart places labels far from their associated marks, such as the circled marks.

and 33/53 (62%) of pie charts. Most mark extraction failures
occurred because we failed to detect small marks (Figure 9a,
b). Our algorithms are designed to treat small, thin regions as
decorative elements rather than marks that encode data. With
relatively small chart images (on average, 342×452 pixels in
our corpus) our algorithms can have trouble separating legit-
imate marks from these decorative elements.

Accurate data extraction depends on accurate mark extrac-
tion. Focusing on the charts for which we were able to ex-
tract all marks, we accurately extracted data tuples for 29/41
(71%) of the bar charts and 21/33 (64%) of the pie charts.
The most common error was incorrect association of a nom-
inal label to a mark. Our simple closest-label heuristic for
associating text labels with marks is especially prone to er-
rors when labels are rotated (Figure 9c), or when marks are
small and labeled with callouts (Figure 9d).

We could only generate quantitative ground truth for 12 of
the bar charts and 17 of the pie charts for which we extracted
the data. The remaining 17 bar charts and 4 pie charts did not
have quantitative labels. Examining this subset of charts, we
found that our extracted quantitative values were on average
within 7.7% of the original data for bar charts and within
4.6% of the original data for pie charts. Figures 11 and 12
show examples of successfully processed chart images.

Running times varied widely with chart size. On a 2.4Ghz
MacBook Pro with 2Gb of RAM, extracting marks and data
from an average sized pie chart took 1,225s. Extracting
marks and data from an average sized bar chart took 100s.

STAGE 3: REDESIGN
The output of the data extraction process is a relational data
table. ReVision uses this data to populate a gallery of alter-
native visualizations (Figure 10). We rank visual encodings
by effectiveness [20] and display a variety of visualizations
in a sorted gallery. ReVision chooses different visualizations
depending on the input chart type and extracted data. For the
input pie chart in Figure 10a, the gallery presents bar charts to
support part-to-part comparisons and divided bar, donut, and
treemap charts to support part-to-whole judgments [24]. For
the input bar chart in Figure 10b, ReVision generates a bar
chart and labeled dot plot to support comparison of individ-
ual values, and small dot and box plots to enable assessment
of the overall distribution. Note that the y-axis of the input
chart does not start at zero; ReVision’s bar chart correctly in-
corporates a zero baseline and displays the data range with
more appropriate charts (dot and box plots).

In addition, users can select and compare choices of font and
color palette. ReVision includes palettes designed for well-
spaced, perceptually discriminable colors [15, 26], as well
as palettes from popular charting tools and news magazines.
We generate charts using Protovis [2]; viewers can export
the Protovis definitions for subsequent modification or reuse.
Alternatively, users can export the data to create their own
charts using tools such as Microsoft Excel or Tableau [21].

LIMITATIONS AND FUTURE WORK

In its current state ReVision is suitable for generating alter-
native visualizations for many published bar and pie charts.
However, more work is needed to overcome limitations of
our classification and extraction methods.

With respect to classification, we currently employ a manual
approach to annotating text regions. To achieve fully auto-
matic processing of textual features, we would need to em-
ploy text identification and extraction algorithms. We do not
yet use the text itself for classification; it is possible that such
information might further improve classification accuracy.

Our mark and data extraction algorithms are ripe for addi-
tional research. Our extraction techniques do not yet handle
textured marks or 3D effects (e.g., due to gradient shading or
perspective) both of which are common in our corpora. As
3D effects and textural patterns have been shown to hamper
graphical perception [5, 11], it would be beneficial to enable
redesigns for such charts. We do not yet parse legends. This
causes failures on charts where the legend provides necessary
labeling information, as in grouped bar or pie charts with cat-
egorical color encodings documented in a legend. We also
plan to extend our extraction algorithms to additional chart
types, such as bubble, line, and donut charts.

Chart design often involves semantic data or connotations
beyond the raw data tuples. For example, the y-axis labels
in the leftmost chart of Figure 11 are ordered by increasing
educational level. By treating labels as nominal data, our re-
design does not respect this ordinal relation. Consequently,
our design gallery should support sorting data by both value
and the initial observed order. Stylistic choices such as color
and typography can also shape the message of a chart; our
redesigns do not always retain these messages. However,
by extracting the underlying data, our system creates an op-
portunity for redesign (both automatically and by hand) that
would otherwise be prohibitively difficult.

