
Proton: Multitouch Gestures as Regular Expressions
Kenrick Kin1,2 Björn Hartmann1 Tony DeRose2 Maneesh Agrawala1

1University of California, Berkeley 2Pixar Animation Studios

ABSTRACT
Current multitouch frameworks require application develop-
ers to write recognition code for custom gestures; this code is
split across multiple event-handling callbacks. As the num-
ber of custom gestures grows it becomes increasingly difficult
to 1) know if new gestures will conflict with existing ges-
tures, and 2) know how to extend existing code to reliably
recognize the complete gesture set. Proton is a novel frame-
work that addresses both of these problems. Using Proton,
the application developer declaratively specifies each gesture
as a regular expression over a stream of touch events. Pro-
ton statically analyzes the set of gestures to report conflicts,
and it automatically creates gesture recognizers for the en-
tire set. To simplify the creation of complex multitouch ges-
tures, Proton introduces gesture tablature, a graphical nota-
tion that concisely describes the sequencing of multiple inter-
leaved touch actions over time. Proton contributes a graphi-
cal editor for authoring tablatures and automatically compiles
tablatures into regular expressions. We present the architec-
ture and implementation of Proton, along with three proof-
of-concept applications. These applications demonstrate the
expressiveness of the framework and show how Proton sim-
plifies gesture definition and conflict resolution.

Author Keywords
Multitouch; UI framework; Regular expressions; Conflict
detection; Gesture tablature editor

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques;
H.5.2 Information Interfaces & Presentation: User Interfaces

INTRODUCTION
Multitouch application developers frequently design and im-
plement custom gestures from scratch. Like mouse-based
GUI frameworks, current multitouch frameworks generate
low-level touch events (e.g., touch-down, touch-move, touch-
up) and deliver them to widgets or objects in the scene.
A multitouch gesture is a sequence of low-level events on
scene objects such as touch1-down-on-object1, touch1-move,
touch2-down-on-object2, Unlike mouse gestures which
track the state of a single point of interaction, multitouch ges-
tures often track many points of contact in parallel as they
each appear, move and disappear. Writing robust recognition
code for sets of multitouch gestures is challenging for two
main reasons:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1. Proton represents a gesture as a regular expression describ-
ing a sequence of touch events. Using Proton’s gesture tablature, devel-
opers can design a multitouch gesture graphically by arranging touch
sequences on horizontal tracks. Proton converts the tablature into a reg-
ular expression. When Proton matches the expression with the touch
event stream, it invokes callbacks associated with the expression.

1) Multitouch gesture recognition code is split across many
locations in the source. Today, developers must write sepa-
rate callbacks to handle each low-level touch event for each
scene object. Implementing a gesture requires tracking the
sequence of events that comprise the gesture across disjoint
callbacks. Consider a gesture in which the user must simulta-
neously touch two scene objects to connect them as nodes in
a graph. The developer must maintain the state of the gesture
across callbacks for each object and communicate this state
via messages or global variables. Such stack ripping [1] re-
sults in complicated and hard-to-read “callback soup.” Break-
ing up gesture code makes it difficult to not only express a
gesture, but also to understand and modify the gesture later.

2) Multiple gestures may be based on the same initiating se-
quence of events. Consider two gestures, one for rotating and
one for scaling objects in a 2D scene. Both gestures require
the first touch to fall on an object to select it, while the motion
of a second touch indicates the transformation. At the level of
touch events, the two sequences are identical and the devel-
oper must write disambiguation logic to resolve this conflict
within the respective callbacks. Yet, such gesture conflicts
may not even be apparent until a user performs one of the
gestures at runtime and the application responds with an un-
intended operation. In large applications that support many
gestures, identifying and managing such gesture conflicts can
be extremely difficult.

These two sources of complexity – splitting gesture recog-
nition code across callbacks and conflicts between similar
gestures – make it especially difficult to maintain and extend
multitouch applications.

To help alleviate these issues, we present Proton, a new multi-
touch framework that allows developers to declaratively spec-

ify the sequence of touch events that comprise an entire ges-
ture using a single regular expression. Proton automatically
manages the underlying state of the gesture; the developer
writes one callback function that is invoked whenever the
stream of input events matches the gesture’s regular expres-
sion. To provide visual feedback over the course of a gesture,
the developer can optionally define additional callbacks that
are invoked whenever the input stream matches expression
prefixes. Our approach significantly reduces splitting of the
interaction code as developers do not have to manually man-
age state or write a callback for every touch event.

Declaratively specifying gestures as regular expressions also
allows Proton to statically analyze the gesture expressions to
identify the conflicts between them. Instead of having to ex-
tensively test for such conflicts at runtime, our static analyzer
tells the developer exactly which sets of gestures conflict with
one another at compile time. The developer can then choose
to write the appropriate disambiguation logic or modify the
gestures to avoid conflicts.

Complex regular expressions can be difficult to author, read,
and maintain [5]. In regular expressions that recognize multi-
touch events, the interleaving of multiple, simultaneous touch
events in a single event stream exacerbates this complexity.
To help developers build gesture expressions, Proton offers
gesture tablature, a graphical notation for multitouch ges-
tures (Figure 1). The tablature uses horizontal tracks to de-
scribe touch sequences of individual fingers. Using Proton’s
tablature editor, developers can author a gesture by spatially
arranging touch tracks and graphically indicating when to ex-
ecute callbacks. Proton automatically compiles the gesture
tablature into the corresponding regular expression.

Our implementation of Proton makes two simplifying as-
sumptions that limit the types of gestures it supports. First, it
does not consider touch trajectory in gesture declarations. We
focus on gestures defined by the sequencing of multiple touch
events and the objects hit by those touches. As in current mul-
titouch frameworks, the developer may independently track
the trajectory of a touch, but our system does not provide
direct support. Second, Proton focuses on single users who
perform one gesture at a time. However, each gesture can be
complex, using multiple fingers and hands, and may include
temporal breaks (e.g., double-taps). We discuss an extension
to multi-user scenarios, but have not yet implemented it.

