
prefuse: a toolkit for interactive information visualization
Jeffrey Heer

Group for User Interface Research
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776, USA

jheer@cs.berkeley.edu

Stuart K. Card
User Interface Research Group

Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, CA 94301, USA
card@parc.com

James A. Landay
DUB Group

Computer Science & Engineering
University of Washington

Seattle, WA 98195-2350, USA
landay@cs.washington.edu

ABSTRACT
Although information visualization (infovis) technologies
have proven indispensable tools for making sense of
complex data, wide-spread deployment has yet to take hold,
as successful infovis applications are often difficult to
author and require domain-specific customization. To
address these issues, we have created prefuse, a software
framework for creating dynamic visualizations of both
structured and unstructured data. prefuse provides
theoretically-motivated abstractions for the design of a wide
range of visualization applications, enabling programmers
to string together desired components quickly to create and
customize working visualizations. To evaluate prefuse we
have built both existing and novel visualizations testing the
toolkit's flexibility and performance, and have run usability
studies and usage surveys finding that programmers find the
toolkit usable and effective.

Keywords: information visualization, user interfaces,
toolkits, graphs, trees, interaction, navigation, 2D graphics

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Techniques.
H.5.2. [Information Interfaces]: User Interfaces. I.3.6
[Methodology and Techniques]: Interaction Techniques.

INTRODUCTION
Since the introduction of data graphics in the late 1700’s
[46], visual representations of abstract information have been
used to demystify data and reveal otherwise hidden patterns.
The recent advent of graphical interfaces has enabled direct
interaction with visualized information, giving rise to over a
decade of information visualization research. Information
visualization (or infovis) seeks to augment human cognition
by leveraging human visual capabilities to make sense of
abstract information [12], providing means by which humans
with constant perceptual abilities can grapple with increasing
hordes of data.

Still, as inexpensive processing and graphics capabilities
continue to improve, there remains a dearth of information
visualization applications on current systems. While some of
the reasons are economic [20], there are technical roadblocks
as well. One is that information visualization applications are
difficult to build, requiring mathematical and programming
skills to implement complex layout algorithms and dynamic
graphics. Another reason is that infovis applications do not
lend themselves to “one size fits all” solutions; while
successful visualizations often reuse established techniques,
they are also uniquely tailored to their application domain
(e.g., [31]), requiring customization. This suggests a toolkit
approach, supporting a diversity of customized applications
by providing high-level support for common, reusable
visualization solutions. While infovis toolkits attempting to
fill this gap have begun to emerge, current offerings [9,17]
provide a library of existing visualizations rather than a set of
reusable components for building customized or novel
visualization designs.

To address these concerns and better support the design and
implementation of novel visualizations, we have built
prefuse1, an extensible user interface toolkit for crafting
interactive visualizations. Instead of providing only ready-
made infovis “widgets” that can be applied much like buttons
or checkboxes in traditional GUI tools, prefuse provides a set
of finer-grained building blocks for constructing tailored
visualizations. This approach simplifies the composition of
established methods, such as layout or distortion algorithms,
while providing an integrated structure in which to develop
novel techniques and domain-specific designs. The
formalism of a graph — a set of entities and relations between
them — is used as the toolkit’s fundamental data structure,
enabling a broad class of visualizations comprising node-link
diagrams, containment diagrams, and visualizations of
unstructured (edge-free) data such as scatter plots and
timelines (e.g., Figure 1). prefuse includes a library of layout
algorithms, navigation and interaction techniques, integrated
search, and more. prefuse is written in the Java programming
language using the Java2D graphics library.

1 In line with the musical naming conventions of Java interface
toolkits, the prefuse (pronounced "pref-use") name derives from
Prefuse73, an electronic musician whose work fueled toolkit
development. prefuse is intentionally spelled in the lower-case.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

To provide a principled toolkit flexible enough to support
yet-to-be-designed visualizations while providing ample
coverage of the visualization design space, we based the
design of prefuse on an existing theoretical framework for
infovis [11,12,15]. This model decomposes design into a
process of representing abstract data, mapping data into an
intermediate, visualizable form, and then using these visual
analogues to provide interactive displays (Figure 2). Prior
work has validated the model’s expressiveness, providing a
comprehensive taxonomy of visualization techniques [15].

In particular, prefuse introduces abstractions for filtering
source data into visualizable content, providing both
scalability and representational flexibility, and using
composable actions to perform batch processing of this
content, for example data transformation, layout, or color
assignment. Programmers craft visualizations by stringing
together actions into executable chains that can then be run to
manipulate visual data and perform animation. Interactive
views are then created from this visual data through a highly-
configurable rendering system, to which pre-built controls
can be added to specify interactive behaviors. This separation
of concerns provides a degree of flexibility unmatched by
existing infovis toolkits [9,17], supporting multiple views,
semantic zooming, data and visual transformations, and
application extension and customization. prefuse further
demonstrates that these generalized abstractions can be
provided without unduly sacrificing performance.

In the next sections we survey related work, further describe
the design of prefuse, present example applications, and
discuss evaluations of the toolkit, including a usability study
of prefuse’s application programming interface (API).

MOTIVATION AND RELATED WORK
The goal of prefuse is to simplify the creation of
visualizations akin to how GUI toolkits have facilitated the
design of traditional WIMP user interfaces. As such, prefuse
draws from pioneering work on input abstractions like the
model-view-controller [29] and interactor [36] paradigms,
and the rich history and lessons learned from toolkit
development [37]. This includes early systems for graph
layout and editing [23,26] and for including animation in user
interface toolkits [24]. While cutting-edge 2D user interface
toolkits such as Piccolo [7] and its predecessor Jazz [8]
provide facilities useful for information visualization such as
zooming and animation support, they are not focused on
supporting common visualization techniques directly. Our
goal is to construct a framework of higher-level abstractions
for presentation, navigation, and batch processing of
interactive objects that simplifies visualization creation while
affording the freedom to explore new designs.