ReVision Gallery
Input Image (upload)

Data Table (export)
Label % of Total
Cash
Bonds
Stocks
Gold
Platinum
Silver

33%
22%
22%
11%
6%
6%

Font
Lucida Grande

Color
Tableau 20

0% 5% 10% 15% 20% 25% 30% 35% 40%

Cash

Bonds

Stocks

Gold

Platinum

Silver

0%

10%

20%

30%

40%

Cash Bonds Stocks Gold Platinum Silver

Cash

Bonds

Stocks

Gold

Platinum

Silver

Cash

Bonds

Stocks

Gold

Platinum
Silver

Cash

Bonds

Stocks

Gold

Platinum

Silver

ReVision Gallery
Input Image (upload)

Data Table (export)
Label Value
Kristy
Sandra
Amanda
Jayne
Kay
Devinder
Samantha
Maria
Hayley
Clare
Lisa
Kate
Cara
Caroline
Sarah
Joanne
Carol
Suzanne
Melissa

170
168
167
161
161
160
160
159
158
158
158
156
155
155
155
155
151
151
149

Font
Lucida Grande

Color
Economist

0 20 40 60 80 100 120 140 160 180

Kristy
Sandra
Amanda
Jayne
Kay

Devinder
Samantha

Maria
Hayley
Clare
Lisa
Kate
Cara

Caroline
Sarah
Joanne
Carol

Suzanne
Melissa

140 145 150 155 160 165 170

Kristy
Sandra

Amanda
Jayne
Kay

Devinder
Samantha

Maria
Hayley
Clare
Lisa

Kate
Cara

Caroline
Sarah

Joanne
Carol

Suzanne
Melissa

140 145 150 155 160 165 170

140 145 150 155 160 165 170

Figure 10: ReVision Design Galleries. Given an extracted data table, the gallery presents a variety of chart types, sorted by proposed
perceptual effectiveness rankings [20]. Users can also select and compare color schemes and typefaces.

CONCLUSION
We have presented ReVision, a system that classifies charts,
extracts their graphical marks and underlying data table, and
then applies perceptually-based design principles to automat-
ically redesign charts. Automated redesign is only one of
many possible applications for a system that extracts data
from charts. Our techniques could be used to enhance in-
formation retrieval systems with chart metadata or to support
screen-reading of charts for blind users.

ACKNOWLEDGMENTS
This research has been supported by the Akiko Yamazaki and Jerry
Yang Engineering Fellowship Fund, NSF grants IIS-1017745 &
IIS-1016920, the Stanford CS Dept., and a gift from Greenplum/EMC.

REFERENCES
1. A. Bosch, A. Zisserman, and X. Munoz. Scene classification

via pLSA. Computer Vision–ECCV, pages 517–530, 2006.
2. M. Bostock and J. Heer. Protovis: A graphical toolkit for

visualization. IEEE Trans Visualization & Comp Graphics,
15(6):1121–1128, 2009.

3. M. Boutell, C. Brown, and J. Luo. Review of the state of the
art in semantic scene classification. Rochester, NY, USA,
Tech. Rep, 2002.

4. D. Chen, J. Odobez, and H. Bourlard. Text detection and
recognition in images and video frames. Pattern Recognition,
37(3):595–608, 2004.

5. W. S. Cleveland. Visualizing Data. Hobart Press, 1993.
6. W. S. Cleveland and R. McGill. Graphical perception:

Theory, experimentation, and application to the development
of graphical methods. Journal of the American Statistical
Association, 79(387):531–554, 1984.

7. A. Coates, H. Lee, and A. Ng. An Analysis of Single-Layer
Networks in Unsupervised Feature Learning. Advances in
Neural Information Processing Systems, 2010.

8. C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20:273–297, 1995.

9. N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In IEEE CVPR, pages 886–893, 2005.

10. G. David. Distinctive image features from scale-invariant
keypoints. Intl Journal Comp Vision, 60(2):91–110, 2004.

11. S. Few. Show Me the Numbers: Designing Tables and
Graphs to Enlighten. Analytics Press, Berkeley, CA, 2004.

12. M. A. Fischler and R. C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image
analysis and automated cartography. Commun. ACM,
24:381–395, June 1981.

13. A. Fitzgibbon, M. Pilu, and R. Fisher. Direct least square
fitting of ellipses. IEEE Trans Pattern Analysis & Machine
Intelligence, 21(5):476 –480, 1999.

14. S. R. Garner. Weka: The waikato environment for knowledge
analysis. In In Proc. of the New Zealand Computer Science
Research Students Conference, pages 57–64, 1995.

