

Comparing and Managing Multiple

Versions of Slide Presentations

ABSTRACT

Despite the ubiquity of slide presentations, managing mul-

tiple presentations remains a challenge. Understanding how

multiple versions of a presentation are related to one an-

other, assembling new presentations from existing presenta-

tions, and collaborating to create and edit presentations are

difficult tasks. In this paper, we explore techniques for

comparing and managing multiple slide presentations. We

propose a general comparison framework for computing

similarities and differences between slides. Based on this

framework we develop an interactive tool for visually com-

paring multiple presentations. The interactive visualization

facilitates understanding how presentations have evolved

over time. We show how the interactive tool can be used to

assemble new presentations from a collection of older ones

and to merge changes from multiple presentation authors.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces. - Graphical user interfaces.

General Terms: Algorithms, Design, Human Factors.

Keywords: Slide presentations, versions, distance metrics,

correspondence, alignment

1 INTRODUCTION

Slide presentations have become a ubiquitous means of

sharing information. In 2001, Microsoft estimated that at

least 30 million PowerPoint presentations were created

every day [19]. Knowledge workers often maintain collec-

tions of hundreds of presentations [3]. Moreover, it is

common to create multiple versions of a presentation,

adapting it as necessary to the audience or to other presen-

tation constraints. One version may be designed as a 20

minute conference presentation for researchers, while an-

other version may be designed as an hour long class for un-

dergraduate students. Each version contains different as-

pects of the content.

A common approach to building a new presentation is to

study the collection of older versions and then assemble to-

gether the appropriate pieces from the collection. Similarly,

when collaborating with others on creating a presentation,

the collaborators will often start from a common template,

then separately fill in sections on their own and finally as-

semble the different versions together. Yet, current presen-

tation creation tools [1, 12, 24] provide little support for

working with multiple versions of a presentation simultane-

ously. The result is that assembling a new presentation from

older versions can be very tedious.

In this paper we present new techniques and tools for visu-

ally comparing and managing multiple versions of slide

presentations. Our work makes three main contributions:

Comparison framework: We develop a framework for

comparing presentations to identify the subsets of slides

that are similar across each version. There are a number of

ways to measure similarity between presentations, including

pixel-level image differences between slides, differences

between the text on each slide, etc. We propose several

such distance measures and discuss how they reveal the un-

derlying similarities and differences between presentations.

Interactive visualization: We provide an interactive tool

for viewing multiple versions of a presentation. Users can

examine differences between presentations along any of the

distance measures computed by our comparison framework.

The visualization is designed to help users understand how

the presentation has evolved from version to version and

determine when different portions crystallized into final

form. Users can identify sections of the presentation that

changed repeatedly. Such volatility might indicate problem-

atic areas of the presentation and can help users understand

the work that went into producing the presentation.

Interactive assembly: Our interactive tool also facilitates

assembly of new presentations from the existing versions.

Users can select subsets of slides from any version and

copy them into a new presentation. The tight integration of

visualization and assembly allows users to see the history of

a presentation and combine relevant parts into the new pres-

entation. Such an assembly tool is especially useful for col-

laborative production of presentations. Authors can inde-

pendently edit the presentation and then use our assembly

tool to decide which portions of each version to coalesce

into the final presentation.

Steven M. Drucker Georg Petschnigg

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

{sdrucker|georgp}@microsoft.com

Maneesh Agrawala

University of California, Berkeley

615 Soda Hall, Mail Code #1776

Berkeley, CA 94720-1776, USA

maneesh@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page. To copy other-

wise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

UIST'06, October 15–18, 2006, Montreux, Switzerland.

Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

A screenshot of our tool is shown in Figure 1. In this case,

the Visual Comparison Window (Figure 1 left) shows 10

versions of a presentation – one per column. Lines linking

slides and alignments between slides indicate slides that are

similar to one another from one version to the next. We dis-

cuss our comparison framework in Section 3 and then show

how it is used to generate the visualization of multiple pres-

entations in Section 4. Users can select any subset of slides

from the Visual Comparison Window and copy them into

the Assembly Window (Figure 1 middle) to create a new

presentation. A gray border in the Assembly window indi-

cates that several slightly different versions of the slide are

available. Users can also select a single slide either in the

Visual Comparison Window or in the Assembly Window

and an enlarged version of it appears in the Slide Preview

window (Figure 1 right). The selected slide is highlighted

with a blue border in both the Visual Comparison Window

and the Assembly Window. We describe the interactive as-

sembly process in Section 5. We provide examples showing

how our system can be used to compare and manage multi-

ple presentations in Section 6 and conclude in Section 7.