The past 15 years have witnessed a rich body of information
visualization work, featuring the creation of novel
visualization designs for both structured and unstructured
data. Examples include TreeMaps [10,44], Cone Trees [42],
Perspective Walls [34], StarField displays [1], Hyperbolic
trees [30], DOITrees [13,22], SpaceTrees [39], and more.
Advances also came in the form of selection, transformation
and navigation techniques, including focus+context schemes
[18], space distortion [32], point-of-interest navigation [33],
and panning and zooming [25,38]. Perhaps the first
integrated framework for infovis was the Information
Visualizer (IV) [14], featuring many of the aforementioned
techniques as well as a centralized “governor” to oversee
animation and ensure smooth interactive frame rates.

Figure 1. Sample prefuse visualizations.

(a) Animated radial layout. (b) Force-directed layout with overview. (c) Hyperbolic tree.

(d) TreeMap. (e) SpotPlot scatterplot. (f) Fisheye graph. (g) Fisheye menu.

Concurrently, the graph drawing community has devised
algorithms for the aesthetic layout of graph structures. These
are given thorough coverage by di Battista et al. in [4].
Perhaps the best known software for graph drawing is the
excellent graphviz package from AT&T [19]. There are
several other research and commercial graph drawing
systems, including Marshall et al.’s Graph Visualization
Framework (GVF) [35], the University of Ljubljana’s Pajek
[3], and products from Tom Sawyer and yWorks. These
applications produce static visualizations and do not provide
programming platforms for highly-interactive visualizations.
In recent years the graph drawing community has begun
moving towards more interactive solutions, signaling a
convergence with the information visualization community.

While most information visualization research to date has
consisted of exploring the space of successful designs and
techniques, the field is now moving into a second phase in
which this accumulated knowledge is applied in a principled
manner. Polaris [45] applies infovis techniques to provide a
powerful system for visualizing relational databases. ILOG
Discovery [5] enables the declarative construction of data-
linear visualizations such as plots, bar graphs, and
histograms, but does not handle graph layout or animation.

The projects most similar in spirit to prefuse are infovis-
specific toolkits such as Fekete's InfoVis toolkit [17] and
Indiana's XML toolkit [9]. Both provide unified data models
utilized by visualization “widgets” that encapsulate
visualizations into monolithic units. With these toolkits,
programmers can select from multiple existing visualizations
such as TreeMaps or scatterplots and apply them in a
straightforward manner.

Though these toolkits come a long way in making infovis
techniques accessible, a finer-grained structure supporting
deep customization and flexible composition of visualization
methods—and thereby supporting novel approaches—is
lacking. Within these existing toolkits modularity occurs
primarily at the level of entire interactive visualizations rather
than composable techniques, and generalized rendering and
animation handling are lacking. Creating a new visualization
requires either starting from scratch or subclassing a pre-
existing visualization; one can not simply select and combine
diverse techniques, nor craft visualization components that
leverage techniques dynamically, such as orchestrating
changes in item appearance (e.g., semantic zooming) or
providing various views and animated transitions within a
single component (e.g., switching between scatterplot and
graph views of data). Introducing new functionality into
existing visualizations without recoding can also prove
difficult, as there is little decomposition of visualizations into
reconfigurable parts. By abstracting visualization techniques,
rendering, and interaction into composable, reusable units,
we believe the state of the art can be advanced.

To meet this goal, we based the design of prefuse on existing
theoretical models of information visualization. The

information visualization reference model (or data state
model) [11,12,15] serves as a conceptual framework for
structuring infovis applications. The model decomposes
design into a process of representing abstract data, mapping
data into an intermediate, visualizable form, processing these
visual analogues, and then mapping them into interactive
displays (Figure 2). This model provides a sound base for
characterizing a vast majority of infovis work (including the
previous examples), providing a comprehensive taxonomy of
visualization techniques [15]. Furthermore, Chi has shown
that the model is functionally equivalent to the time-tested
data flow model [16] used by 3D toolkits such as VTK [28].
We believe this makes the model a fit candidate as the basis
for future, novel realizations. As discussed in successive
sections, prefuse contributes a general implementation of this
model to support a wide range of visualization designs.

DESIGN OF THE PREFUSE TOOLKIT
We now describe the toolkit design (illustrated in Figure 2),
presenting the architecture, basic abstractions, and provided
libraries for processing and visualizing information.

Abstract Data
The prefuse visualization process starts with abstract data to
visualize, represented in some canonical form. prefuse
provides interfaces and default implementations of data
structures for unstructured, graph, and tree data. The basic
data element type, an Entity, supports any number of named
attributes (name-value pairs) and provides the base class
from which structural types such as Node, TreeNode, and
Edge descend. prefuse provides extensible interfaces for
input and output of this data, and includes (currently read-
only) support for incremental loading and caching from a
database or other external store, supporting bounded
visualizations of data collections too large to fit in memory.

Filtering
Filtering is the process of mapping abstract data to a
representation suitable for visualization. First a set of abstract
data elements are selected for visualization, such as a focal
region of a graph [18] or a bounded range of values to show
in a scatter plot. Next, corresponding visual analogues (called
VisualItems) are generated, which, in addition to the attributes
of the source data, record visual properties such as location,
color, and size. Individual filters are provided in prefuse as
Action modules, discussed later in this section.

In the data state model of [15], filtering constitutes the
Visualization Transformation: reducing abstract data to
visualizable content. Filtering can also be understood as
implementing a tiered version of the model-view-controller
pattern [29]. Abstract data provides a base model for any
number of visualizations, while filtered data constitutes a
visualization-specific model with its own set of view-
controllers. This enables multiple visualizations of a shared
data set by using separate filters, and different views of a
specific visualization by reusing the same filtered items.