We demonstrate the expressivity of Proton with implementa-
tions of three proof-of-concept applications: a shape manipu-
lation application, a sketching application and a unistroke text
entry technique [43]. Using these examples, we show that
Proton significantly reduces splitting of gesture recognition
code and that it allows developers to quickly identify and re-
solve conflicts between gestures. Proton increases maintain-
ability and extensibility of multitouch code by simplifying the
process for adding new gestures to an existing application.

RELATED WORK
The regular expressions used by Proton are closely related
to finite state machines: regular expressions describe regular
languages; finite state machines accept such languages [39].

We briefly summarize prior research on modeling user input
as state machines and formal languages. We then describe
related work on multitouch event-handling, declarative spec-
ification of multitouch gestures and techniques for handling
input ambiguity.

Modeling Input with State Machines & Formal Languages
Since Newman’s pioneering work on Reaction Handler [30],
researchers have modeled user interactions using formalisms
such as state machines [2, 14, 15, 29], context-free gram-
mars [6, 16, 17] and push-down automata [33]. These for-
malisms are used as specification tools, e.g., for human fac-
tors analysis [6]; to describe interaction contexts [18, 37]; and
to synthesize working interface implementations [33]. A re-
curring theme in early work is to split user interface imple-
mentation into two parts: the input language (the set of pos-
sible user interface actions); and the application semantics
for those actions. The input language is often defined using
state machines or grammars; the semantics are defined in a
procedural language.

Proton takes a conceptually similar approach: it uses regu-
lar expressions as the underlying formalism for declaratively
specifying sequences of touch events that comprise a gesture.
Callbacks to procedural code are associated with positions
within the expression. Proton goes beyond the earlier for-
malisms by also providing a static analyzer to detect conflicts
between gestures as well as a graphical notation to further
simplify the creation of gestures.

Multitouch Event-Handling
With the recent rise of multitouch cellphones and tablet com-
puters, hardware manufacturers have created a variety of in-
teraction frameworks [3, 12, 28] to facilitate application de-
velopment. These frameworks inherit the event-based call-
back [32] structure of mouse-based GUI frameworks. While
commercial frameworks usually support a few common inter-
actions natively (e.g., pinch-to-zoom), implementing a new
gesture requires processing low-level touch events. Open-
source multitouch frameworks similarly require developers to
implement gestures via low-level event-handling code [8, 10,
13, 31, 41]. Lao et al. [23] presents a state-transition diagram
for detecting multitouch gestures from touch events. This dia-
gram serves as a recipe for detecting simple gestures, but the
developer must still process the touch events. Many frame-
works are written for specific hardware devices. Kammer
et al. [19] describe the formal properties shared by many of
these frameworks. Echtler and Klinker [9] propose a layered
architecture to improve multitouch software interoperability;
their design also retains the event callback pattern. However,
none of these multitouch frameworks give developers a direct
and succinct way to describe a new gesture.

Describing Gestures Declaratively
Researchers have used formal grammars to describe multi-
touch gestures. CoGesT [11] describes conversational hand
gestures using feature vectors that are formally defined by a
context-free grammar. Kammer et al. [20] present GeForMT,
a formal abstraction of multitouch gestures also using a
context-free grammar. Their grammars describe gestures at

a high level and do not provide recognition capabilities. Ges-
ture Coder [24] recognizes multitouch gestures via state ma-
chines, which are authored by demonstration. In contrast,
Proton allows developers to author gestures symbolically us-
ing the equivalent regular expressions.

In multitouch frameworks such as GDL [21] and Midas [35]
developers declaratively describe gestures using rule-based
languages based on spatial and temporal attributes (e.g., num-
ber of touches used, the shape of the touch path, etc.). Be-
cause these rule-based frameworks are not based on an un-
derlying formalism such as regular expressions, it is difficult
to reason about gesture conflicts at compile time. The devel-
oper must rely on heavy runtime testing to find such conflicts.
In contrast to all previous techniques, Proton provides static
analysis to automatically detect conflicts at compile time.

Handling Input Ambiguity
Mankoff et al. [25, 26] present toolkit-level support for han-
dling input ambiguities, which arise when there are multi-
ple valid interpretations of a user’s actions. Mediators apply
resolution strategies to choose between the different interpre-
tations either automatically or with user intervention. More
recently Schwarz et al. [36] present a framework that tracks
multiple interpretations of a user’s input. The application’s
mediator picks the most probable interpretation based on a
likelihood metric provided by the developer. Proton borrows
this strategy of assigning scores to interpretations and apply-
ing the highest scoring interpretation. In addition, Proton stat-
ically analyzes the gesture set to detect when ambiguities, or
conflicts, can occur between them. Such compile-time con-
flict detection can aid the developer in scoring the interpreta-
tions and in designing the gestures to reduce ambiguities.

A MOTIVATING EXAMPLE
We begin with a motivating example that demonstrates the
complexity of implementing a custom gesture using Apple’s
iOS [3], which is structurally similar to many commercial
multitouch frameworks. We later show how writing the same
example in Proton is significantly simpler, making it easier to
maintain and extend the interaction code.

As the user interacts with a multitouch surface, iOS contin-
uously generates a stream of low-level touch events corre-
sponding to touch-down, touch-move and touch-up. To de-
fine a new gesture the developer must implement one callback
for each of these events, touchesBegan(), touchesMoved() and
touchesEnded(), and register them with objects in the scene.
For each touch event in the stream, iOS first applies hit-testing
to compute the scene object under the touch point and then in-
vokes that object’s corresponding callback.

It is the developer’s responsibility to track the state of the
gesture across the different callbacks. Consider a two-touch
rotation gesture where both touches must lie on the object
with the pseudocode on the following column.

The gesture recognition code must ensure that the gesture
begins with exactly two touches on the same object (lines
5-10), that rotation occurs when both touches are moving
(lines 11-14) and that the gesture ends when both touches are

iOS: rotation gesture
1: shape.addRecognizer(new Rotation)

2: class Rotation
3: gestureState← possible /*gesture state*/
4: touchCount← 0

5: function touchesBegan()
6: touchCount← touchCount+ 1
7: if touchCount == 2 then
8: gestureState← began
9: else if touchCount > 2 then

10: gestureState← failed

11: function touchesMoved()
12: if touchCount == 2 and gestureState != failed then
13: gestureState← continue
14: /*compute rotation*/

15: function touchesEnded()
16: touchCount← touchCount− 1
17: if touchCount == 0 and gestureState != failed then
18: gestureState← ended
19: /*perform rotation cleanup*/

lifted (lines 15-19). Counting touches and maintaining ges-
ture state adds significant complexity to the recognition code,
even for simple gestures. This state management complexity
can make it especially difficult for new developers to decipher
the recognition code.