2 RELATED WORK

Finding the similarities and differences between two or

more datasets is a problem that occurs in many contexts.

File differencing tools such as UNIX’s diff [10] highlight

line level changes between two documents. These programs

treat files as an ordered sequence of lines and typically

compute the Longest Common Subsequence (LCS) of lines

between two files using dynamic programming techniques

[9, 11]. The LCS algorithm is related to the concept of

string edit distance first introduced by Levenshtein [11].

The string edit distance is defined as the minimum number

of operations (e.g. insertions, deletions, and substitutions)

required to convert one string into another. File differencing

programs based on edit-distance are often used by pro-

grammers to find all the lines of codes that were inserted,

deleted or changed between two versions of a file. Similar

techniques have been used to automatically detect plagia-

rism [18] and to find the best alignment between genetic

sequences [15]. We use string edit distance to help compute

distances between slides (Section 3.2.2), find corresponding

slides between presentations (Section 3.3), and align slides

in our visualization (Section 4.1).

Computing differences between data sets solves only part of

the problem. For large data sets it is essential to provide

visualizations that depict the changes and make it easy for

viewers to focus on the similarities and differences between

versions. SeeSoft [5] and SeeSys [6] provide focus+context

tools for visualizing differences in text files. Viégas et al.

[22] developed the history flow system to visually compare

the changes made to Wikipedia articles. Using history flow

they uncover a variety of patterns of cooperation and con-

flict that arose naturally as authors collectively created and

edited Wikipedia. Their system is aimed at visualizing hun-

dreds of versions of text documents. While we draw on this

work for inspiration, our work is aimed at comparing slide

presentations that contain graphics, images, and text. Unlike

the earlier systems, we also provide tools for assembling

new presentations from older versions.

Slide presentation tools such as PowerPoint [12], Keynote

[1], and OpenOffice Impress [17] usually focus on provid-

ing tools for creating and presenting a sequence of slides.

While PowerPoint does provide a “track change” mode for

merging changes between two presentations, it forces a spe-

cific workflow. Users must process slides one at a time and

accept or reject changes. PowerPoint does not provide any

 Visual Comparison Window Presentation Assembly Window Slide Preview Window

Figure 1: Our interactive visualization and assembly tool is comprised of a Visual Comparison window (left), a Presenta-
tion Assembly window (middle) and a Slide Preview window (right). Users examine multiple presentations (each column
of the Visual Comparison window shows a different presentation) and find the similarities and differences between
them. Users can select any subset of slides from the Visual Comparison window and assemble them into a new presen-
tation. The Slide Preview window allows users to inspect one slide and its alternate versions in greater detail.

way of seeing an overview of all the differences between

multiple presentations at once. Our system provides this

overview and allows users to work with multiple presenta-

tions simultaneously.

While current commercial slide creation software focuses

on producing a single linear sequence of slides, several re-

search systems support multiple paths though a presenta-

tion. Pad[20] and CounterPoint [7] are zoomable interfaces

that allow spatially positioning slides on an infinite canvas

and support hyperlinked navigation to any slide in the pres-

entation. Zellweger [23] has developed a system for build-

ing multimedia documents embedded with multiple scripted

paths. Nelson et al.’s [16] Pallete system is a tangible, pa-

per-based interface for organizing presentations. More re-

cently, Moscovich et al. [14] have developed a system that

allows users to choose between multiple paths, on-the-fly,

as they are giving the talk. All of these systems facilitate the

process of customizing a presentation. Our system is aimed

at comparing and managing multiple presentations, there-

fore, it is largely orthogonal to these techniques and could

be used in conjunction with any of them.