Managing Visual Items: The ItemRegistry
prefuse provides three types of VisualItem by default:
NodeItems to visualize individual entities, EdgeItems to
visualize relations between entities, and AggregateItems to
visualize aggregated groups of entities. These items are
arranged in a graph structure separate from the source data,
maintaining a local version of the data topology and thereby
enabling flexible representations of visualized content. If
desired, additional VisualItem types can also be introduced.

VisualItems are created and stored in a centralized data
structure called the ItemRegistry, which houses all the state
for a specific visualization. Filter Actions request visual
analogues from the registry, which returns the VisualItems,
creating them as needed, and records the mapping between
the abstract data and visualized content. The ItemRegistry
also contains a FocusManager, overseeing FocusSets of
items (e.g., selected items and search results).

To support scalability, the ItemRegistry manages VisualItems
using a caching approach, tracking item usage and
performing garbage collection when previously visible items
are no longer being filtered. This supports the constrained
browsing of large data structures — including focus+context
schemes such as generalized fisheye views [18] — by keeping
only a working set of visualized items in the registry. To
ensure performance, the ItemRegistry also recycles item
instances when they are removed from the registry, avoiding
object initialization costs that can cripple performance.

Actions
The basic components of application design in prefuse are
Actions: composable processing modules that update the
VisualItems in an ItemRegistry. Actions are the mechanism for
selecting visualized data and setting visual properties,
performing tasks such as filtering, layout, color assignment,
and interpolation. To facilitate extensibility, Actions follow a
simple API: a single run method that takes an ItemRegistry
and an optional fraction indicating animation progress as
input. In addition, base classes for specific Action types such
as filters and layout algorithms are provided. While Actions

can perform arbitrary processing tasks, most fall into one of
three types: filter, assignment, and animator actions.

Filter actions perform the filtering process discussed earlier,
controlling what entities and relations are represented by
VisualItems in the ItemRegistry. prefuse comes with filters for
visualizing structures in their entirety, and for visualizing
data subsets determined using degree-of-interest estimates
[18,22]. By default, filters also initiate garbage collection of
stale items in the registry, hiding these details from toolkit
users. Advanced users can optionally disable default garbage
collection and apply dedicated GarbageCollector actions.

Assignment actions set visual attributes, such as location,
color, font, and size, for VisualItems. prefuse includes
extensible color, font, and size assignment functions and a
host of layout techniques for positioning items.

Finally, animator actions interpolate visual attributes between
starting and ending values to achieve animation, using the
animation fraction provided by the Action interface. prefuse
includes animators for locations, colors, fonts, and sizes.

ActionLists and Activities
To perform data processing, Actions are composed into
runnable ActionLists that sequentially execute these Actions.
These lists form processing pipelines that are invoked in
response to user or system events. ActionLists are Actions
themselves, allowing lists to be used as sub-routines of other
lists. ActionLists can be configured to run once, or to run
periodically for a specified duration.

Consider the following example, in which an ActionList
containing a force-directed layout and color function is
applied to create an animated visualization that updates every
20ms. The ActionList parameters are the ItemRegistry to
update, the duration over which to run (-1 being an infinite
duration), and the rate at which to re-run the list.
ActionList forces = new ActionList(registry,-1,20);
forces.add(new ForceDirectedLayout());
forces.add(new ColorFunction());
forces.add(new RepaintAction());
forces.runNow(); // schedule the list to start now

Figure 2. The prefuse visualization framework. Lists of composable actions filter abstract data into visualizable content and
assign visual properties (position, color, size, font, etc). Renderer modules, provided on a per-item basis by a RendererFactory,
draw the VisualItems to construct interactive Displays. User interaction can then trigger changes at any point in the framework.

The execution of ActionLists is managed by a general activity
scheduler, implemented using the approach of [24]. The
scheduler accepts Activity objects (a superclass of ActionList),
parameterized by start time, duration, and step rate, and runs
them accordingly. The scheduler runs in a dedicated thread
and oversees all active prefuse visualizations, ensuring
atomicity and helping avoid concurrency issues. A listener
interface enables other objects to monitor activity progress,
and pacing functions [24] can be applied to parameterize
animation rates (e.g., to provide slow-in slow-out animation).

Rendering and Display
VisualItems are drawn to the screen by Renderers,
components that use the visual attributes of an item (e.g.,
location, color) to determine its actual on-screen appearance.
Renderers have a simple API consisting of three methods:
one to draw an item, one to return a bounding box for an
item, and one to indicate if a given point is contained within
an item. prefuse includes Renderers for drawing basic
shapes, straight and curved edges, text, and images
(including image loading, scaling, and caching support).
Custom rendering can be achieved by extending existing
Renderers, or by implementing the Renderer interface.

Mappings between items and appearances are managed by a
RendererFactory: given a VisualItem, the RendererFactory
returns an appropriate Renderer. This layer of indirection
affords a high level of flexibility, allowing many simple
Renderers to be written and then doled out as needed. It also
allows visual appearances to be easily changed, either by
issuing different Renderers in response to data attributes, or
by changing the RendererFactory for a given ItemRegistry.
This also provides a clean mechanism for semantic zooming
[38] – the RendererFactory can select Renderers appropriate
for the current scale value of a given Display.

Presentation of visualized data is performed by a Display
component, which acts as a camera onto the contents of an
ItemRegistry. The Display subclasses Swing’s top-level
JComponent, and can be used in any Java Swing application.
The Display takes an ordered enumeration of visible items
from the registry, applies view transformations, computes the
clipping region, and draws all visible items using appropriate
Renderers. The Java2D library is used to support affine
transformations of the view, including panning and zooming.
In addition, an ItemRegistry can be tied to multiple Displays,
enabling multiple views (e.g., overview+detail [12]).

