
Model-Based Motion Estimation for Synthetic AnimationsManeesh Agrawala� Andrew C. Beers� Navin Chaddhay� Computer Science Department yComputer Systems LaboratoryStanford University Stanford University
ABSTRACTOne approach to performing motion estimation on syn-thetic animations is to treat them as video sequencesand use standard image-based motion estimation meth-ods. Alternatively, we can take advantage of informa-tion used in rendering the animation to guide the motionestimation algorithm. This information includes the 3Dmovements of the objects in the scene and the projec-tion transformations from 3D world space into screenspace. In this paper we examine how to use this highlevel object motion information to perform fast, accu-rate block-based motion estimation for synthetic anima-tions.The optical ow �eld is a 2D vector �eld describ-ing the translational motion of each pixel from frameto frame. Our motion estimation algorithm �rst com-putes the optical ow �eld, based on the object motioninformation. We then combine the per-pixel motion in-formation for a block of pixels to create a single 2Dprojective matrix that best encodes the motion of allthe pixels in the block. The entries of the 2D matrix aredetermined using a least squares formulation. Our algo-rithms are more accurate and much faster in algorithmiccomplexity than many image-based motion estimationalgorithms.
1 INTRODUCTIONA problem with synthetic animations is that, like videosequences, they contain a large amount of data. At aresolution of 352 by 240 pixels, �ve minutes of NTSCvideo requires about a gigabyte of data storage. Tosend such an animation across a 10 Mbit/sec network(e.g. Ethernet) would require approximately 15 min-utes, assuming a sustained transfer rate of 10 Mbit/sec.In order to store long sequences or send them across anetwork, the data must be compressed.Motion compensation is the �rst step in many videocompression algorithms including MPEG [7], because itallows the compression algorithm to take advantage offrame to frame image coherency. The motion estimationAuthors' Address: Center for Integrated SystemsStanford University,Stanford, CA 94305-4070E-mail: maneesh@cs.stanford.edu, beers@cs.stanford.edu,navin@sleep.stanford.eduWorld Wide Web: http://www{graphics.stanford.edu/

T

Frame N Frame N+1

Screen Space

World Space

obj
-1

P
N+1
-1

P
NFigure 1: Backprojecting a pixel from frame N +1 intoframe N is done by multiplying the frame N + 1 pixelposition through three matrixes. The inverse projectionmatrix P�1N+1 transforms the pixel into frameN+1 worldspace. The matrix T�1obj transforms it back to frame Nworld space and the projection matrix PN transforms itinto the frame N screen space.algorithm and the associated motion model must be fastand accurate for this type of motion compensation to bepractical.One approach to performing motion estimation onsynthetic animations is to treat them as video sequencesand use standard image-based motion estimation algo-rithms such as those used in MPEG[7]. Alternatively,we can take advantage of information used in render-ing the animation to guide the motion estimation algo-rithm. Such information includes the 3D world spacemovements of the objects in the scene and the projec-tion transformations from world space into screen space.In this paper we examine how to use this motion infor-mation to perform fast, accurate block-based motionestimation.Many motion estimation schemes attempt to approxi-mate the optical ow �eld between frames of a sequence.The optical ow �eld is a 2D vector �eld describing themotion of each pixel from frame to frame.For synthetic animations there is a straightforwardmethod for computing the optical ow �eld. When ren-dering a synthetic animation, we know the transforma-tions from world space to screen space PN and PN+1 forframes N and N+1, the transformations Tobj that eachobject undergoes between the frames, and the objectthat is visible in each pixel. Given this information, we