3 COMPARISON FRAMEWORK

The goal of comparing two slide presentations is to identify

all of the similarities and differences between the slides

within each presentation. The key step is to find the “best”

matching slide from the second presentation for each slide

in the first presentation. We can compute such matching

correspondences with respect to many different features of

the slides. Moreover, the best correspondence with respect

to one feature may not be the best with respect to another

feature. Thus, we have developed a general framework for

computing correspondences with respect to a variety of fea-

tures. Users can easily extend the framework to compute

new types of correspondence.

For each slide in a presentation, we extract a set of basic

features (discussed in Section 3.1) and then use feature-

specific distance operators (Section 3.2) to compute a set

of distances between pairs of slides. Next we apply corre-

spondence operators (Section 3.3) to find the “best” match

between a slide in the first presentation and a slide in the

second presentation.

3.1 Slide Features

We consider any basic descriptive element of a slide to be a

feature. The graphical elements including vector drawings,

images, charts and tables, as well as the text contained on a

slide are all examples of slide features. We also consider

the bitmap image of a slide to be a feature of it. Other ex-

amples of slide features include the position of text boxes

and graphic elements, background graphics or colors, for-

matting parameters of text, header text, footer text, note

text, and animation settings. Some features are specific to

the tool used to create the presentation. For example,

PowerPoint assigns a unique ID for each slide and for each

image on a slide. For a comprehensive list of object model

level features see the file format specifications of Microsoft

PowerPoint [13], Apple’s Keynote [1] or OpenOffice’s Im-

press [17].

Figure 2 describes the features that we use in our frame-

work. Although our implementation currently includes only

a few basic features that we have found most useful for

comparing presentations, the framework could easily be ex-

tended to handle other descriptive features of a slide.

3.2 Distance Operators

The first step in comparing two presentations is to compute

distances between the slides with respect to underlying slide

features. Each distance operator takes two presentations and

computes a distance between every pair of slides with the

first slide from the first presentation, and the second slide

from the second presentation. All of our current distance

operators are symmetric, though the framework can handle

asymmetric distance operators as well.

3.2.1 Image Distance

We compute the image distance between two slides by cal-

culating the mean square error (MSE) between their bitmap

images. The MSE measures visual similarity with smaller

values indicating greater similarity. A MSE of zero means

that the two slides are visually identical to one another,

while a large MSE implies that there may be large visual

differences between the slides.

A drawback of MSE, is that it often does not match human

perceptions of visual differences. For example, slightly

changing the position of an image between two slides can

produce a large MSE, even though the slides will look very

similar. Similarly, a minor insertion or deletion of text that

causes the text to reflow will produce a relatively large

MSE. Yet, the meaning of the text may not have changed at

all. Alternate image distance measures based on sub-region

comparisons may be less sensitive to small changes in slide

layout. Image distance metrics based on models of human

visual perception might also provide more meaningful dis-

tances. Nevertheless we have found MSE to be a very use-

ful measure of slide similarity, especially for identifying

visually identical slides.

3.2.2 Text Distance (Levenshtein or Edit Distance)

As mentioned previously, the string edit distance measures

the minimum number of operations required to convert one

Team Meeting

Sales Data
Southern Region
Northern Region

Unit Forecast

Major Markets
West and East Province

Upper Territory

Figure 2: Slide features currently used in our com-
parison framework.

string into another string. Our text distance operator uses

Levenshtein’s dynamic programming algorithm [11] to effi-

ciently compute the edit distance between textual features

such as Slide Title and Body Text. The algorithm builds a

matrix of costs required to convert one string into another

and then reports the minimum cost path through this matrix.

For completeness, we provide a brief description of the

string edit distance algorithm in Appendix A.

Another approach for comparing text strings is based on a

trigram model [21]. The idea is to build a histogram of all

three letter sequences of characters within each string. The

distance between the strings is then computed as the dot

product of the histograms. The advantage of this approach

is that it is less sensitive than string edit distance to rear-

rangements of text. For example, reordering bullet points in

the body text of a slide will yield a large string edit distance

but a relatively low trigram distance. In our system, we cur-

rently use string edit distance and have found that it gives a

good measure of text similarity. We leave it as future work

to compare the trigram approach with string edit distance

for presentation comparisons.

3.2.3 Slide ID and Picture ID Distances

Slide IDs and Picture IDs are PowerPoint specific features.