Displays support interaction with visualized items through a
ControlListener interface, providing callbacks in response to
mouse and keyboard events on items. Displays also provide
direct manipulation text-editing of item content and allow
arbitrary Swing components to be used as interactive tooltips.

The prefuse Library
The core prefuse architecture described above is leveraged
by a library of significant components. These components
simplify application design by providing advanced functions
frequently used in visualizations.

Layout and Distortion. prefuse is bundled with a library of
Action modules, including a host of layout and distortion
techniques. Available layouts include random, circular, grid-
based, force-directed, top-down [40], radial [48], indented
outline, and tree map [10,44] algorithms. These layouts are
parameterized and reusable, hence one can write new layouts
by composing existing modules. In addition, prefuse supports
space distortion of item location and size attributes, including
graphical fisheye views [43] and bifocal distortion [32].

Force Simulation. prefuse includes an extensible and
configurable library for force-based physics simulations. This
consists of a set of force functions, including n-body forces
(e.g., gravity), spring forces, and drag forces. To support real-
time interaction, n-body force calculations use the Barnes-
Hut algorithm [2] to compute the otherwise quadratic
calculation in log-linear time. The force simulation supports
various numerical integration schemes, with trade-offs in
efficiency and accuracy, to update velocity and position
values. The provided modules abstract the mathematical
details of these techniques (e.g., 4th Order Runge-Kutta) from
toolkit users. Users can also write custom force functions and
add them to the simulator.

Interactive Controls. Inspired by the Interactor paradigm [36],
prefuse includes parameterizable ControlListener instances
for common interactions. Provided controls include drag
controls for repositioning items (or groups of items), focus
controls for updating focus and highlight settings in response
to mouse actions, and navigation controls for panning and
zooming, including both manual controls and speed-
dependent automatic zooming [25].

Color Maps. To aid visualization, prefuse includes color
maps for assigning colors to data elements. These maps can
be configured directly, built using provided color schemes
(e.g., grayscale and color gradients, hue sampling), or
automatically generated by analyzing attribute values.

Integrated Search. To simplify the addition of search to
prefuse visualizations, the toolkit includes a FocusSet
implementation to support efficient keyword search of large
data sets. This component builds a trie (prefix tree) of
requested data attributes, enabling searches that run in time
proportional to the size of the query string. Search results
matching a given query are then available for visualization as
a FocusSet in the ItemRegistry’s FocusManager.

Event Logging. prefuse includes an event logger for
monitoring and recording events. This includes both user
interface events (mouse movement, focus selection) and
internal system events (addition and deletion of items from
the registry). Although useful for debugging and performance
monitoring, the primary motivation for this feature is to assist
user studies, providing a unified framework for evaluating
visualizations. Recorded logs can be used to review or replay
a session. We have even synchronized the event logger with
the output of an eye-tracker, enabling us to playback sessions
annotated with subjects’ fixation points.

WRITING APPLICATIONS WITH PREFUSE
In this section we demonstrate how prefuse can be used to
craft and extend an interactive visualization by chaining
together components, creating extensible applications while
minimizing the need for tedious coding or mathematics.

Code Sample 1 presents 24 lines of code comprising a
complete prefuse application for exploring graphs using
animated radial layout (as in Figure 1(a) and [48]). The
application first loads a graph data set from an XML file and
creates a new ItemRegistry to house a visualization of that
data. Next, individual Renderers for node and edge items are
created and a default RendererFactory is created to assign
these renderers to the appropriate items.

Two ActionLists are used to specify the visualization. The
first filters the graph data into a tree structure, applies a radial
tree layout, and then assigns colors to the nodes. The
argument to the TreeFilter specifies that the current focus
node should be used as the root of the filtered tree. The
default ColorFunction used provides custom colors for
focused or highlighted items. The second ActionList specifies
an animated transition for when the focus of the visualization
changes. It is parameterized to run for 1.5 seconds,
interpolating node positions in polar coordinates and
interpolating color values. This list is set to run whenever the
previous layout ActionList completes.

A Display is then created to present the visualization. Two
interactive controls are added: a DragControl enabling users
to reposition nodes, and a FocusControl enabling users to
select a new focus by clicking on a node, initiating a
recalculation of the layout and an animated transition.
Finally, the Display is added to an enclosing frame, and the
layout ActionList is run.

The prefuse architecture supports the addition of
customizations and extensions by introducing new Actions,
Renderers, or Controls. For example, if the underlying data
set consists of a very large graph, the TreeFilter can be
replaced with a WindowedTreeFilter to limit the visualization
to a specified degree of separation (e.g., 3 hops out from the
focus). Code Samples 2 through 4 further exemplify the
space of possible customizations.

Code Sample 2 illustrates how to use a force simulator to
cause nodes to repel each other, enhancing the layout by
adding jitter to improve readability. The force simulation
animates for 1 second after the layout transition completes.

Code Sample 3 shows how to add an overview display to the
visualization (e.g., see Figure 1b) and enable panning and
zooming. Panning is performed by holding down the left
mouse button on the background and dragging, zooming is
performed similarly using the right mouse button.

Finally, Code Sample 4 demonstrates the addition of fisheye
distortion to the visualization (e.g., Figure 1f). An ActionList
containing a Distortion action is created and invoked by an
AnchorUpdateControl control that monitors mouse movement
to move the focus (or “anchor”) of the distortion.