15. M. Harrower and C. Brewer. Colorbrewer.org: an online tool
for selecting colour schemes for maps. The Cartographic
Journal, 40(1):27–37, 2003.

16. J. Heer and M. Bostock. Crowdsourcing graphical
perception: Using Mechanical Turk to assess visualization
design. In ACM CHI, pages 203–212, 2010.

17. W. Huang and C. L. Tan. A system for understanding imaged
infographics and its applications. In Proceedings of the 2007
ACM symposium on Document engineering, DocEng ’07,
pages 9–18, New York, NY, USA, 2007. ACM.

ReVision Gallery
Input Image (upload)

Data Table (export)

Label Value
High school grad. ...
Some college, no degree
9th-12th grade, no diploma
Bachelor's degree
Associate degree
Graduate or prof. degree
Less than 9th grade

3052
1792

963
681
615
515
408

Font
Lucida Grande

Color
Apple Spectrum

0 1000 2000 3000 4000

High school grad. ...
Some college, no degree

9th-12th grade, no diploma
Bachelor's degree
Associate degree

Graduate or prof. degree
Less than 9th grade

500 1000 1500 2000 2500 3000

High school grad. ...

Some college, no degree

9th-12th grade, no diploma

Bachelor's degree

Associate degree

Graduate or prof. degree

Less than 9th grade

500 1000 1500 2000 2500 3000

500 1000 1500 2000 2500 3000

ReVision Gallery
Input Image (upload)

Data Table (export)

Label Value
Win (16)
Lin (3)
Mac (1)

16
3
0

Font
Lucida Grande

Color
Apple Spectrum

0 2 4 6 8 10 12 14 16

Win (16)

Lin (3)

Mac (1)

0 2 4 6 8 10 12 14 16

Win (16)

Lin (3)

Mac (1)

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

ReVision Gallery
Input Image (upload)

Data Table (export)

Label Value
General Motors Corporation
DaimlerChrysler AG
Ford Motor Company
Volkswagen AG
BMW AG
Hyundai Motor Company
Nissan Motor Company
Mazda Motor Corporation
Isuzu Motors Ltd.
Porsche AG
Honda Motor Company

36
23
16
14

4
2
2
1
1
1
1

Font
Lucida Grande

Color
Apple Spectrum

0 10 20 30 40

General Motors Corporation
DaimlerChrysler AG

Ford Motor Company
Volkswagen AG

BMW AG
Hyundai Motor Company

Nissan Motor Company
Mazda Motor Corporation

Isuzu Motors Ltd.
Porsche AG

Honda Motor Company

-10 -5 0 5 10 15 20 25 30 35 40

General Motors Corporation
DaimlerChrysler AG

Ford Motor Company
Volkswagen AG

BMW AG
Hyundai Motor Company

Nissan Motor Company
Mazda Motor Corporation

Isuzu Motors Ltd.
Porsche AG

Honda Motor Company

-10 -5 0 5 10 15 20 25 30 35 40

-10 -5 0 5 10 15 20 25 30 35 40

Figure 11: Example ReVision redesigns for input bar charts.

ReVision Gallery
Input Image (upload)

Data Table (export)

Label % of Total
Social Security 21%
Military domestic ... 19%
Nonmilitary ... 18%
Medicare 14%
Other 12%
Interest on the debt 9%
Medicaid 7%

21%
19%
18%
14%
12%

9%
7%

Font
Lucida Grande

Color
Apple Spectrum

0% 5% 10% 15% 20%

Social Security 21%
Military domestic ... 19%

Nonmilitary ... 18%
Medicare 14%

Other 12%
Interest on the debt 9%

Medicaid 7%

0%

5%

10%

15%

20%

Social Security 21%Military domestic ... 19%Nonmilitary ... 18%Medicare 14%Other 12%Interest on the debt 9%Medicaid 7%

Social Security 21%

Military domestic ... 19%

Nonmilitary ... 18%

Medicare 14%

Other 12%

Interest on the debt 9%

Medicaid 7%

Social Security 21%

Military domestic ... 19%

Nonmilitary ... 18%

Medicare 14%

Other 12%

Interest on the debt 9%

Medicaid 7%

Social Security 21%

Military domestic ... 19%

Nonmilitary ... 18%Medicare 14%

Other 12%
Interest on the debt 9%

Medicaid 7%

ReVision Gallery
Input Image (upload)

Data Table (export)