They are unique identifiers for each slide and each image

on a slide. Once created, they remain fixed for the lifetime

of a document. Thus, we can directly compare these IDs to

identify matching slides and images between two versions

of a presentation. The Slide ID distance operator returns 0

if the slide IDs match and a very large value when they do

not match. The Picture ID distance operator determines the

maximum number of images in common between two slides

and returns the reciprocal of that number plus 1. Thus slides

with many matches have lower distances than those slides

with fewer or no matches. If there are zero Picture ID

matches the operator returns a very large value.

While a Slide ID distance of 0 shows that two slides once

started out as identical, there is no guarantee that the slides

remain similar. The slides could have been heavily edited

within each presentation independently. Similarly even if

Slide IDs differ, the slides may be visually identical. The

simple act of copy/pasting (as opposed to cut/paste) will

produce identical slides with different Slide IDs. Neverthe-

less, the Slide ID distance does provide a measure of slide

similarity that is insensitive to subsequent slide edits.

3.2.4 Composite Distances

Our system also supports composite distance operators that

combine several basic distance operators into a single func-

tion. For instance we have found it useful to combine the

image and text distances into a single composite distance.

For each pair of slides we normalize the image and text dis-

tances so that they are roughly in the same range and can be

compared meaningfully. We then use the minimum of the

two normalized distances as our composite distance. This

composite distance returns a single number that can be used

to compare slides that contain extensive amounts of text

and those that contain no text, but only images.

One challenge in developing such composite distance func-

tions is normalizing the individual distance operators so

that they can be meaningfully combined with one another.

For example, image distances are measured in color space,

while text distances are measured with respect to the num-

ber of insertions/deletions required to convert one string

into another. In our current implementation we choose the

normalization factors by manually looking at and adjusting

the ranges of the individual distances.

A second challenge is to choose how to combine the nor-

malized distances. Taking the minimum distance essentially

considers only the best matching feature as the representa-

tive distance between slide pairs. Another approach is to

compute a weighted sum of the individual distances. While

the user could then control the importance of each distance

operator by setting its weight, choosing appropriate weights

may be a difficult task.

3.3 Slide Correspondence Operators

To find the best match between slides in each presentation

we compute slide to slide correspondences. These corre-

spondences are the key to identifying the changes between

presentations. As we will show in Section 4 our interactive

visualization tool is designed to visually depict these corre-

spondences so that users can quickly see similarities and

differences between multiple presentations.

Correspondence operators take two presentations and a dis-

tance operator as input and yield a mapping between each

slide in the first presentation and its best matching slide in

the second presentation. In our implementation, each slide

can appear in at most one match, and if no good match is

found the operator can leave a slide unmatched.

3.3.1 Minimum Distance Correspondence

A simple technique for computing correspondence is to

match each slide in the first presentation with the minimum

distance slide in the second presentation. While this ap-

proach could be used in conjunction with any of our dis-

tance operators, it has several drawbacks. If multiple slides

are at the same minimum distance, it is unclear how to pick

the best match from amongst them. There is also no provi-

sion for leaving a slide unmatched; even if none of the

slides in the second presentation is a “good” match, this

technique will still generate a correspondence.

3.3.2 String Edit Distance Based Correspondences

We can think of each presentation as a sequence of symbols

and then compute correspondences using the string edit dis-

tance algorithm described in Section 3.2.2 and Appendix A.

We assume that two slides match when the distance be-

tween them is less than a user-specified minimum threshold.

Backtracking through the resultant cost matrix, we can re-

cover a correspondence for each slide. Note that the string

edit distance algorithm cannot determine if blocks of slides

have moved from one position to another between presenta-

tions. It only reports slide insertions, deletions, and substi-

tutions. Thus, we cannot use string alignment to find corre-

spondences between slides that cross over other groups of

corresponding slides, which is common in presentations.

3.3.3 Greedy-Thresholded Correspondence

Heckel [8] presents a greedy algorithm for computing cor-

respondences between sequences of symbols. This ap-

proach finds uniquely corresponding symbols, removes

them from the potential set for consideration, and then ex-

pands the search from those symbols to adjacent symbols in

order to find the best correspondences. The algorithm iter-

ates until no more matches are found.

Heckel’s algorithm requires unique matches between sym-

bols. Since we compute feature distances rather than unique

matches we cannot directly apply Heckel’s technique and

instead adapt it as follows:

1. Given a distance operator sort the distances be-

tween all pairs of slides from least to greatest.