Code Sample 1: Radial Graph Explorer

Code Sample 2: Adding Force-Based “Jitter”

ForceSimulator fsim = new ForceSimulator();
fsim.addForce(new NBodyForce(-0.1f, 15f, 0.9f));
fsim.addForce(new DragForce());

ActionList forces = new ActionList(registry, 1000);
forces.add(new ForceDirectedLayout(fsim, true));
forces.add(new RepaintAction());
forces.alwaysRunAfter(animate);

// create graph and registry
Graph g = new XMLGraphReader().loadGraph(datafile);
ItemRegistry registry = new ItemRegistry(g);

// intialize renderers
Renderer nodeR = new TextItemRenderer();
Renderer edgeR = new DefaultEdgeRenderer();
registry.setRendererFactory(
 new DefaultRendererFactory(nodeR, edgeR));

// initialize action lists
ActionList layout = new ActionList(registry);
layout.add(new TreeFilter(true));
layout.add(new RadialTreeLayout());
layout.add(new ColorFunction());

ActionList animate = new ActionList(registry,1500);
animate.setPacingFunction(new SlowInSlowOutPacer());
animate.add(new PolarLocationAnimator());
animate.add(new ColorAnimator());
animate.add(new RepaintAction());
animate.alwaysRunAfter(layout);

// initialize display
Display disp = new Display(registry);
disp.setSize(500,500);
disp.addControlListener(new DragControl());
disp.addControlListener(new FocusControl(layout));

// initialize enclosing window frame
JFrame frame = new JFrame("prefuse example");
frame.getContentPane().add(disp);
frame.pack(); frame.setVisible(true);

layout.runNow();

Code Sample 3: Adding an Overview, Panning, and Zooming

Display overview = new Display(registry);
overview.setBorder(
 BorderFactory.createLineBorder(Color.BLACK, 1));
overview.setSize(50,50);
overview.zoom(new Point2D.Float(0,0),0.1);
display.add(overview);
display.addControlListener(new PanControl());
display.addControlListener(new ZoomControl());

Code Sample 4: Adding Fisheye Distortion

Distortion feye = new FisheyeDistortion();
ActionList distort = new ActionList(registry);
distort.add(feye);
distort.add(new RepaintAction());

AnchorUpdateControl auc =
 new AnchorUpdateControl(feye,distort);
display.addMouseListener(auc);
display.addMouseMotionListener(auc);

EVALUATION – APPLICATION COVERAGE
Throughout the development of the toolkit, we both
reimplemented existing visualizations and crafted novel
designs to the test the expressiveness, effectiveness, and
scalabilty of the toolkit. As shown in Figure 1, these
existing visualizations include animated radial graphs [48],
animated force-directed layout (similar to plumbdesign’s
Visual Thesaurus [47]), the hyperbolic tree browser [30],
“squarified” tree maps [10], range-slider controlled starfield
displays [1], fisheye graphs and fisheye menus [6], and the
Data Mountain [41] (not pictured). prefuse greatly
simplified the implementation of these visualizations, in
some cases turning what might have been a matter of days
or weeks into a matter of minutes. For example, using
prefuse it took only 2 hours to implement the Data
Mountain and a mere 20 minutes to create Fisheye Menus.
Video demonstrations and implementation details of these
applications are available at http://prefuse.sourceforge.net.
We now describe in greater detail our experiences using
prefuse to build two novel visualizations.

Degree-of-Interest Trees. We have used prefuse to create a
novel hierarchy browser [22], an evolutionary step from Card
and Nation’s original Degree-of-Interest Tree (DOITree)
browser [13]. DOITrees are tree visualizations featuring
multiple focus+context techniques, including the use of
degree-of-interest (DOI) functions [18] to determine which
regions of the tree are visible, and the use of aggregates to
represent unexpanded subtrees and to group lower-interest
siblings in the face of limited space resources. Figure 3
shows a prefuse-built DOITree visualizing a web directory
with over 600,000 nodes. Clicking a node in the visualization
causes it to become a focus, initiating a recalculation of DOI
values and layout followed by an animated transition. The
visualization also supports multiple foci, selected through
both manual selection and keyword search.

We implemented DOITrees using four ActionLists, all of
which are sequentially scheduled in response to changes of

focus node. The first list performs filtering, computes layout,
and assigns initial colors. The second ActionList interpolates
positions and colors to provide animated transitions. The
third and fourth lists assign and then animate highlighting
changes designed to make newly visible nodes easier to
track. Additionally, an ActionSwitch (similar to a multiplexer)
is used in the first list to select from one of three filters: a
standard fisheye calculation [18], a custom filter showing
only focus nodes (e.g., search results) and their ancestors, and
another filter showing only focus nodes and their least
common ancestors. Each filter provides progressively more
semantically “zoomed-out” views of the data, facilitating
exploration of different foci quite far apart in the tree [22].

As we developed the DOITree browser, the toolkit enabled
us to add animated behaviors (initial highlighting and fade-
out for tracking newly visible items), design and incorporate
a new layout algorithm [22], provide integrated handling of
search results, and customize item appearances to specific
application domains by crafting custom renderers. This
application also demonstrates the toolkit’s scalability,
maintaining real-time interaction with data sets containing
nearly a million items.

Vizster. Vizster [21] is a prefuse-built visualization of online
social network services such as Friendster and Orkut (see
Figure 4). It provides an ego-centric view of a person’s social
network, presented using a force-directed layout. We are
currently using Vizster to visualize a 1.5 million person crawl
of the popular Friendster service. Each node displays a
person’s name and image. Clicking a node causes a
corresponding membership profile, containing information
such as interests and relationship status, to appear in the
panel on the right. Double-clicking a node makes the
corresponding person the new center of the ego-centric
network. The persons’ friends are loaded from a backing
database and displayed while the display automatically pans
to center on the new focus. Manual panning and zooming
are also supported; semantic zooming is used to switch to

Figure 3. Degree-of-Interest Tree visualizing a 600,000 node web directory.

higher resolution images of people when zoomed in. Typing
in the search box immediately causes both matching nodes in
the visualization and matching text in the profile to highlight.