Suppose a new developer decides to relax the rotation gesture,
so that the second touch does not have to occur on the object.
The developer must first deduce that the gesture recognition
code must be re-registered to the canvas containing the ob-
ject in order to receive all of the touch events, including those
outside the object. Next the developer must modify the touch-
esBegan() function to check that the first touch hits the object,
and set the gesture state to failed if it does not. While neither
of these steps is difficult, the developer cannot make these
changes without fully understanding how the different call-
back functions work together to recognize a single gesture.
As the number of gestures grows, understanding how they all
work together and managing all the possible gesture states
becomes more and more difficult.

USING PROTON
Like iOS, Proton is an event-based framework. But, instead
of writing callbacks for each low-level touch event, develop-
ers work at a higher level and declaratively define gestures as
regular expressions comprised of sequences of touch events.

Representing Touch Events
A touch event contains three key pieces of information: the
touch action (down, move, up), the touch ID (first, second,
third, etc.) and the type of the object hit by the touch (shape,
background, etc.). Proton represents each event as a symbol

E
OType

TID

where E ∈ {D,M,U} is the touch action, TID is the touch
ID that groups events belonging to the same touch, and OType

Figure 2. Regular expressions for translation, rotation and scale ges-
tures. The thumbnails illustrate the user’s actions corresponding to the
colored symbols for the scale gesture.

is the type of the object hit by the touch. For example, Dstar
1

represents first-touch-down-on-object-star and M bg
2 repre-

sents second-touch-move-on-object-background. As we ex-
plain in the implementation section, Proton works with the
multitouch hardware and hit-testing code provided by the de-
veloper to create a stream of these touch event symbols.

Gestures as Regular Expressions
The developer can define a gesture as a regular expression
over these touch event symbols. Figure 2 shows the regular
expressions describing three shape manipulation operations:

Translation: First touch down on a shape to select it (red
symbol). The touch then moves repeatedly (green symbol).
Finally, the touch lifts up to release the gesture (blue symbol).

Rotation: First touch down on a shape followed by a sec-
ond touch down on the shape or canvas (red symbols). Then
both touches move repeatedly (green symbols). Finally, the
touches lift up in either order (blue symbols).

Scale: First touch down on a shape followed by a second
touch down on the shape or canvas (red symbols). Then
both touches move repeatedly (green symbols). Finally, the
touches lift up in either order (blue symbols).

Describing a gesture as a regular expression both simplifies
and unifies the gesture recognition code. The Proton pseu-
docode required to implement the general rotation gesture
(with a second touch starting on a shape or background) is:

Proton: rotation gesture
/*indices:1 2 3 4 5 6 7 8 9 10 11*/

1: gest : Ds
1M

s
1*Da

2 (Ms
1 |Ma

2)* (Us
1M

a
2 *Ua

2 |Ua
2M

s
1*Us

1)
2: gest.addTrigger(rotate(), 4)
3: gest.addTrigger(rotate(), 5)

/*compute rotation in rotate() callback*/
4: gest.finalTrigger(endRotate())

/*perform rotation cleanup in endRotate() callback*/
5: gestureMatcher.add(gest)

Instead of counting touches and managing gesture state, the
entire gesture is defined as a single regular expression on
line 1. Unlike iOS, Proton handles all of the bookkeeping
required to check that the stream of touch events matches the
regular expression. The developer associates callbacks with

Figure 3. (a) Tablature for a two-touch rotation gesture. (b) Tablature
for a strikethrough delete gesture. (c) Tablature for double tap zoom.

trigger locations within the expression. The second parame-
ters in lines 2 and 3 create triggers at the 4th and 5th symbols
of the expression. The application invokes the rotate() call-
back each time the event stream matches the regular expres-
sion up to the trigger location. In this case the match occurs
when the two touches are moving; the callback can provide
on-screen feedback. The location for the final trigger (line 4)
is implicitly set to the end of the gesture expression.

To change a gesture’s touch sequence the developer simply
modifies the regular expression. For example, to require users
to place the second touch on a shape, the developer need only
change the regular expression so that the second touch down
must occur on a shape rather than a shape or background. In
iOS, making this change requires much deeper understanding
of the state management in the gesture recognition code.

Gesture Tablature
When a gesture includes multiple fingers each with its own
sequence of touch-down, touch-move and touch-up events,
the developer may have to carefully interleave the parallel
events in the regular expression. To facilitate authoring of
such expressions, Proton introduces gesture tablature (Fig-
ure 3). This notation is inspired by musical notations such
as guitar tablature and step sequencer matrices. Developers
graphically indicate a touch event sequence using horizon-
tal touch tracks. Within each track, a green node represents a
touch-down event, a red node represents a touch-up event and
a black line represents an arbitrary number of touch-move
events. Vertical positions of nodes specify the ordering of
events between touch tracks: event nodes to the left must oc-
cur before event nodes to the right, and when two or more
event nodes are vertically aligned the corresponding events
can occur in any order.

Using Proton’s interactive tablature editor, developers can
create independent touch tracks and then arrange the tracks

into a gesture. We believe that this separation of concerns
facilitates authoring as developers can first design the event
sequence for each finger on a separate track and then con-
sider how the fingers must interact with one another. Devel-
opers can also graphically specify trigger locations and call-
backs. Proton converts the graphical notation into a regular
expression, properly interleaving parallel touch events. Fi-
nally, Proton ensures that the resulting regular expressions are
well formed.