2. Create a correspondences between the minimum

distance pair subject to a distance threshold ε .

3. Remove both slides from further consideration.

4. Continue from step 2 until no more correspon-

dences can be found.

We introduce a minimum distance threshold ε in step 2 so

that slides that are significantly different cannot be matched

to one another. We have found that good values for ε de-

pend on the type of distance operator being used. We use

the following thresholds: image-based distance – 100 units

of mean square error, string edit distance - 30 operations,

slide and picture ID distances - only allow correspondence

when all IDs match.

White this greedy algorithm has worked well on the exam-

ples we have tested, it can run into some problems. Like

any greedy algorithm our approach may not always produce

an optimal solution. In particular a slide in presentation 1

may not be matched to a minimum distance slide in presen-

tation 2. In addition, our approach does not consider se-

quential proximity in computing correspondence. A slide at

the beginning of presentation 1 may best match a slide near

the end of presentation 2, but have a reasonably close match

at the beginning of presentation 2. Our current algorithm

would report the slide at the end of presentation 2. Heckel

includes a notion of sequential proximity in his distance

computation and we believe it is possible to extend our ap-

proach in a similar manner.

3.3.4 Composite Correspondences

Our correspondence operators can be computed with re-

spect to any distance operator, including the composite dis-

tance operators. However, as we noted earlier it is not al-

ways clear how to normalize the individual distance opera-

tors to produce a meaningful composite distance.

Therefore we have developed an alternative approach for

combining multiple distance operators, but at the level of

the correspondence operator.

Our approach is based on a voting scheme. We first com-

pute correspondences using any set of distance and corre-

spondence operators as described in sections 3.3.1-3.3.3.

For a given slide in the first presentation each distance op-

erator can generate a different minimum distance matching

slide in the second presentation. We treat each minimum

distance match as a vote for a particular correspondence

and report the slide in the second presentation that receives

the most votes as the corresponding slide. A tie in the vot-

ing means that there is disagreement between the distance

operators on individual features. In such cases the slide in

the first presentation is left unmatched. We have found that

combining the image, text and Slide ID greedy-threshold

correspondences using such a voting scheme is useful. The

Slide ID correspondence essentially arbitrates between the

image and text correspondences.

When changes affect many slides (such as a template

change), image distances will be large between correspond-

ing slides while other distances such as text, Slide ID and

Picture ID distances may be small or identical. Our com-

posite correspondence operators can detect template

changes because they consider the variance between image

distances and text, Slide ID, and Picture ID differences.

4 VISUALIZING MULTIPLE PRESENTATIONS

To help users understand similarities and differences in the

presentations, we allow users to interactively generate visu-

alizations that reveal correspondences between presenta-

tions. Examples of the types of visualizations we generate

are shown in Figure 3. Each column represents a presenta-

tion and each rectangle within a column represents a slide.

In the initial layout (Figure 3-a), the relative lengths of both

presentations is immediately apparent.

4.1 Conveying Correspondence

Correspondence is conveyed through two visual representa-

tions. First, users can turn on lines that connect correspond-

ing slides based on any of the distance and correspondence

operators (Figure 3-b). The color of the line indicates the

type of distance operator used (e.g., text distances, image

distances). When users hover the cursor over a line, the

numerical distance between the slides is shown.

Our second approach to visualizing correspondence is to

align corresponding slides. We compute the minimum

number of gaps required to maximize the number of corre-

sponding pairs of slides that align between two presenta-

tions subject to the constraint that each presentation cannot

modify the sequential ordering of the slides. (Figure 3-c).

Note that as a result of this constraint, corresponding slides

cannot always be aligned. For an example, the 6th slide in

the first presentation of Figure 3-c cannot be aligned with

its corresponding slide, but a line can still be used to show

that this slide corresponds to the 8th slide in the second

presentation.

We again use a string edit distance algorithm based on dy-

namic programming to compute slide alignment However,

in this case, we use a modified version of Hirschberg’s [9]

algorithm because it is more space-efficient than the more

standard Levenshtein string matching algorithm. As more

presentations are added to the comparison, gaps are ad-

justed throughout all the presentations to keep correspond-

ing slides aligned when possible (see Figure 4).