In addition to the browsing mode described above, Vizster
supports a comparison mode (see Figure 5), accessed by
clicking the radio button next to the desired attribute in the
profile panel. In response, node appearances simplify to
using color to display the desired attribute of the data, such as
age, gender, or relationship status. Alternative color maps can
be used by selecting them from the application menu.

Underlying Vizster is a rather straightforward application of
prefuse’s built-in components, such as fisheye graph
filtering, force-directed layout, image loading and rendering,
panning, zooming, integrated search, and color maps. The
application uses one primary ActionList, infinitely re-running
the force simulation while also setting the node color values.
An ActionSwitch is used to select the appropriate
ColorFunction based on the state of the application.
Furthermore, a custom RenderingFactory is used, overseeing
semantic zooming and doling out image renders in browsing
mode and text-only renderers in comparison mode. While the
application consists of a total of 1541 lines of code, only 469
lines, or less than one-third, deal with specifying the
visualization. The majority of the code deals with
constructing traditional user interface components such as a
login dialog and the profile panel. Using prefuse, we were
able to construct the entire application in under a week.

Summary
The applications above showcase prefuse’s support for
component reuse and extensibility, using provided modules
(e.g., filters, layouts, renderers, interactive controls) across
visualizations, while making it easy for both ourselves and
others to introduce customized components. We also found
that prefuse's highly-customizable rendering and animation
support greatly accelerated implementation times and the
exploration of various design ideas. Finally, the applications
demonstrate that toolkit support did not unduly sacrifice
performance, as applications maintained real-time interaction
and animation rates with thousands of on-screen items and
over a million data elements.

EVALUATION - QUALITATIVE USABILITY STUDY
While confident in the toolkit’s expressiveness, we wanted to
better understand the learnability and usability of prefuse’s
application programming interface (API) for other
programmers. In particular, abstractions such as filtering and
action lists might seem foreign to some programmers,
constituting the threshold for toolkit use [37]. To investigate
these concerns, we adopted the evaluation method of [28]
and conducted a usability study of the prefuse API, observing
8 programmers using the toolkit to build applications and
then interviewing them about their experiences.

The 8 participants were of varying background and expertise:
4 computer science students (2 undergrads, 2 grads), 3
professional programmers and/or user interface designers,

and 1 information visualization expert. All were screened for
familiarity with Java, the Swing UI toolkit, and the Eclipse
integrated development environment.

Participants were first given a brief tutorial lasting about 20
minutes, including a code walkthrough of some sample
applications. Subjects were then given a social network data
file and asked to perform three programming tasks. The first
was to create a static (non-animated) visualization of the data
set using a random layout. The second task asked subjects to
refine their visualization by applying a layout technique of
their choice and using color to convey information about one
or more data attributes. Finally, subjects were asked to add
interactivity and animation, supporting a change of focus or
other means of exploring the data. Tasks were performed on
a Windows PC pre-loaded with the Eclipse IDE and prefuse
source code, examples, and API documentation. Subjects
were encouraged to “think-aloud” and were given up to an
hour to complete the tasks. The tasks were videotaped and
subject’s code samples were saved for later analysis. The

 Figure 5. Vizster in comparison mode, using color to

display the genders of visualized friends.

Figure 4. Vizster in browsing mode, showing an ego-centric

network of friendship relations. The panel on the right displays
profile data for a selected person.

tasks were followed by a short, open-ended interview in
which subjects were asked about their experiences and their
understanding of various toolkit abstractions. Interviews
typically lasted 15-20 minutes and were audio recorded.

Results
Every subject successfully built a working visualization, and
7 of the 8 subjects completed every task. Subjects did not
necessarily complete tasks in the order presented (they were
told this was fine) and half encountered trouble at some point
in the study. The most common difficulty was structuring
dataflow appropriately, making sure that filtered structures
worked with downstream components such as layout
algorithms. For example, four subjects wanted to apply a
radial layout in their design, but ran into troubles when they
used a general graph filter and the radial layout algorithm,
expecting a tree, threw an exception. In response to these and
similar issues, we subsequently redesigned the filtering
system to better align with user’s expectations. For example,
TreeFilters now automatically overlay a tree structure on
filtered items when the source data is a general graph.

The study also proved useful for unearthing naming issues.
Most notably, VisualItems had originally been called
GraphItems, an obvious (in hindsight) blunder that fueled
confusion as to which data was abstract and which was visual
content. ActionLists were initially called ActionPipelines, but
were renamed to avoid association with the streaming nature
of traditional pipeline architectures.

Participant reaction to the toolkit, even from those who had
difficulty, was encouraging. Many appreciated the toolkit
design, saying “I’m surprised I needed as little code as I did!”
and “[It’s] shockingly easy to use.” Four of the subjects
wanted to use prefuse in their own work, and have
downloaded the toolkit. One subject, who had been searching
for tools to build visualizations of software execution, stated
“This is the first thing I have found that can do what I want.”

In addition to the findings directly related to prefuse, a
couple of usage patterns emerged that are relevant to the
study of software toolkits in general. One result was the
rather minimal usage of the provided API documentation.
Only one participant referred to documentation early on
(exclaiming “I’m a javadoc fan!”); all others worked on tasks
for at least 30 minutes before opening the documentation.
When asked about this behavior in the post-study interview,
subjects offered a number of explanations. Many said that
they preferred to work directly with the code and explore
problems as they arose, resorting to documentation only
when a problem offers continued difficulty. One subject
intimated that he preferred to stay within the Eclipse
environment, as he felt switching between different
applications (the documentation is read in a web browser)
would slow him down.