For example, Figure 3a shows the tablature for a two-touch
rotation gesture where the first touch must hit some shape,
the second touch can hit anywhere, and the touches can be
released in any order. Proton converts the vertically aligned
touch-up nodes into a disjunction of the two possible event
sequences: (Us

1M
a
2 *Ua

2 |Ua
2M

s
1*Us

1). Thus, Proton saves the
developer the work of writing out all possible touch-up order-
ings. We describe the algorithm for converting tablatures into
regular expressions in the implementation section.

Proton inserts touch-move events between touch-down and
touch-up events when converting tablature into regular ex-
pressions. To indicate that the hit target must change during
a move, the developer can insert explicit touch-move nodes.
Consider a strikethrough gesture to delete shapes that starts
with a touch-down on the background, then moves over a
shape, before terminating on the background again. The cor-
responding tablature (Figure 3b) includes a gray node with
OType = s indicating that at least one move event must oc-
cur on a shape and a white node with OType = b, indicating
that the touch may move onto the background before the fi-
nal touch-up on the background. Developers can also express
multiple recurring touches (e.g., a double tap), by arranging
multiple touch tracks on a single horizontal line (Figure 3c).

A local trigger arrow placed directly on a touch track asso-
ciates a callback only with a symbol from that track (Fig-
ure 1). A global trigger arrow placed on its own track (e.g.,
rotate() in Figure 3a) associates the callback with all aligned
events (down, move or up). A final trigger is always invoked
when the entire gesture matches. To increase expressivity
our tablature notation borrows elements from regular expres-
sion notation. The developer can use parentheses to group
touches, Kleene stars to specify repetitions and vertical bars
to specify disjunctions. Figure 1 shows an example where the
user can place one touch on a button and perform repeated
actions with one or two additional touches.

Static Analysis of Gesture Conflicts
Gesture conflicts arise when two gestures begin with the same
sequence of touch events. Current multitouch frameworks
provide little support for identifying such conflicts and devel-
opers often rely on runtime testing. However, exhaustive run-
time testing of all gestures in all application states can be pro-
hibitively difficult. Adding or modifying a gesture requires
retesting for conflicts.

Proton’s static analysis tool identifies conflicts between ges-
ture expressions at compile time. Given the regular expres-
sions of any two gestures, this tool returns the extent to which
the gestures conflict, in the form of a longest prefix expression

Figure 4. The Proton architecture. The application developer’s respon-
sibilities are shown in blue.

that matches both gestures. For example, when comparing
the translation and rotation gestures (Figure 2), it returns the
expression Ds

1M
s
1*, indicating that both gestures will match

the input stream whenever the first touch lands on a shape
and moves. When the second touch appears, the conflict is
resolved as translation is no longer possible.

Once the conflict has been identified the developer can either
modify one of the gestures to eliminate the conflict or write
disambiguation code that assigns a confidence score to each
interpretation of the gesture as described in the next section.

IMPLEMENTATION
The Proton runtime system includes three main components
(Figure 4). The stream generator converts raw input data
from the hardware into a stream of touch events. The ges-
ture matcher compares this stream to the set of gesture ex-
pressions defined by the developer and emits a set of candi-
date gestures that match the stream. The gesture picker then
chooses amongst the matching gestures and executes any cor-
responding callback. Proton also includes two compile-time
tools. The tablature conversion algorithm generates regular
expressions from tablatures and the static analysis tool iden-
tifies gesture conflicts.

Stream Generator
Multitouch hardware provides a sequence of time-stamped
touch points. Proton converts this sequence into a stream of
touch event symbols (Figure 5 Left). It groups touches based
on proximity in space and time, and assigns the same TID for
touch events that likely describe the path of a single finger.
Proton also performs hit-testing to determine the OType for
each touch. It is the developer’s responsibility to specify the
set of object types in the scene at compile-time and provide
hit-testing code.

When the user lifts up all touches, the stream generator
flushes the stream to restart matching for subsequent gestures.
Some gestures may require all touches to temporarily lift up
(e.g., double tap, Figure 3c). To enable such gestures, devel-
opers can specify a timeout parameter to delay the flush and
wait for subsequent input. To minimize latency, Proton only
uses timeouts if at least one gesture prefix is matching the
current input stream at the time of the touch release.

Gesture Matcher
The gesture matcher keeps track of the set of gestures that
can match the input stream. Initially, when no touches are
present, it considers all gestures to be possible. As it re-
ceives new input events, the matcher compares the current
stream against the regular expression of each candidate ges-
ture. When a gesture no longer matches the current stream the

Figure 5. Left: Proton generates a touch event stream from a raw sequence of touch points given by the hardware. (a) The user touches a shape,
(b) moves the touch and (c) lifts the touch. The gesture matcher renumbers unique TIDs produced by the stream generator to match the gesture
expressions. Right: The gesture matcher then sequentially matches each symbol in the stream to the set of gesture expressions. Translation, rotation,
and scale all match when only a single finger is active, (a) and (b), but once the touch is lifted only translation continues to match, (c).

matcher removes it from the candidate set. At each iteration
the matcher sends the candidate set to the gesture picker.

In a gesture regular expression, TID denotes the touch by the
order in which it appears relative to the other touches in the
gesture (i.e., first, second, third, ... touch within the gesture).
In contrast, the TIDs in the input event stream are globally
unique. To properly match the input stream with gesture
expressions, the matcher first renumbers TIDs in the input
stream, starting from one (Figure 5 Left). However, simple
renumbering cannot handle touch sequences within a Kleene
star group, e.g., (Da

1M
a
1 *Ua

1)*, because such groups use the
same TID for multiple touches. Instead we create a priority
queue of TIDs and assign them in ascending order to touch-
down symbols in the input stream. Subsequent touch-move
and touch-up symbols receive the same TID as their asso-
ciated touch-down. Whenever we encouter a touch-up we
return its TID to the priority queue so it can be reused by
subsequent touch-downs.