We’ve also found it useful to highlight corresponding pairs

of slides that are visually identical (i.e. with an image dis-

tance of 0). Visually identical corresponding slides can be

dimmed to a light blue color. In addition, corresponding

slides that are not visually identical can be linked using

lines with red-colored end-caps. Both of these approaches

help draw the user’s attention to slides which have changed

from version to version. The dimming is shown in Figures 1

and 6, while the end-caps are shown in Figures 1, 5, and 7.

4.2 Presentation to Presentation Visualizations

Our system provides two modes for visually comparing

multiple versions of a presentation. The sequential one-to-

one comparison mode assumes that the versions were cre-

ated in a particular order and compares version 1 with ver-

sion 2, version 2 with version 3 and so on. This mode is

useful for tracking changes in the presentation as it directly

depicts the evolution of the presentation from version to

version. The one-to-many comparison mode compares a

single base presentation to several alternative versions of it.

This mode is most appropriate for seeing how a master

presentation was assembled from earlier versions, or for

collaboratively combining presentations that were simulta-

neously edited by multiple collaborators. Figures 1, 3 (b-d),

4 (a-d) and 5 all show sequential one-to-one comparison,

while Figures 4-e, 6 and 7 show one-to-many comparisons.

v 1 v 2 v 1 v 2 v 1 v 2 v 1 v 2 v 3

(a) (b) (c) (d) (e)

v 1 v 2 v 3

Figure 3: (a) Two presentations arranged in columns. (b) Lines connect corresponding slides. The color of the line indi-
cates the type of distance operator used. For example, blue indicates image distance. (c) Presentations aligned using
the Hirschberg [9] string matching algorithm. Alignment is based on correspondences computed using one type of dis-
tance operator, the lines depict correspondences using the same distance operator. (d) Multiple sequences compared
serially – v1 compared with v2 and v2 compared with v3. (e) An alternate layout comparing one to many presentations,
lines are drawn between slides in the first presentation and corresponding slides in the subsequent versions.

no alignment

v1, v2

aligned

v1, v2, v3

aligned

v1, v2, v3, v4

aligned

Figure 4: Alignment of multiple presentations: Gaps
are inserted in both presentations 1 and 2 to
achieve maximal alignment. As subsequent presen-
tations are aligned, gaps must be inserted in all
previous presentations to keep them all aligned.

4.3 Interacting with the Visualization

The user can interact with the visualization by using a slider

to zoom out to see an overview of the changes, or to zoom

into a particular slide or region of slides. Clicking on a slide

will select it and bring up a full resolution slide in a slide

preview window. The user can use the arrow keys on the

keyboard to move the selection forward or backward within

a presentation, or move between corresponding slides

across presentations. By quickly moving back and forth be-

tween corresponding slides, the user can easily see visual

differences in the slides in the slide preview window.

Checkboxes allow different correspondence links to be

turned on and off, and a pull down menu allows the presen-

tations to be aligned along any of the correspondences. The

user can also select a slide and find similar slides along any

distance operator. Images of slides can be turned on or off

to just focus on the overall structure of changes. Slides that

do not change along a particular distance operator can be

dimmed to a light blue to help highlight only the changes.

5 ASSEMBLING PRESENTATIONS

Besides allowing analysis of the relationships between mul-

tiple presentations, the visualization tools also facilitate the

assembly of new presentations. Users can select a set of

slides from any presentation in the Visual Comparison

Window and paste them into the new presentation in the

Presentation Assembly Window.

Our system provides a number of techniques for selecting

slides in the Visual Comparison Window; all the slides

within a presentation can be selected by clicking on the

presentation title and all slides that contain a given string

can be selected by searching for the term.

In the newly assembled presentations, slides maintain their

correspondences to slides in the older presentations and us-

ers can easily choose between alternate slides using the ar-

row keys. Slides that have visually distinguishable corre-

spondences are outlined in gray to indicate that alternates

are available.