can backproject each pixel in frame N + 1 to its corre-sponding position in frameN , as shown in �gure 1. Thismethod for computing the optical ow �eld is used inthe view interpolation schemes presented in [2]. It hasalso been used in previous work on motion compensa-tion for synthetic animations and it is the basis for themodel-based algorithms we present.Guenter et al. [5] describe a lossless motion compen-sated compression algorithm for synthetic animations.In their scheme all the information necessary to com-pute the optical ow vector for each pixel is sent tothe decoder. Thus, the encoder �rst sends the set ofworld space object transform matrices and the projec-tive transform matrices to the decoder. It then encodesthe (x; y; z) and an object ID for each pixel. Based onthis information, the decoder can reconstruct the frameby backprojecting each pixel into the previous frame asdescribed above. Because the decoder has access to theexact motion of each pixel, it can compensate for manytypes of motions, including translations, scalings, androtations. However, compared to image-based motionestimation schemes, this approach incurs a large over-head in sending the z and object ID information for eachpixel.In general, the transmission overhead required tosend motion information (such as optical ow vectors)for every pixel is large and can outweigh the advantageof motion compensation. To overcome this problem,motion compensation is often performed on blocks ofpixels rather than individual pixels. Block based mo-tion estimation proceeds as follows. For each squareblock of pixels in the current frame, a block that is sim-ilar to it (in terms of mean-squared or mean-absoluteerror) in the previous frame is found. The encoder de-termines the translational o�set between two blocks andsends this translational vector to the decoder. The sametranslational vector is used for every pixel in the block.In [9], Wallach et al. describe two methods forquickly calculating the optical ow and the per-blockmotion vectors of a synthetic animation using eitherthe Gouraud interpolation or the texture mapping ca-pabilities present in many modern hardware renderingsystems. Once Wallach et. al. determine the per-pixelmotion they calculate the mode vector (i.e. the mostfrequently occuring vector) within each 16 � 16 block,and use this vector to center a brute force search for thebest block match. Like block-based image motion esti-mation schemes, this approach yields a 2D translationalvector per block. The main drawback of these schemes isthat they do not properly account for non-translationalmotion such as rotations, scales, and perspective warpsof blocks.Our model-based motion estimation schemes areaimed at accounting for translational and non-translational block motions. Like Guenter et al. andWallach et al., our �rst step is to compute the opticalow �eld between frame N and frame N + 1. We thenconsider each B � B block of pixels in frame N + 1,as well as their corresponding optical ow vectors, andtry to �nd a single 2D transformation matrix that bestpreserves these vectors. By using a two-dimensional ma-trix, we can encode more than just the translational mo-tion of each block and thereby produce more accuratemotion information. However, this increased accuracycomes at the cost of increasing the number of motion

parameters that must be sent per block. Our resultsindicate that extra cost of sending more motion param-eters is outweighed by the increase in motion accuracy.Furthermore, our algorithms are much faster in algo-rithmic complexity than many image-based methods.This paper is organized as follows. Section 2 describesthe algorithms for model-based motion estimation. Sec-tion 3 gives the computational complexity of di�erentmotion estimation methods. Section 4 describes ourevaluation methodology. Section 5 gives the results. Wedescribe future directions for this project and concludein section 6.
2 ALGORITHM DESCRIPTIONWhile many techniques for block-based image motionestimation have been proposed, the simplest approachis to consider each B�B block in frame N+1 and per-form a brute force block search for the the best matchingblock in frame N within a search window. The searchwindow may be speci�ed by the pair [m;n], where mand n represent the the smallest and largest o�sets re-spectively, to be checked along each axis. Given a blockin frameN+1 centered at location (x; y), the brute-forcealgorithm (BRUTE) centers the search window at thislocation in frame N and examines every block withinthe search window to �nd the best match.The strategy behind our motion estimation schemesis to make use of the object motion information thatis available for synthetic animations. More speci�cally,we use the object movement information to quickly andaccurately create a 2D transformation matrix per blockin frame N + 1 that best encodes the frame to framemotion of each pixel in the block. The basic algorithmconsists of a loop over two steps and can be describedas follows.Loop over all the B �B blocks in frame N + 11. For each pixel in the block, compute the corre-sponding pixel in frame N by backprojecting it intoframe N . This creates an optical ow �eld for thepixels in this block.2. Based on the optical ow �eld computed in step 1use a least squares formulation, to compute a 2Dtransformation matrix that best preserves the pixelcorrespondences.2.1 Computing Optical FlowThe �rst step in all our motion estimation algorithms isto compute the optical ow �eld from frame to frame.To do this we determine a correspondence between eachpixel location in frame N + 1 and locations in frame Nby backprojecting each pixel in frame N + 1 through abacktransform matrix. In order to determine the back-transform, we need to know for each pixel in frameN+1:� which object is visible in the pixel,� the z value of each pixel (immediately availablewith z-bu�ered rendering systems),� the world space transformation matrix Tobj be-tween frame N and N + 1 for each visible object,