The gesture matcher uses regular expression derivatives [7] to
detect whether the input stream can match a gesture expres-
sion. The derivative of a regular expression R with respect
to a symbol s is a new expression representing the remain-
ing set of strings that would match R given s. For example,
the derivative of abb∗ with respect to symbol a is the regular
expression bb∗ since bb∗ describes the set of strings that can
complete the match given a. The derivative with respect to
b is the empty set because a string starting with b can never
match abb∗. The derivative of a∗ with respect to a is a∗.
The matcher begins by computing the derivative of each ges-
ture expression with respect to the first touch event in the
input stream. For each subsequent event, it computes new
derivatives from the previous derivatives, with respect to the
new input event. At any iteration, if a resulting derivative
is the empty set, the gesture expression can no longer be
matched and the corresponding gesture is removed from the
candidate set (Figure 5 Right). If the derivative is the empty
string, the gesture expression fully matches the input stream
and the gesture callback is forwarded to the gesture picker
where it is considered for execution. If the frontmost symbol
of a candidate expression is associated with a trigger, and the
derivative with respect to the current input symbol is not the
empty set, then the input stream matches the gesture prefix
up to the trigger. Thus, the matcher also forwards the trigger
callback to gesture picker. Finally, whenever the stream gen-
erator flushes the event stream, Proton reinitializes the set of
possible gestures and matching begins anew.

One Gesture at a Time Assumption: The gesture matcher
relies on the assumption that all touch events in the stream
belong to a single gesture. To handle multiple simultaneous
gestures, the matcher would have to consider how to assign
input events to gestures and this space of possible assign-
ments grows exponentially in the number of gestures and in-
put events. As a result of this assumption Proton does not
allow a user to perform more than one gesture at a time (e.g.,
a different gesture with each hand). However, if the devel-
oper can group the touches (e.g., by location in a single-user
application or by person [27] in a multi-user application), an
instance of the gesture matcher could run on each group of
touches to support simultaneous, multi-user interactions.

Supporting one interaction at a time might not be a limitation
in practice for single-user applications. Users only have a
single locus of attention [34], which makes it difficult to per-
form multiple actions simultaneously. Moreover, many popu-
lar multitouch applications for mobile devices, and even large
professional multitouch applications such as Eden [22], only
support one interaction at a time.

Gesture Picker
The gesture picker receives a set of candidate gestures and
any associated callbacks. In applications with many gestures
it is common for multiple gesture prefixes to match the event
stream, forming a large candidate set. In such cases, addi-
tional information, beyond the sequence of touch events, is
required to decide which gesture is most likely.

In Proton, the developer can provide the additional informa-
tion by writing a confidence calculator function for each ges-
ture that computes a likelihood score between 0.0 and 1.0.
In computing this score, confidence calculators can consider
many attributes of the matching sequence of touch events.
For example, a confidence calculator may analyze the timing
between touch events or the trajectory across move events.
Consider the conflicting rotation and scale gestures shown in
Figure 2. The confidence calculator for scale might check
if the touches are moving away from one another while the
confidence calculator for rotation might check if one finger is
circling the other. The calculator can defer callback execution
by returning a score of zero.

The gesture picker executes confidence calculators for all of
the gestures in the candidate set and then invokes the asso-
ciated callback for the gesture with the highest confidence
score. In our current implementation it is the responsibility
of the developer to ensure that exactly one confidence score is

Figure 6. Our tablature conversion algorithm sweeps left-to-right and
emits symbols each time it encounters a touch-down or touch-up node
(vertical dotted lines). We distinguish three cases: (a) non-aligned nodes;
(b) aligned touch-up nodes; (c) aligned touch-down nodes.

highest. We leave it to future work to build more sophisticated
logic into the gesture picker for disambiguating amongst con-
flicting gestures. Schwarz et al.’s [36] probabilistic disam-
biguation technique may be one fruitful direction to explore.

One common use of trigger callbacks is to provide visual
feedback over the course of a gesture. However, as con-
fidence calculators receive more information over time, the
gesture with the highest confidence may change. To prevent
errors due to premature commitment to the wrong gesture,
developers should ensure that any effects of trigger callbacks
on application state are reversible. Developers may choose
to write trigger callbacks so that they do not affect global ap-
plication state or they may create an undo function for each
trigger callback to restore the state. Alternatively, Proton sup-
ports a parallel worlds approach. The developer provides a
copy of all relevant state variables in the application. Proton
executes each valid callback regardless of confidence score
in a parallel version of the application but only displays the
feedback corresponding to the gesture with the highest confi-
dence score. When the input stream flushes, Proton commits
the the application state corresponding to the gesture with the
highest confidence score.

Tablature to Expression Conversion
To convert a gesture tablature into a regular expression, we
process the tablature from left to right. As we encounter a
touch-down node, we assign the next available TID from the
priority queue (see Gesture Matcher subsection) to the entire
touch track. To emit symbols we sweep from left to right and
distinguish three cases. When none of the nodes are verti-
cally aligned we output the corresponding touch symbol for
each node followed by a repeating disjunction of move events
for all active touch tracks (Figure 6a). When touch-up nodes
are vertically aligned we emit a disjunction of the possible
touch-up orderings with interleaved move events (Figure 6b).
When touch-down nodes are vertically aligned we first com-
pute the remainder of the expressions for the aligned touch
tracks. We then emit a disjunction of all permutations of TID

assignments to these aligned tracks (Figure 6c). We output
the regular expression symbols (,), |, or ∗ as we encounter
them in the tablature. If we encounter a global trigger we as-
sociate it with all symbols emitted at that step of the sweep. If
we encounter a local trigger we instead associate it with only
the symbols emitted for its track.

Static Analysis Algorithm
Two gestures conflict when a string of touch event symbols
matches a prefix of both gesture expressions. We call such a

Figure 7. Top: The intersection of NFAs for the expressions abb∗c and
ab∗d does not exist because the start state 11 cannot reach the end state
43. Bottom: Treating states 22 and 32 each as end states, converting
the NFAs to regular expressions yields a and abb∗. The longest common
prefix expression is the union of the two regular expressions.

string a common prefix. We define the regular expression that
describes all such common prefixes as the longest common
prefix expression. Our static analyzer computes the longest
common prefix expression for any pair of gesture expressions.

To compute the longest common prefix expression we first
compute the intersection of two regular expressions. The in-
tersection of two regular expressions is a third expression that
matches all strings that are matched by both original expres-
sions. A common way to compute the intersection is to first
convert each regular expression into a non-deterministic fi-
nite automata (NFA) using Thompson’s Algorithm [42] and
then compute the intersection of the two NFAs. To construct
the longest common prefix expression we mark all reachable
states in the intersection NFA as accept states and then con-
vert this NFA back into a regular expression.