Furthermore, all eight subjects at least initially used a “cut
and paste” method of application building, reusing existing
sample code while performing tasks. Many subjects

commented negatively on this as they did it, saying it was
“bad” or “embarrassing” (one subject even asked for
permission!). When asked about this, subjects were about
evenly split in describing their reasons for this perceived
“shame.” One camp maintained that they had been taught
(largely in school) that “blindly” copying code was bad
software engineering practice, for reasons too numerous to
list here. Others felt that by copying and pasting they were
not learning the toolkit deeply enough, and thus somehow not
participating fully in the study. Despite this unease, all
subjects disclosed in the post-task interviews that this was
their typical approach to learning unfamiliar APIs. All
subjects expressed the belief that sample code was the best
way to learn new programming environments, making it
clear that a toolkit’s “user interface” is not just an API, but
the associated materials (code samples, documentation) as
well, all of which should be the subject of design.

Summary
Through the evaluation process, the toolkit has made great
strides. Both the application building process and user study
have validated the goals of our toolkit while revealing needed
functionality and suboptimal design decisions. The filtering
abstraction, while setting the learning curve for the system,
was understood by user study participants and has enabled an
array of scalable visualizations. Using prefuse, study subjects
built useful visualizations in under an hour, and toolkit users
expressed an appreciation of the accompanying extensibility.

We have found that iterative design, a proven method for
developing user interfaces, has also proven a valuable design
method for software toolkits. Since the study, an alpha
release of prefuse has been downloaded over 1300 times and
is being used in research projects, course assignments, and
commercial products. We are following this usage in a
longitudinal study of toolkit use, including a recent survey of
20 programmers. This has unearthed additional requirements,
from bug fixes to the need for improved documentation.
Overall, reaction to prefuse has been overwhelmingly
positive, enabling programmers of varying skill levels to
create new visualizations of their own.

CONCLUSION
In this paper we have introduced prefuse, a user interface
toolkit for crafting interactive visualizations of structured and
unstructured data. prefuse supports the design of 2D
visualizations of any data consisting of discrete data entities,
such as graphs, trees, scatter plots, collections, and timelines.
prefuse implements existing theoretical models of
information visualization to provide a flexible framework for
simplifying application design and enabling reuse and
composition of visualization and interaction techniques. In
particular, prefuse contributes scalable abstractions for
filtering abstract data into visual content and using lists of
composable actions to manipulate data in aggregate.

Applications built with the toolkit demonstrate the flexibility
and performance of the prefuse architecture. Both a user

study and real-world usage has shown that programmers can
use the toolkit to quickly build and tailor their own
interactive visualizations.

prefuse is part of a larger move to systematize information
visualization research and bring more interactivity into data
analysis and exploration. In future work, we plan to introduce
more powerful operations for manipulating source data,
provide additional components, and potentially develop a
visual environment for application authoring. Most
importantly, both we and others are now using the toolkit to
build and evaluate new interactive visualizations for a variety
of application domains.

prefuse is open-source software. The toolkit, source code,
and both interactive and video demonstrations are available
at http://prefuse.sourceforge.net.

ACKNOWLEDGMENTS
We would like to thank our colleagues at Berkeley and
PARC, particularly Alan Newberger, Jock Mackinlay, Ed
Chi, Scott Klemmer, Lance Good, Marti Hearst, and Peter
Lyman, for their insight and comments. We also thank all
the subjects in our user study and all current toolkit users.
The first author was supported by an NDSEG fellowship.

REFERENCES
1. Ahlberg, C. and B. Shneiderman. Visual Information Seeking: Tight

Coupling of Dynamic Query Filters with Starfield Displays. CHI’94.
pp. 313-317, April 1994.

2. Barnes, J. and P. Hut, A Hierarchical O(N Log N) Force Calculation
Algorithm. Nature, 1986. 324(4).

3. Batagelj, V. and A. Mrvar, Pajek: Analysis and Visualization of Large
Networks, in Graph Drawing Software, Springer. p. 77-103, 2003.

4. Battista, G.D., P. Eades, R. Tamassia, and I.G. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Upper Saddle
River, NJ: Prentice Hall, 1999.

5. Baudel, Thomas. Canonical Representation of Data-Linear
Visualization Algorithms and its Applications. ILOG Report.
http://www2.ilog.com/preview/Discovery/technology/DiscoveryResea
rchPaper.pdf

6. Bederson, B.B. Fisheye Menus. UIST’00. pp. 217-225, 2000.
7. Bederson, B. B., J. Grosjean, & J. Meyer. Toolkit Design for

Interactive Structured Graphics, IEEE Transactions on Software
Engineering, 30 (8), pp. 535-546, 2004.

8. Bederson, B.B., J. Meyer, and L. Good. Jazz: An Extensible Zoomable
User Interface Graphics Toolkit in Java. UIST’00. pp. 171-180 2000.

9. Borner, K. et al. The XML Toolkit. Project Webpage. 2003.
http://iv.slis.indiana..edu/sw/toolkit/.html

10. Bruls, M., K. Huizing, and J.J. van Wijk. Squarified TreeMaps. In
Proceedings of Joint Eurographics and IEEE TCVG Symp. on
Visualization (TCVG 2000): IEEE Press. pp. 33-42, 2000.

11. Card, S.K., Information Visualization, in The Human-Computer
Interaction Handbook. Lawrence Erlbaum Associates, 2002.

12. Card, S.K., J.D. Mackinlay, and B. Shneiderman, Readings in
Information Visualization: Using Vision to Think. San Francisco,
California: Morgan-Kaufmann, 1999.

13. Card, S.K. and D. Nation. Degree-of-Interest Trees: A Component of
an Attention-Reactive User Interface. Advanced Visual Interfaces. 2002.

14. Card, S.K., G.G. Robertson, and J.D. Mackinlay. The Information
Visualizer, an Information Workspace. CHI'91. pp. 181-188 1991.