� the projection matrices PN and PN+1 from worldto screen space for each frameWe assume that objects move as rigid bodies, so themotion of the entire object is described by a single ma-trix Tobj. As shown in �gure 1, under these conditionsif qN+1 is the (x; y; z) position of a pixel in frame N+1,then its position qN in frame N is given by the equationqN = PNT�1objP�1N+1qN+1 (1)We can determine the (x; y; z) location of each pixelin frame N + 1 by looking at its screen position andz-bu�er value. By rendering an object ID map wherethe colors in the scene are replaced by object IDs, wecan determine to which object each pixel belongs bylooking at the corresponding location in the object IDmap. Thus, each frame must be rendered twice, onceto create the object ID map and once to create the realcolor rendering. On rendering systems that support fourcolor channels, however, we could render the color chan-nels and the object ID at the same time. The matrixBobj = PNT�1objP�1N+1 is called the \backtransform ma-trix".While this is the most straightforward method forcomputing the optical ow �eld based on informationabout world space object movements, other methodshave been developed. Wallach et al. [9] propose twodi�erent schemes for computing the optical ow �eldusing graphics hardware, one using Gouraud interpola-tion and the other using texture mapping. They back-project each vertex of the object in frame N + 1, andthen interpolate the ow �eld across each polygon us-ing the interpolation hardware. The complexity of ourbackprojection method is dependent on the number ofpixels in a frame, while the complexity of Wallach etal.'s methods are dependent on the number of polygonsin the scene. Thus, as the number of polygons in a sceneincreases, the performance of Wallach et al.'s methodsdegrades while the performance of the backprojectionscheme remains constant.2.2 Issues with BackprojectionThere is one case in which the backtransformationscheme described in section 2.1 for generating the opti-cal ow �eld does not work. Consider a pixel qN+1 on asurface that is visible in frame N + 1 and not visible inframe N . This can occur, for example, when one objectoccludes another object in frame N and moves so thatit no longer occludes that object in frame N+1. In thiscase the frame N location qN generated by backtrans-forming qN+1 will not correctly represent the opticalow. We reduce the severity of this problem by check-ing the object ID of qN and making sure that it matchesthe object ID of qN+1. In performing the second step ofour algorithm we only consider optical ow vectors forwhich the frameN+1 and frameN object IDs match. Itis also possible to reduce the severity of this problem byestimating frame N +1 motion from both frame N andframe N+2. Objects that are occluded in frame N maybe visible in frame N +2. Although such a scheme caneasily be �t into the model-based framework we present,we do not discuss forward frame motion estimation, aswe assume that the decoder has no future information.

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

AAA
AAA
AAA
AAA
AAA
AAA

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB

000
000
000
000
000
000

Frame N Frame N+1

Direction of Rotation

1

2

3
1

2

5

Face 5
is not
visible in
Frame NFigure 2: While face 5 of this object is visible in frameN+1, it is occluded by faces 1 and 2 in frame N . Back-projecting pixels that fall in face 5 will yield invalidoptical ow vectors.The object ID checking scheme presented above doesnot account for an object that occludes itself as it movesfrom frame to frame. See �gure 2. One techniquefor �nding these self occlusions is to make sure thatthe backtransformed z-value of the frame N + 1 pixelmatches (or is within epsilon of) the z-value of the frameN pixel. While this technique is limited by the precisionof the z-bu�er, it works well for identifying self occlu-sions. We have found in the animations we tested thatthe model-based motion estimation algorithms performbetter if we include self occluded vectors in our calcula-tions. This is because the surface colors of objects tendto be similar over the entire object. Even if the vec-tor does not represent the actual movement of the pixelon the object surface, the color contained in the incor-rect frame N location is often close to the correct color.As we will show, the model-based motion estimationschemes require at least three vectors to produce a rea-sonable estimate. In cases where we have less than threegood optical ow vectors, using these self-occlusion vec-tors allows our schemes to compute a reasonable motionestimate.Even when the backprojection scheme produces exactpixel correspondences, the color of corresponding pixelsmay be slightly di�erent due to shading changes. How-ever, the change should not be very large for relativelysmall object movements and for white lights the colorchange will only reect a change in the luminance of thepixel.2.3 Building the Block Motion MatrixOnce we have computed the optical ow �eld we con-sider a B �B block of pixels in frame N + 1 and theiroptical ow vectors. In most cases this gives us a set ofB2 optical ow vectors, although it is possible to havefewer valid vectors per block. As described earlier, vec-tors that project pixels of one object into another objectare considered invalid and are not included in our cal-culations. We want to build a single 2D transformationthat best encodes all the valid optical ow vectors. If we