We compute the intersection of two NFAs [39] as follows.
Given an NFA M with states m1 to mk and an NFA N with
states n1 to nl, we construct the NFA P with the cross prod-
uct of states minj for i = [1, k] and j = [1, l]. We add an
edge between minj and mi′nj′ with transition symbol r if
there exists an edge between mi and mi′ in M and an edge
between nj and nj′ in N , both with the transition symbol r.
Since we only care about states in P that are reachable from
its start state m1n1, we only add edges to states reachable
from the start state. Unreachable states are discarded. Sup-
pose that mk and nl were the original end states in M and N
respectively, but that it is impossible to reach the cross prod-
uct end state mknl. In this case the intersection does not ex-
ist (Figure 7 Top). Nevertheless we can compute the longest
common prefix expression. We sequentially treat each state
reachable from P ’s start state m1n1 as the end state, convert
the NFA back into a regular expression, and take the disjunc-
tion of all resulting expressions (Figure 7 Bottom). The NFA
to regular expression conversion is detailed in Sipser [39].

APPLICATIONS
To demonstrate the expressivity of our framework, we im-
plemented three proof-of-concept applications, each with a
variety of gestures.

Figure 8. The shape manipulation application includes gestures for 2D layout, canvas control, and shape addition and deletion through quasimodes.

Application 1: Shape Manipulation
Our first application allows users to manipulate and layout
shapes in 2D (Figure 8). The user can translate, rotate, scale
and reflect the shapes. To control the canvas the user holds
a quasimode [34] button and applies two additional touches
to adjust pan and zoom. To add a shape, the user touches
and holds a shape icon in a shape catalog and indicates its
destination with a second touch on the canvas. To delete a
shape, the user holds a quasimode button and selects a shape
with a second touch. To undo and redo actions, the user draws
strokes in a command area below the shape catalog.

Succinct Gesture Definitions
We created eight gesture tablatures, leaving Proton to gener-
ate the expressions and handle the recognition and manage-
ment of the gesture set. We then implemented the appropriate
gesture callbacks and confidence calculators. We did not need
to count touches or track gesture state across event handlers.

Many of our tablatures specify target object types for different
touches in a gesture. For example, the Delete gesture requires
the first touch to land on the delete button and the second
touch to land on a shape. Proton enables such quasimodes
without burdening the developer with maintaining application
state. Target object types do not have to correspond to single
objects: the Rotate, Scale and Reflect gestures allow the sec-
ond touch to land on any object including the background.
We also specified the order in which touches should lift up at
the end of a gesture. While the Rotate and Scale gestures per-
mit the user to release touches in any order, modal commands
require that the first, mode-initiating touch lift up last. Fi-
nally, we specified repetitions within a gesture using Kleene
stars. For example, the second touch in the Delete gesture is
grouped with a Kleene star, which allows the expression to
match any number of taps made by the second touch.

Static Analysis of Gesture Conflicts
Proton’s static analyzer reported that all six pairs of the shape
manipulation gestures (Translate, Rotate, Scale and Reflect)
conflicted with one another. Five of the conflicts involved
prefix expressions only, while the sixth conflict, between Ro-
tate and Scale, showed that those two gestures are identical.
We wrote confidence calculators to resolve all six conflicts.

The static analyzer also found that all shape manipulation
gestures conflict with Translate when only one touch is down.
We implemented a threshold confidence calculator that re-
turns a zero confidence score for Translate if the first touch
has not moved beyond some distance. Similarly, Rotate and
Scale only return a non-zero confidence score once the second
touches have moved beyond some distance threshold. After
crossing the threshold, the confidence score is based on the
touch trajectory.

Application 2: Sketching
Our second application replicates a subset of the gestures
used in Autodesk’s SketchBook application for the iPad [4].
The user can draw using one touch, manipulate the can-
vas with two touches, and control additional commands with
three touches. A three-touch tap loads a palette (Figure 9a)
for changing brush attributes and a three-touch swipe exe-
cutes undo and redo commands, depending on the direction.

In this application, the generated expressions for Load Palette
and Swipe are particularly long because these three-touch
gestures allow touches to release in any order. We created tab-
latures for these gestures by vertically aligning the touch-up
nodes and Proton automatically generated expressions con-
taining all possible sequences of touch-up events (Figure 9b).

Proton includes a library of predefined widgets such as sliders
and buttons. We used this library to create the brush attribute
palette. For example, to add color buttons into the palette, we
created new instances of the button press widget, which con-
sists of a button and corresponding button press gesture. We
gave each button instance a unique name, e.g., redButton,
and then assigned redButton as the OType for the touch
events within the expression for the button press gesture.

We also implemented a soft keyboard for text entry. The key-
board is a container where each key is a button subclassed
from Proton’s built-in button press widget. We associated
each key with its own instances of the default button press
gesture and callback. Thus, we created 26 different but-
tons and button press gestures, one for each lower-case let-
ter. Adding a shift key for entering capital letters required
creating a gesture for every shift key combination, adding 26
additional gestures.

Figure 9. (a) In the sketching application’s palette, the user adjusts brush parameters through predefined widgets. (b) Aligned touch-up nodes for the
swipe tablature generate all six touch-up sequences. (c) EdgeWrite gestures change hit targets multiple times within a touch track.

Application 3: EdgeWrite
Our third application re-implements EdgeWrite [43], a uni-
stroke text entry technique where the user draws a stroke
through corners of a square to generate a letter. For example,
to generate the letter ‘b’, the user starts with a touch down
in the NW corner, moves the finger down to the SW corner,
over to the SE corner, and finally back to the SW corner. Be-
tween each corner, the touch moves through the center area
c (Figure 9c, Left). We inserted explicit touch-move nodes
(gray and white circles) with new OTypes into the tablature
to express that a touch must change target corner objects as it
moves. The gesture tablature for the letter ‘b’ and its corre-
sponding regular expression are shown in Figure 9c, Right.