Label % of Total
Space heating 53%
Lighting 14%
Auxiliary motors 11%
Plug load equipment 9%
Water heating 7%
Space cooling 6%

54%
14%
11%

9%
7%
6%

Font
Lucida Grande

Color
Apple Spectrum

0% 10% 20% 30% 40% 50% 60%

Space heating 53%

Lighting 14%

Auxiliary motors 11%

Plug load equipment 9%

Water heating 7%

Space cooling 6%

0%

10%

20%

30%

40%

50%

60%

Space heating 53%Lighting 14%Auxiliary motors 11%Plug load equipment 9%Water heating 7%Space cooling 6%

Space heating 53%

Lighting 14%

Auxiliary motors 11%

Plug load equipment 9%

Water heating 7%

Space cooling 6%

Space heating 53%

Lighting 14%

Auxiliary motors 11%

Plug load equipment 9%

Water heating 7%
Space cooling 6%

Space heating 53%

Lighting 14%

Auxiliary motors 11%Plug load equipment 9%

Water heating 7%Space cooling 6%

ReVision Gallery
Input Image (upload)

Data Table (export)

Label % of Total
Coleoptera
Other orders
Hemiptera
Hymenoptera
Orthoptera
Lepidoptera

33%
29%
11%
11%
10%

8%

Font
Lucida Grande

Color
Apple Spectrum

0% 10% 20% 30% 40%

Coleoptera

Other orders

Hemiptera

Hymenoptera

Orthoptera

Lepidoptera

0%

10%

20%

30%

40%

ColeopteraOther ordersHemipteraHymenopteraOrthopteraLepidoptera

Coleoptera

Other orders

Hemiptera

Hymenoptera

Orthoptera

Lepidoptera

Coleoptera

Other orders

Hemiptera

Hymenoptera

Orthoptera

Lepidoptera

Coleoptera

Other orders

Hemiptera

Hymenoptera

OrthopteraLepidoptera

Figure 12: Example ReVision redesigns for input pie charts.

18. W. Huang, C. L. Tan, and W. K. Leow. Model-based chart
image recognition. In J. Lladós and Y.-B. Kwon, editors,
Graphics Recognition, volume 3088 of Lecture Notes in
Computer Science, pages 87–99. Springer Berlin /
Heidelberg, 2004.

19. R. Liu, W. Huang, and C. L. Tan. Extraction of vectorized
graphical information from scientific chart images. In
Document Analysis & Recognition (ICDAR), pages 521–525,
2007.

20. J. D. Mackinlay. Automating the design of graphical
presentations of relational information. ACM Trans on
Graphics, 5(2):110–141, 1986.

21. J. D. Mackinlay, P. Hanrahan, and C. Stolte. Show me:
Automatic presentation for visual analysis. IEEE Trans
Visualization & Comp Graphics, 13(6):1137 –1144, 2007.

22. V. Prasad, B. Siddiquie, J. Golbeck, and L. Davis.
Classifying Computer Generated Charts. In Content-Based
Multimedia Indexing Workshop, pages 85–92. IEEE, 2007.

23. M. Shao and R. Futrelle. Recognition and classification of
figures in pdf documents. In W. Liu and J. Lladós, editors,
Graphics Recognition. Ten Years Review and Future
Perspectives, volume 3926 of Lecture Notes in Computer
Science, pages 231–242. Springer Berlin / Heidelberg, 2006.

24. D. Simkin and R. Hastie. An information-processing analysis
of graph perception. Journal of the American Statistical
Association, 82(398):454–465, 1987.

25. C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for
query, analysis, and visualization of multidimensional
relational databases. IEEE Trans Visualization & Comp
Graphics, 8(1):52 –65, 2002.

26. M. Stone. A Field Guide to Digital Color. A. K. Peters, 2003.
27. C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, pages 839 –846, Jan. 1998.
28. E. R. Tufte. The Visual Display of Quantitative Information.

Graphics Press, 1983.
29. J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo.

Evaluating bag-of-visual-words representations in scene
classification. In Workshop on Multimedia Information
Retrieval, pages 197–206, 2007.

30. L. Yang, W. Huang, and C. Tan. Semi-automatic ground truth
generation for chart image recognition. In Document
Analysis Systems VII, volume 3872 of Lecture Notes in
Computer Science, pages 324–335. 2006.

31. Y. P. Zhou and C. L. Tan. Hough technique for bar charts
detection and recognition in document images. In Intl Conf
on Image Processing, pages 605–608, sept. 2000.