Least Squares FormulationConsider a B � B block in frame N + 1 containing n valid optical ow vectors. These vectors give us a set ofn pixel locations qNi = (xNi ; yNi ; 1) in frame N which correspond to the locations qN+1i = (xN+1i ; yN+1i ; 1) in frameN + 1. We desire a six or nine parameter 2D transformation A that best preserves the correspondences betweenpoints qN+1 and qN . Using a six parameter transform results in the following equation:AqN+1 = qN" a b cd e f0 0 1 #" xN+1iyN+1i1 # = " xNiyNi1 # (2)To solve for the unknowns, we need to solve the following system of linear equations:M~s = ~t (3)2666664 xN+10 yN+10 1 0 0 00 0 0 xN+10 yN+10 1... ...xN+1n�1 yN+1n�1 1 0 0 00 0 0 xN+1n�1 yN+1n�1 1 377777526664 abcdef 37775 = 26664 xN0yN0...xNn�1yNn�1 37775 (4)When using a nine parameter transform, the entries of the last row of the matrix in equation 2 would be replacedby variables g, h, and i. Similarly, equation 4 would be extended to solve for all nine unknowns.We optimize the least squares method by exploting the structure of matrix M , allowing us to solve equation 4 inlinear time. Let ~xN be a vector of the x components of the points qN , and ~xN+1 be a vector of the x componentsof the points qN+1. Similarly, let ~yN be a vector of the y components of qN and ~yN+1 a vector of the y componentsof qN+1. We begin by splitting equation 4 into two parts:M 0~z1 = ~g1 M 0~z2 = ~g2� ~xN+1 ~yN+1 1 �" abc # = � ~xN � and � ~xN+1 ~yN+1 1 �" def # = � ~yN �where M 0 is an B2�3 matrix in the worst case. Note that if we were solving for a nine parameter matrix, we wouldsplit equation 4 into three parts here.We solve these systems using a standard least-squares approach:zi = (M 0TM 0)�1M 0T~gi (5)where M 0TM 0 = 26666666664 k~xN+1k2 h~xN+1 ; ~yN+1i B2�1Xi=0 xN+1ih~xN+1 ; ~yN+1i k~yN+1k2 B2�1Xi=0 yN+1iB2�1Xi=0 xN+1i B2�1Xi=0 yN+1i B2 37777777775 (6)have more than three valid optical ow vectors withina block we can set up an over-constrained linear systemand use a least squares minimization to solve for theentries of this matrix. We can formulate the system asshown in the box entitled \Least Squares Formulation".We have implemented two motion estimationschemes, LSQ6 and LSQ9, based on the six and nineparameter least squares formulations. With LSQ9 theresulting matrix A is a general 2D transform, while withLSQ6 it is an a�ne 2D transform.In doing the least squares computation we can con- sider either all the valid optical ow vectors in the block(LSQ-ALL), or we can consider only the valid vectors ofthe object containing the most pixels in the block (LSQ-ONE). The �rst method tries to �nd the best �t acrossobject edges, while the second method only considersvectors within one object.2.4 Issues with Least SquaresWhenever a block contains less than three valid opticalow vectors, the least squares solvers LSQ6 and LSQ9

do not have enough information to uniquely solve thesystem in equation 4. Since they cannot determine areasonable block motion matrix, we use identity as themotion matrix. Although it is unlikely that this pro-duces a good block match, the least squares algorithmsdo not have enough model-based information to pro-duce a better match. In these cases, since the BRUTEalgorithm performs an image based search for the bestmatching block, it tends to �nd a better match than theleast squares techniques.Another case where brute force tends to do betterthan the least squares approach occurs for blocks con-taining object edges (i.e. when two or more objects ap-pear in the same block). In these blocks, if the objectsare moving in di�erent directions, the LSQ-ALL leastsquares scheme tends not to preserve any of the motionvectors well in attempting to �nd a \best �t" for allof them. Although the LSQ-ONE scheme preserves themotion vectors of pixels within the object covering thelargest percentage of the block, it does not perform wellfor pixels in the block belonging to other objects.In some applications that involve synthetic anima-tions, a single object is being manipulated against asolid color background. Whenever a frame N + 1 blockcontains a majority of background color pixels we checkwhether the error frame variance would be lower if theentire block contained the background color, or if theblock was reconstructed using motion parameters com-puted using a motion estimation technique. If a solidbackground colored block gives us a lower variance, thedecoder is told to �ll the block with background pixels,and no motion parameters are sent.2.5 Hybrid ApproachesBased on the observations presented in the previoussection, we have developed two hybrid motion estima-tion schemes that combine the least squares approachwith the image-based brute force technique to obtainmore accurate motion estimates. The simplest scheme,HYBRID-SMPL, performs the least squares estimationas well as the brute force estimation on each block. Itthen reconstructs the block using the motion informa-tion produced by these two motion estimation schemesand di�erences each reconstruction with the originalblock. The method that produces the smallest variancein the di�erence block is chosen as the motion estima-tion method for the block. The other hybrid scheme,HYBRID-EDGE, performs the basic least squares es-timation on all the blocks and performs a brute forcesearch only on blocks containing object edges and blockswhich contain less than B2 valid correspondences asthese are the blocks in which new information is beingintroduced.For comparison we have also implemented the predic-tive brute force (P-BRUTE) motion estimation schemepresented by Wallach et al. [9]. After generating theoptical ow �eld they �nd the mode of the pixel mo-tion vectors in each B � B block and use that vectorto center a brute force search. They show that the P-BRUTE algorithm converges on the best block matchwith a smaller search window than standard BRUTEand therefore is often faster than BRUTE. We have ex-perimented with both P-BRUTE or BRUTE within our