6 IMPLEMENTATION

The system was implemented using the Microsoft Office

Primary Interop Assemblies to access the object model for

PowerPoint and automate the extraction of all the features

contained on the slides. The visualization was developed

using the Windows Presentation Framework, and a variant

of Python called IronPython that uses the Common Lan-

guage Runtime (CLR) which facilitated rapid development

and allowed for convenient loading of modules for visual

comparison, textual comparison, and PowerPoint interac-

tion. The code is not currently optimized and takes ap-

proximately 1 minute to extract features and compare two

moderate sized presentations (30 slides) on a 2 GHz com-

puter with 1 Gb of RAM. The features and the comparisons

are saved in XML files so that once run, the comparison

will only re-run if the source presentations are altered.

7 RESULTS

Our results are depicted in Figures 5 – 7.

Figure 5 shows a visualization of 10 different versions of a

presentation prepared by multiple authors for an executive

review. The visualization depicts 387 slides. Each version

of the presentation is sequentially compared to the next

which allows for an analysis of the presentation over time.

In versions 3 and 8, several slides have been added as indi-

cated by the large insertion gaps. Conversely from versions

5 to 6, a four slide section was removed to shorten the pres-

entation. From versions 7 to 8 a slide that occurred later in

the presentation is moved earlier. Similarly, the visualiza-

tion allows viewers to rapidly see the changes throughout

the evolution of the presentation.

Figure 6 shows a one-to-many comparison where several

authors edited a single base presentation and the system was

then used to identify and coalesce changes. The visualiza-

tion shows where authors spot the same typo and how dif-

ferent authors might suggest alternate changes to the flow

of the presentation.

Figure 7 shows our system being used to assemble a presen-

tation. Here the user prepares for a mid year review by pull-

ing slides from two talks given earlier in the year. Our visu-

alization lets the user compare the two presentations (Figure

7-a) and choose the desired slides. For example the second

slide in the assembly is from version 2, the fifth slide from

version 1. The gaps indicate slides that only exist in one

version. Once assembly is complete, the user can save out a

new version of the presentation and make modifications

such as updating the title slide. Figure 7-b uses our one-to-

many correspondence to compare the newly assembled

presentation to the sources. This view directly shows which

source presentation each slide came from.

8 CONCLUSIONS

We have presented a framework and set of visualization

tools for analyzing and simultaneously presenting multiple

presentations. These tools can be used to assist in the crea-

tion of new presentations and support a variety of work

strategies from tracking changes for individuals, merging

multiple versions, or assembling new presentations. Our

visualizations can also give sociologists the tools to detect

patterns in multiple versions of a slide presentation or even

among all the presentations owned by a user or organiza-

tion.

Figure 5: Ten versions of a presentation prepared for a re-
view. The presentation consists of 387 slides. Gaps denote
where sections where added or removed (e.g. between v5 and
v6 a large section was removed to shorten the talk).

Figure 6: Merging changes using a one-to-many com-
parison of a base presentation v1 that has been edited
by 3 different authors (v2, v3, v4).Slides that are visually
identical are dimmed to light blue.

(b)

v 1 v 1v 2 v 2
Assembled v 3

v 3

(a)

Figure 7: (a) Using our system for presentation assembly. v1 and v2 are two related presentations. The sequential
comparison makes it easy to choose slides from the two versions: Alternate versions of a slide are aligned, and slides
that have changed under the image metric are denoted with red end-caps. The user can pick the desired slides (out-
lined in gray) and add them to the presentation assembly. In (b) the assembled presentation is compared to its
source versions. Our one-to-many comparison shows the source presentation each slide in our new assembled pres-
entation came from.

9 REFERENCES

1. Apple. Keynote. 2005.

www.apple.com/keynote; Keynote Document Reference:

developer.apple.com/technotes/tn2002/tn2073.html

2. Baker, M.J., and Eick, S. 1995. Space-filling software visu-

alization. Journal of Visual Language and Computing. 6.

pp.119-133

3. Brand, John. 2004. Presentation (Mis)management: Content

and Collaboration Strategies, Delta 3057. Sept 14, 2004.

4. Charras, C. Lecroq, T. Sequence comparison. www-

igm.univ-mlv.fr/~lecroq/seqcomp/index.html

5. Eick, S., Steffen, J.L., and Sumner, E.E. 1992. Seesoft – A

tool for visualizing line oriented software statistics. IEEE

Transactions on Sotware Engineering. 18, 11. pp. 957–968.