Our EdgeWrite implementation includes 36 expressions, one
for each letter and number. Our static analyzer found that
18 gestures conflict because they all start in the NW cor-
ner. The number of conflicts drops as soon as these gestures
enter a second corner; 9 conflicts for the SW corner, 2 for
SE, 7 for NE. Our analyzer found that none of the gestures
that started in the NW corner immediately returned to the
NW corner which suggests that it would be possible to add a
new short NW–NW gesture for a frequently used command
such as delete. Similarly the analyzer reported conflicts for
strokes starting in the other corners. We did not have to re-
solve these conflicts because the callbacks execute only when
the gestures are completed and none of the gestures are identi-
cal. However, such analysis could be useful when designing a
new unistroke command to check that each gesture is unique.

Performance
Our research implementation of Proton is unoptimized and
was built largely to validate that regular expressions can be
used as a basis for declaratively specifying multitouch ges-
tures. While we have not carried out formal experiments,
application use and informal testing suggest that Proton can
support interactive multitouch applications on current hard-
ware. We ran the three applications on a 2.2 GHz Intel Core
2 Duo Macintosh computer. In the sketching application with
eight gestures, Proton required about 17ms to initially match
gestures when all the gestures in the application were candi-
dates. As the matcher eliminated gestures from consideration,
matching time dropped to 1-3ms for each new touch event.
In EdgeWrite, initial matching time was 22ms for a set of 36
gestures. The main bottleneck in gesture matching is the cal-
culation of regular expression derivatives, which are currently
recalculated for every every new input symbol. The calcula-
tion of derivatives depends on the complexity (e.g., number of

disjunctions) of the regular expression. We believe it is pos-
sible to significantly improve performance by pre-computing
the finite state machine (FSM) for each gesture [7].

FUTURE WORK
We have demonstrated with Proton some of the benefits of
declaratively specifying multitouch gestures as regular ex-
pressions. Our current implementation has several limitations
that we plan to address in future work.

Supporting Simultaneous Gestures
Proton currently supports only one gesture at a time for a sin-
gle user. While this is sufficient for many types of multi-
touch applications, it precludes multi-user applications. One
approach to support multiple users is to partition the input
stream by user ID (if reported by the hardware) or by spatial
location. Proton could then run separate gesture matchers on
each partition. Another approach is to allow a gesture to use
just a subset of the touches, so a new gesture can begin on any
touch-down event. The gesture matcher must then keep track
of all valid complete and partial gestures and the developer
must choose the best set of gestures matching the stream. The
static analyzer would need to detect conflicts between simul-
taneous, overlapping gestures. It currently relies on gestures
beginning on the same touch-down event. A revised algo-
rithm would have to consider all pairs of touch-down postfix
expressions between two gestures.

Supporting Trajectory
Proton’s declarative specification does not capture informa-
tion about trajectory. While developers can compute trajec-
tories in callback code, we plan to investigate methods for
incorporating trajectory information directly into gesture ex-
pressions. For example, the xstroke system [44] describes a
trajectory as a sequence of spatial locations and recognizes
the sequence with a regular expression. However, like many
current stroke recognizers [38] this technique can only be ap-
plied after the user has finished the stroke gesture. We plan
to extend the Proton touch symbols to include simple direc-
tional information [40], computed from the last two positions
of the touch, so the trajectory expressions can still be matched
incrementally as the user performs the gesture.

User Evaluation
Although we validated Proton with three example applica-
tions, we plan to further investigate usability via user studies.
We plan to compare the time and effort to implement custom
gestures in both Proton and an existing framework (e.g., iOS).

A more extensive study would examine how developers build
complete applications with Proton.

CONCLUSION
We have described the design and implementation of Proton,
a new multitouch framework in which developers declara-
tively specify the sequence of touch events that comprise a
gesture as a regular expression. To facilitate authoring, devel-
opers can create gestures using a graphical tablature notation.
Proton automatically converts tablatures into regular expres-
sions. Specifying gestures as regular expressions leads to two
main benefits. First, Proton can automatically manage the un-
derlying gesture state, which reduces code complexity for the
developer. Second, Proton can statically analyze the gesture
expressions to detect conflicts between them. Developers can
then resolve ambiguities through conflict resolution code. To-
gether these two advantages make it easier for developers to
understand, maintain and extend multitouch applications.

ACKNOWLEDGMENTS
This work was supported by NSF grants CCF-0643552 and
IIS-0812562.

REFERENCES
1. Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and Douceur, J. R.

Cooperative task management without manual stack management.
Proc. USENIX 2002 (2002), 289–302.

2. Appert, C., and Beaudouin-Lafon, M. SwingStates: adding state
machines to the swing toolkit. Proc. UIST 2006 (2006), 319–322.

3. Apple. iOS.
http://developer.apple.com/technologies/ios.

4. Autodesk. SketchBook Pro. http://usa.autodesk.com/
adsk/servlet/pc/item?siteID=123112&id=15119465.

5. Blackwell, A. SWYN: A Visual Representation for Regular Expressions.
Morgan Kauffman, 2000, 245–270.

6. Bleser, T., and Foley, J. D. Towards specifying and evaluating the
human factors of user-computer interfaces. Proc. CHI 1982 (1982),
309–314.

7. Brzozowski, J. A. Derivatives of regular expressions. Journal of the
ACM 11 (1964), 481–494.

8. De Nardi, A. Grafiti: Gesture recognition management framework for
interactive tapletop interfaces. Master’s thesis, University of Pisa, Italy,
2008.

9. Echtler, F., and Klinker, G. A multitouch software architecture. Proc.
NordiCHI 2008 (2008), 463–466.

10. Fraunhofer-Institute for Industrial Engineering. MT4j - Multitouch for
Java. http://www.mt4j.org.

11. Gibbon, D., Gut, U., Hell, B., Looks, K., Thies, A., and Trippel, T. A
computational model of arm gestures in conversation. Proc.
Eurospeech 2003 (2003), 813–816.

12. Google. Android. http://www.android.com.

13. Hansen, T. E., Hourcade, J. P., Virbel, M., Patali, S., and Serra, T.
PyMT: a post-WIMP multi-touch user interface toolkit. Proc. ITS 2009
(2009), 17–24.