Hybrid

P-BRUTE LSQ9LSQ6

Least Squares

HYBRID-EDGE HYBRID-SMPL

BRUTE

Brute Force

LSQLSQ
ALL

Least Squares
Brute Force

Least Squares
Brute Force

ONE ALL
LSQ LSQ

ONEFigure 3: Overview of all the algorithms. Each branchin each tree represents a di�erent motion estimation al-gorithm.hybrid techniques. Figure 3 shows how the various al-gorithms we have presented �t together.2.6 Block ReconstructionOnce we have generated a 2D transformation matrix foreach block in frame N+1, we can reconstruct the frameby applying the matrix to each pixel in the block andusing the color of the pixel at the transformed locationin frame N . In most cases, however, the transformedlocation will not lie exactly at an integral pixel location.We use bilinear interpolation on the four pixels adjacentto the transformed location in order to determine thecolor at the transformed location.If the original renderings are anti-aliased it is espe-cially important to perform this interpolation in orderto avoid introducing more sampling errors. By inter-polating instead of point sampling, we obtain a betterapproximation of the color at the transformed pixel lo-cation.2.7 Compressing the Motion MatricesWhile most block based motion estimation algorithmsfor image compression generate two motion parameters�x and �y per block, our algorithms can generate six ornine parameters per block. Compressing these parame-ters is therefore essential to maintaining a good overallcompression rate. In the model-based algorithms wepropose, lossless coding would require many bits for en-coding the motion information because the parametersgenerated using the least-square formulation have oat-ing point precision. For example, Lempel-Ziv coding ona quantized version of the motion matrices resulted ina compression of only 2:1. Thus, we propose an algo-rithm for compressing this motion information based onvector quantization of the motion matrices.Vector Quantization (VQ)[4] is a lossy compressiontechnique. It is the extension of scalar quantization tohigher dimensional spaces. In VQ, a vector of samplesis quantized together to one of a number of predeter-mined reproduction vectors, called codewords. In fullsearch vector quantization, the encoder consists of an

exhaustive search for the minimum distortion codewordwhile the decoder consists of a table lookup. A majordrawback of full search VQ is its high encoding com-plexity. Tree structured VQ[4] (TSVQ) is one schemeto reduce the encoding complexity by replacing the fullsearch by a sequence of binary searches. Both full searchand TSVQ produce a �xed rate-code. A variable ratecode can be implemented with TSVQ by using an un-balanced tree. The advantage of doing this would beto allocate fewer bits to the commonly occuring motionmatrices and more bits to matrices which occur veryrarely. This is similar to the principle of Hu�man cod-ing.To design an unbalanced tree we use a greedy grow-ing algorithm[8]. In this method the tree is grown onenode at a time. The node with the largest ratio of de-crease in distortion to increase in rate or entropy is split.Hence, each split optimizes the rate-distortion tradeo�.We further prune this unbalanced tree using the Gen-eralized BFOS algorithm[3]. This algorithm trades o�the entropy of leaves for the average distortion. In thisalgorithm the average entropy is minimized instead ofthe average length.Thus we obtain a TSVQ codebook using a greedygrowing algorithm followed by pruning using a general-ized BFOS algorithm. We choose a large training setrepresentative of the di�erent kinds of motion in syn-thetic animations. The motion matrices are used as theinput vectors.The encoder for compressing the motion matricesuses the motion matrix for each block obtained fromthe least squares algorithm as the input vector and out-puts the index of the codeword (in the motion matrixcodebook) closest to the input vector. The decoder usesthe index to look up the codewords of motion matricesand outputs a set of quantized motion matrices. Thesequantized motion matrices are then used to reconstructthe frame.
3 ALGORITHMIC COMPLEXITYThere are several performance measures we can use tocompare the model-based motion estimation algorithmswith image-based algorithms. These include the algo-rithmic complexity of the methods, the quality of thereconstructed frame (i.e. how close it is to the original),and how well the error frame, that is the di�erence be-tween the estimated and original frame, compresses. Inthis section we will consider the �rst of these measures;we will consider the other two in section 5.Since all of the motion estimation algorithms we con-sider are block based we will analyze the complexity ofperforming each algorithm on a B � B block of pixels.The complexity of all the model-based algorithms is de-pendent on the number of valid optical ow vectors in ablock. For this analysis we will assume all B2 vectors arevalid as this is the worst case. The complexity of the�nal block reconstruction from the computed motionparameters at the decoder is not included in the analy-sis of the algorithms. Table 4 summarizes the analysesdiscussed in this section.