6. Eick, S. 1994. Graphically displaying text. Journal of Com-

putational and Graphical Statistics. 3, 2. pp. 127–142.

7. Good, L., and Bederson, B. 2002. Zoomable user interfaces

as a medium for slide show presentations. Information Visu-

alization. 1, 1. pp. 35–49.

8. Heckel, P. 1978. A technique for isolating differences be-

tween files. Comm. of the ACM 21, 4. pp. 264–268.

9. Hirschberg, D.S. 1975. A linear space algorithm for comput-

ing maximal common subsequences. Communications of the

ACM. 18, 6. pp.341–343.

10. Hunt, J.W., and McIlroy, M.D. 1976. An algorithm for dif-

ferential file comparison. Bell Laboratories CSTR #41.

11. Levenshtein, V.I.. 1966. Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics Doklady.

12. Microsoft. PowerPoint. www.microsoft.com/powerpoint

13. Microsoft PowerPoint Object Model Reference,

http://msdn.microsoft.com/office/understanding/powerpoint

14. Moscovich, T., Scholz, K., Hughes, J.F., and Salesin, D.

2004. Customizable presentations. Technical Report CS-04-

16, Computer Science Department, Brown University.

15. Needleman, S. and Wunsch, C. 1970. A general method ap-

plicable to the search for similarities in the amino acid se-

quence of two proteins, J Mol Biol. 48(3):443-53

16. Nelson, L., Ichimura, S., Pedersen, E.R., and Adams, L.

1999. Palette: A paper interface for giving presentations. In

Proceedings of CHI 1999. pp. 354–361.

17. OpenOffice Impress. www.openoffice.org

18. Parker, A., and Hamblen, J.O. 1989. Computer algorithms

for plagiarism detection. IEEE Transactions on Education.

32, 2: pp. 94-99.

19. Parker, I. 2001. Absolute PowerPoint: Can a software pack-

age edit our thoughts? The NewYorker. pp. 76–87.

20. Perlin, K., and Fox, D. 1993. Pad: An alternative approach

to the computer interface. In Proceedings of SIGGRAPH

2003. pp. 57-64.

21. Salton, G. and McGill, M. J. 1986. Introduction to Modern

Information Retrieval. McGraw-Hill, Inc.

22. Viégas, F. B., Wattenberg, M., and Dave, K. 2004. Studying

cooperation and conflict between authors with history flow

visualizations. In Proceedings of CHI 2004. pp. 575-582.

23. Zellweger, P.T. 1989. Scripted documents: A hypermedia

path mechanism. In Proceedings of ACM Hypertext 1989.

24. Zongker, D. E. and Salesin, D. H. 2003. On creating ani-

mated presentations. In Proceedings of the 2003 SIGGRAPH

/Eurographics Symp. on Computer Animation. pp.298-308

Appendix A: Computing String Edit Distance

We use dynamic programming in three different parts of

our system (to determine text distances, to find slide cor-

respondences, and to align presentations). Given two

strings of lengths m and n respectively, we construct a cost

matrix D of size.)1()1(+×+ nm . Entry),(ji of this ma-

trix represents the cost required to convert the first i

characters of string 1 into the first j characters of string 2.

We initialize D by filling in the top and left edges of D

with the numbers 0 to m and 0 to n respectively. The re-

maining entries of D are computed as follows:

if (string1[i] = string2[j]) then COST = 0; else COST = 1;

+−−

+−

+−

=

nsubstituioCOSTjiD

insertionjiD

deletionjiD

jiD

//,]1,1[

//,1]1,[

//,1],1[

min],[

For example, to compare the strings SURVEY and

SURGERY, we generate the following matrix:

 S U R G E R Y

 0 1 2 3 4 5 6 7

S 1 0 1 2 3 4 5 6

U 2 1 0 1 2 3 4 5

R 3 2 1 0 1 2 3 4

V 4 3 2 1 1 2 3 4

E 5 4 3 2 2 1 2 3

Y 6 5 4 3 3 2 3 2

The bold items represent the minimum cost paths from the

start to the end of each string. The algorithm yields a

string edit distance of 2 between the strings. Backtracking

through the matrix results in the following optimal align-

ment:

S U R G E R Y

S U R V E - Y

More detailed descriptions of string edit distance can be

found in [4,11].