14. Henry, T. R., Hudson, S. E., and Newell, G. L. Integrating gesture and
snapping into a user interface toolkit. Proc. UIST 1990 (1990),
112–122.

15. Hudson, S. E., Mankoff, J., and Smith, I. Extensible input handling in
the subArctic toolkit. Proc. CHI 2005 (2005), 381–390.

16. Jacob, R. J. K. Executable specifications for a human-computer
interface. Proc. CHI 1983 (1983), 28–34.

17. Jacob, R. J. K. A specification language for direct-manipulation user
interfaces. TOG 5, 4 (October 1986), 283–317.

18. Jacob, R. J. K., Deligiannidis, L., and Morrison, S. A software model
and specification language for non-WIMP user interfaces. TOCHI 6, 1
(1999), 1–46.

19. Kammer, D., Freitag, G., Keck, M., and Wacker, M. Taxonomy and
overview of multi-touch frameworks: Architecture, scope and features.
Workshop on Engineering Patterns for Multitouch Interfaces (2010).

20. Kammer, D., Wojdziak, J., Keck, M., and Taranko, S. Towards a
formalization of multi-touch gestures. Proc. ITS 2010 (2010), 49–58.

21. Khandkar, S. H., and Maurer, F. A domain specific language to define
gestures for multi-touch applications. 10th Workshop on
Domain-Specific Modeling (2010).

22. Kin, K., Miller, T., Bollensdorff, B., DeRose, T., Hartmann, B., and
Agrawala, M. Eden: A professional multitouch tool for constructing
virtual organic environments. Proc. CHI 2011 (2011), 1343–1352.

23. Lao, S., Heng, X., Zhang, G., Ling, Y., and Wang, P. A gestural
interaction design model for multi-touch displays. Proc. British
Computer Society Conference on Human-Computer Interaction (2009),
440–446.

24. Lu, H., and Li, Y. Gesture Coder: A tool for programming multi-touch
gestures by demonstration. Proc. CHI 2012 (2012).

25. Mankoff, J., Hudson, S. E., and Abowd, G. D. Interaction techniques
for ambiguity resolution in recognition-based interfaces. Proc. UIST
2000 (2000), 11–20.

26. Mankoff, J., Hudson, S. E., and Abowd, G. D. Providing integrated
toolkit-level support for ambiguity in recognition-based interfaces.
Proc. CHI 2000 (2000), 368–375.

27. MERL. DiamondTouch.
http://merl.com/projects/DiamondTouch.

28. Microsoft. Windows 7. http://www.microsoft.com/en-US/
windows7/products/home.

29. Myers, B. A. A new model for handling input. ACM Trans. Inf. Syst. 8,
3 (1990), 289–320.

30. Newman, W. M. A system for interactive graphical programming. Proc.
AFIPS 1968 (Spring) (1968), 47–54.

31. NUI Group. Touchlib. http://nuigroup.com/touchlib.

32. Olsen, D. Building Interactive Systems: Principles for
Human-Computer Interaction. Course Technology Press, Boston, MA,
United States, 2009, 43–66.

33. Olsen, Jr., D. R., and Dempsey, E. P. Syngraph: A graphical user
interface generator. Proc. SIGGRAPH 1983 (1983), 43–50.

34. Raskin, J. The Humane Interface. Addison Wesley, 2000.

35. Scholliers, C., Hoste, L., Signer, B., and De Meuter, W. Midas: a
declarative multi-touch interaction framework. Proc. TEI 2011 (2011),
49–56.

36. Schwarz, J., Hudson, S. E., Mankoff, J., and Wilson, A. D. A
framework for robust and flexible handling of inputs with uncertainty.
Proc. UIST 2010 (2010), 47–56.

37. Shaer, O., and Jacob, R. J. K. A specification paradigm for the design
and implementation of tangible user interfaces. TOCHI 16, 4 (2009).

38. Signer, B., Kurmann, U., and Norrie, M. iGesture: A general gesture
recognition framework. Proc. ICDAR 2007 (2007), 954–958.

39. Sipser, M. Introduction to the Theory of Computation, 1st ed.
International Thomson Publishing, 1996, 46,70–76.

40. Siwgart, S. Easily write custom gesture recognizers for your tablet PC
applications, November 2005. Microsoft Technical Report.

41. Sparsh UI. http://code.google.com/p/sparsh-ui.

42. Thompson, K. Regular expression search algorithm. Communications
of the ACM 11, 6 (1968), 419–422.

43. Wobbrock, J. O., Myers, B. A., and Kembel, J. A. Edgewrite: A
stylus-based text entry method designed for high accuracy and stability
of motion. Proc. UIST 2003 (2003), 61–70.

44. Worth, C. D. xstroke.
http://pandora.east.isi.edu/xstroke/usenix_2003.

http://developer.apple.com/technologies/ios
http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=15119465
http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=15119465
http://www.mt4j.org
http://www.android.com
http://merl.com/projects/DiamondTouch
http://www.microsoft.com/en-US/windows7/products/home
http://www.microsoft.com/en-US/windows7/products/home
http://nuigroup.com/touchlib
http://code.google.com/p/sparsh-ui
http://pandora.east.isi.edu/xstroke/usenix_2003

	INTRODUCTION
	RELATED WORK
	Modeling Input with State Machines & Formal Languages
	Multitouch Event-Handling
	Describing Gestures Declaratively
	Handling Input Ambiguity

	A MOTIVATING EXAMPLE
	USING PROTON
	Representing Touch Events
	Gestures as Regular Expressions
	Gesture Tablature
	Static Analysis of Gesture Conflicts

	IMPLEMENTATION
	Stream Generator
	Gesture Matcher
	Gesture Picker
	Tablature to Expression Conversion
	Static Analysis Algorithm

	APPLICATIONS
	Application 1: Shape Manipulation
	Succinct Gesture Definitions
	Static Analysis of Gesture Conflicts

	Application 2: Sketching
	Application 3: EdgeWrite
	Performance

	FUTURE WORK
	Supporting Simultaneous Gestures
	Supporting Trajectory
	User Evaluation

	CONCLUSION
	Acknowledgments
	REFERENCES