3.1 Complexity of Brute ForceAs described in [6], for a square, symmetric search win-dow of size [-n,n] (that is, �n pixels in both horizontaland vertical directions),the BRUTE algorithm requires(2n+1)2 block compare operations. The block compareoperation, based on a mean absolute error criterion,consists of summing the absolute di�erences betweenpixels in frame N + 1 and the corresponding pixels inframe N on a block by block basis. For a B �B block,2B2 operations are required, since B2 absolute di�er-ences, B2 � 1 additions and 1 compare operation mustbe performed. Thus, the total cost per block of theBRUTE algorithm is (2n + 1)2 � 2B2. Although fasterimage-based block motion estimation algorithms exist,as described in [6], they are less accurate than BRUTE.Thus, we compare our model-based schemes to BRUTE.3.2 Complexity of Optical FlowThe �rst step in each of the model-based motion estima-tion techniques is calculating the optical ow �eld foreach B � B block. As explained in section 2.1 we needa backtransform matrix for each object in the anima-tion and an object ID map to compute this ow �eld.Since the cost of computing the backtransform matri-ces is only dependent on the number of objects in theanimation, a constant factor must be added to the costof backprojecting each block of pixels. In many caseshowever, the number of objects in the scene is muchless than the number of blocks in each frame and thisconstant factor is negligible. As described in section 2.1rendering the object ID map can be accelerated by us-ing hardware rendering pipelines. We assume that suchacceleration will be used, and do not include the cost ofthis rendering in our complexity analysis.Once we have created the backtransformation ma-trices and the object ID map, we must multiply the(x; y; z) position of each pixel through the appropriatebacktransform matrix. The multiplication requires 16multiplies, 12 adds and because we are using homoge-neous coordinates we must perform 2 divisions to �ndthe (x;y) location of each pixel in frame N . Thus, for aB�B block the backtransform requires a total of 30B2operations.Based on the the cost of the optical ow �eld we cancalculate the cost of the P-BRUTE algorithm. The P-BRUTE algorithm is similar to the BRUTE algorithmexcept that there is an extra cost for computing theoptical ow �eld and then calculating the mode of theow �eld vectors in each B�B block. Determining themode of B2 optical ow vectors requires approximately2B2 operations. Thus, the total cost per block for thepredictive brute force scheme is (2n+1)22B2 +30B2 +2B2 operations. Note that this n is often smaller thanthe one used for BRUTE.3.3 Complexity of Least SquaresGeneral approaches to solving a system via a least-squares method require time proportional to 8m3, wherem is the largest dimension of the matrix. In our case,m is the number of optical ow vectors in a block whichwe assume is B2. For our problem, we can exploit thesimple structure of the matrix to solve the system in

with n = 16Algorithm Operation Count and B = 16BRUTE 2(2n + 1)2B2 557,568Optical ow 30B2 7,680LSQ6 55B2 � 11 14,069LSQ9 61B2 � 14 15,602P-BRUTE 2(2n + 1)2B2 + 32B2 565,760HYBRID-SMPL(LSQ6)(with BRUTE) 59B2 + 2(2n + 1)2B2 + 2B + 10 572,714(with P-BRUTE) 61B2 + 2(2n + 1)2B2 + 2B + 10 573,226HYBRID-EDGE(LSQ6)(with BRUTE) 55B2 � 11 + 0:2(2(2n + 1)2B2 + 4B2 + 8B + 12) 125,816(with P-BRUTE) 55B2 � 11 + 0:2(2(2n + 1)2B2 + 6B2 + 8B + 12) 125,918Block Reconstruction(translational) 2B 32(2D matrix, without interpolation) 6B + 11 107(2D matrix, with interpolation) 47B2 + 6B + 11 12,139Table 4: Summary of the algorithmic complexities. The search windows for the brute force algorithms is [-n,n], andB � B is the block size.asymptotically linear time, as shown in the box entitled\Least Squares Formulation".The number of operations to compute matrix M 0 is2B2 � 1 multiply/adds for each of the squared normsand the inner products. This yields a total of 6B2 � 3multiply/adds if we take advantage of the symmetryof the matrix to avoid computing h~xN+1; ~yN+1i twice.The summations over ~x and ~y each require B2 � 1 op-erations. Again exploiting the symmetry of the matrixand only computing each sum once, the total number ofoperations to compute the above matrix is 8B2 � 5.This matrix is always 3 � 3, so it can be invertedin constant time. Multiplication by M 0T requires 5B2multiply/adds, and multiplication by the gi vectors re-quires 6B2�3 multiply/adds each, for a total of 12B2�6multiply/adds for the six parameter case and 18B2 � 9multiply/adds for the nine parameter case. Includingthe 30B2 operations needed to compute the optical ow�eld, the total number of operations required by LSQ6is 55B2 � 11, while LSQ9 requires a total of 61B2 � 14operations.3.4 Complexity of Block ReconstructionGiven a translational motion vector per block in frameN + 1, to reconstruct the block we add the transla-tional vector to each pixel in the block and look up thetransformed pixel location in frame N . Thus, for thebrute force algorithm 2 additions per pixel are neces-sary which is a total of 2B2 additions per block. How-ever, if we take advantage of spatial coherence withina pixel block 2 additions are only required for the �rst(i.e. lower left) pixel in each block. For the next pixelin this row the y coordinate does not change, so only 1addition is required to transform its x coordinate. Sim-ilarly for each pixel in the �rst row and column only1 addition is required to �nd its transformed location.For every other pixel in the block each coordinate hasalready been transformed to compute the position of apixel in the �rst row or column, so we can simply look