15. Chi, E.H. A Taxonomy of Visualization Techniques Using the Data
State Reference Model. InfoVis '00. pp. 69-75 2000.

16. Chi, E.H. Expressiveness of the Data Flow and Data State Models in
Visualization Systems. Advanced Visual Interfaces. Trento, Italy, May
2002.

17. Fekete, J.-D. The InfoVis Toolkit, InfoVis '04, pp. 167-174, 2004.

18. Furnas, G.W., The Fisheye View: A New Look at Structured Files, in
Readings in Information Visualization: Using Vision to Think, S.K.
Card, et al, Editors. Morgan Kaufmann: San Francisco, 1981.

19. Graphviz. http://www.research.att.com/sw/tools/graphviz/
20. Grokking the Infoviz, Economist Technology Quarterly, June 2003.
21. Heer, J. Vizster: Visualizing Online Social Networks. April 2004.

http://www.cs.berkeley.edu/~jheer/infovis/final
22. Heer, J. and S.K. Card. DOITrees Revisited: Scalable, Space-

Constrained Visualization of Hierarchical Data. Advanced Visual
Interfaces. Gallipoli, Italy, May 2004.

23. Henry, T.R. and S.E. Hudson. Interactive Graph Layout. UIST’91. pp.
55-64, November 1991.

24. Hudson, S. and J.T. Stasko. Animation Support in a User Interface Toolkit:
Flexible, Robust, and Reusable Abstractions. UIST’93. pp. 57-67, 1993.

25. Igarashi, T. and K. Hinckley. Speed-Dependent Automatic Zooming
for Browsing Large Documents. UIST’00. pp. 139-148, 2000.

26. Karrer, A. and W. Scacchi. Requirements for an Extensible Object-
Oriented Tree/Graph Editor. UIST’90. pp. 84-91, October 1990.

27. The Visualization Toolkit User's Guide: Kitware, Inc., 2003.
28. Klemmer, S.R., J. Li, J. Lin, and J.A. Landay. Papier-Mâché: Toolkit

Support for Tangible Input. CHI’04, Vienna, Austria 2004.
29. Krasner, G.E. and S.T. Pope, A Description of the Model-View-

Controller User Interface Paradigm in the Smalltalk-80 System.
Journal of Object-Oriented Programming, 1988. 1(3): p. 26-49.

30. Lamping, J. and R. Rao, The Hyperbolic Browser: A Focus + Context
Technique for Visualizing Large Hierarchies. Journal of Visual
Languages and Computing, 1996. 7(1): p. 33-55.

31. Lee, B., C.S. Parr, D. Campbell, and B. Bederson. How Users Interact
with Biodiversity Information Using Taxontree. Advanced Visual
Interfaces. Gallipoli, Italy 2004.

32. Leung, Y.K. and M.D. Apperley, A Review and Taxonomy of
Distortion-Oriented Presentation Techniques. ACM Transactions on
Computer-Human Interaction, 1994. 1(2): p. 126-160.

33. Mackinlay, J.D., S.K. Card, and G.G. Robertson, Rapid, Controlled
Movement through a Virtual 3d Workspace. Computer Graphics,
1990. 42(4): p. 1971-1976.

34. Mackinlay, J.D., G. Robertson, and S.K. Card. The Perspective Wall:
Detail and Context Smoothly Integrated. CHI91. pp. 173-179 1991.

35. Marshall, M.S., I. Herman, and G. Melancon, An Object-Oriented
Design for Graph Visualization. Software: Practice and Experience,
2001. 31(8): p. 739-756.

36. Myers, B.A., A New Model for Handling Input. ACM Transactions on
Information Systems, 1990. 8(3): p. 289-320.

37. Myers, B.A., S.E. Hudson, and R.F. Pausch, Past, Present, and Future
of User Interface Software Tools. ACM Transactions on Computer-
Human Interaction, 2000. 7(1): p. 3-28.

38. Perlin, K. and D. Fox. Pad: An Alternative Approach to the Computer
Interface. SIGGRAPH'93. pp. 57-64, 1993.

39. Plaisant, C., J. Grosjean, and B. Bederson. Spacetree: Supporting
Exploration in Large Node Link Tree, Design Evolution and Empirical
Evaluation. InfoVis’02. Boston, MA. pp. 57-64, October 2002.

40. Reingold, E.M. and J.S. Tilford, Tidier Drawings of Trees. IEEE
Transactions of Software Engineering, 1981. SE-7: p. 21-28.

41. Robertson, G.G., M. Czerwinski, K. Larson, D.C. Robbins, D. Thiel,
and M.v. Dantzich. Data Mountain: Using Spatial Memory for
Document Management. UIST’98. pp. 153-162 1998.

42. Robertson, G.G., J.D. Mackinlay, and S.K. Card. Cone Trees: Animated
3D Visualizations of Hierarchical Information. CHI'91. pp. 189-194, 1991.

43. Sarkar, M. and M.H. Brown. Graphical Fisheye Views of Graphs.
CHI’92. pp. 83-91, May 1992.

44. Treemaps for Space-Constrained Visualization of Hierarchies. 1998.
http://www.cs.umd.edu/hcil/treemap-history/

45. Stolte, C., D. Tang, and P. Hanrahan, Polaris: A System for Query,
Analysis and Visualization of Multi-Dimensional Relational
Databases. IEEE Transactions on Visualization and Computer
Graphics, 2002. 8(1).

46. Tufte, The Visual Display of Quantitative Information. Graphics Press,
1983.

47. Visual Thesaurus. http://www.visualthesaurus.com
48. Yee, K.-P., D. Fisher, R. Dhamija, and M.A. Hearst. Animated

Exploration of Dynamic Graphs with Radial Layout. InfoVis'01. pp.
43-50 2001.