up the transformed position in a cache containing thetransformed coordinates for the �rst row and column.This yields a total of 2(B � 1) + 2 = 2B additions perblock.Given a 3x3 2D transformation matrix per block, re-constructing the block requires that we multiply eachpixel through the matrix and then perform a projectivedivision on the x and y coordinates of the transformedpixel. This entails a total of 15 multiply/adds and 2divides per pixel. However, once again we can use blockcoherence to only perform the matrix multiplies as nec-essary along the �rst row and column of the block. Withthis optimization a total of 6B + 11 operations are re-quired per block.If we are interpolating during the reconstruction asdescribed in section 2.6, we must add a constant cost of2 oor operations per pixel, and 15 multiply/adds perpixel per color channel to perform the bilinear interpo-lation. Thus the total complexity of the interpolationoperation for a block is 47B2 operations. Although in-terpolation increases the cost of the reconstruction al-gorithm, it considerably lowers the mean square error ofthe reconstructed image versus the original, especiallyfor anti-aliased images.3.5 Complexity of Hybrid SchemesThe HYBRID-SMPL algorithm performs both a leastsquares search and a brute force search on each block.Thus its complexity is the sum of the complexities foreach scheme individually plus the complexity of decid-ing which method performs best. To perform this de-cision, we reconstruct the block using each of the tworeconstruction methods described in the previous sec-tion, at a total cost of 8B + 11 operations. We do notuse interpolation with the least squares reconstruction.Computing the variance of the two di�erence blockstakes a total of 4B2 operations. Finally we choose themethod producing the smaller variance, with 1 com-pare operation. Thus, the decision process costs a total

Sequence # Frames DescriptionBALLS 101 Two balls rolling on rampsCUBE-SPIN 126 Four spinning cubes that overlapFINDSPOT 196 Manipulating the the bunny to �nd a spot on itROTBUNNY 73 Bunny rotating about Y axisSCALEBUNNY 100 Bunny scaling to di�erent sizesTOP-SPIN 126 A spinning top in a textured environmentTRANSBUNNY 133 Bunny translating in XY planeTable 5: Summary of the animation sequences that comprise our animation database.of 4B2 + 8B + 12 operations. The total cost of theHYBRID-SMPL scheme is therefore the complexity ofleast squares plus 2(2n+1)2B2 +4B2 +8B+12 opera-tions. We assume that the cost of least squares includesthe cost of computing the optical ow in this formula-tion.The HYBRID-EDGE algorithm also performs a leastsquares motion estimation on every block and performsa brute force search only on blocks in which there areedges or new information has been introduced. Thecomplexity of this algorithm is therefore dependent onthe number of blocks for which the brute force search isperformed and it varies between the complexity of onlyperforming the least squares technique and the complex-ity of performing HYBRID-SMPL. With the syntheticanimations we examined, a brute force algorithm wasused on at most 20% of the blocks in each frame.In each of these hybrid algorithms it is possible to re-place the brute force search with any image-based blockmotion algorithm. We use BRUTE because it tends tobe the most accurate image-based algorithm. Using afaster image-based algorithm would reduce the complex-ity of our hybrid algorithms. However it would reducethe accuracy of our hybrid algorithms as well.
4 EVALUATION METHODOLOGYThis section is divided into two parts. The �rst sectiondescribes the synthetic animation database on which themotion estimation algorithms are tested. The secondsection discusses the evaluation criterion for comparingdi�erent motion estimation algorithms.4.1 Synthetic Animation DatabaseAn important feature of any motion estimation or com-pression study is a database on which di�erent al-gorithms can be tested and compared. There is nostandard synthetic animation database available whichspans the di�erent types of applications in which syn-thetic animations are rendered. Furthermore, for mostprerendered animations we do not have access to the ob-ject transformation matrices that were used during therendering. Similarly we cannot use the video databasesthat are commonly used to test video compression al-gorithms because there is no rendering information forthem.Thus we have developed our own synthetic anima-tion database containing several motion sequences cor-responding to di�erent kinds of motion commonly found

in computer graphics applications. Each animation isstored as a script containing the transformations per-formed on each object from frame to frame. Table 5 isa list of each of the synthetic animations in the databasewith a short summary description of it.Several of the animations in our database representspeci�c types of applications in which there are syn-thetic animations. The simplest animations consist ofa single object moving on a black background. A setof three animations ROTBUNNY, TRANSBUNNY andSCALEBUNNY contain a single beige and brown bunnyobject that is either rotating about the vertical screenaxis, translating in the plane of the screen or scalingup and down in size respectively. Using these anima-tions we can examine how the model-based algorithmsperform on each type of a�ne transformation (rotation,translation and scaling) individually.In the BALLS animation, two textured balls roll upand down inclined ramps. One ball rolls in front ofthe other, making correct motion estimation di�cult inblocks where the two balls overlap. During the anima-tion, the camera also tracks toward the scene. This ani-mation includes rotation, translation and scaling due tocamera movement. The CUBE-SPIN animation showsfour cubes spinning in various directions and at di�er-ent speeds. The cubes overlap near the center of theframe, so new information is being introduced in eachframe as new parts of each cube rotate into view. TheFINDSPOT animation also contains the bunny, but oneof its 69,451 polygons has been colored red. The ani-mation shows the bunny being manipulated (rotated,translated and scaled) in order to �nd the spot. ThisFINDSPOT animation represents how someone mightinteract with an object to study its geometry or sur-face characteristics. In the TOP-SPIN sequence, a topis shown spinning in a simple environment. Both thecamera and the top object move from frame to frame.In addition, all of the objects in the TOP-SPIN anima-tion are texture mapped, to test how well reconstructionwith resampling performs.4.2 Evaluation CriteriaWe are interested in three main quantitative perfor-mance measures for comparing the di�erent motion es-timation algorithms: algorithmic complexity, quality ofreconstructed sequences, and compression achieved. Wehave already compared the complexity of the di�erentalgorithms in section 3. For comparing the quality ofreconstructed sequences, we compare the Peak Signal-to-Noise Ratio (PSNR) of the DCT compressed error

Algorithm Channel BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNYLSQ6 (LSQ-ONE) Y 42.21 42.84 44.51 41.74 45.68 42.88 46.26U 45.06 44.63 54.51 48.89 52.45 43.69 57.34V 46.70 45.06 53.80 48.04 51.70 45.48 56.67LSQ6 (LSQ-ALL) Y 41.65 42.40 44.51 41.74 45.68 42.12 46.26U 44.13 43.49 54.51 48.89 52.45 44.15 57.34V 45.78 43.91 53.80 48.04 51.70 46.12 56.67LSQ9 (LSQ-ONE) Y 42.21 42.84 44.51 41.74 45.68 42.88 46.26U 45.06 44.63 54.51 48.89 52.45 43.69 57.34V 46.70 45.06 53.80 48.04 51.70 45.48 56.67LSQ9 (LSQ-ALL) Y 41.65 42.40 44.51 41.74 45.68 42.12 46.26U 44.13 43.49 54.51 48.89 52.45 44.15 57.34V 45.78 43.91 53.80 48.04 51.70 46.12 56.67Table 6: Average PSNR per frame of the compressed error frame for each of the least squares algorithms. Losslesscoding of the motion parameters is assumed.frames.To compare the compressed bitrate achieved usingthe di�erent motion estimation schemes, we compresstwo things: (1) the error frame, which is the di�erencebetween a frame of the original animation and the recon-struction of that frame by one of the motion estimationalgorithms; and (2) the motion information computedby the motion estimation algorithm. As described inthe next two sections, we compress the error frame withDCT-based compression to determine the bit-rate as-sociated with the error frame, and we approximate thebit-rate of the compressed motion information.4.2.1 Compressing the Error FrameThe compression of the error frame is done in fourstages: a transformation stage, a lossy quantizationstage and two lossless coding stages. In the transfor-mation stage, we use a two dimensional 8 � 8 DCT onan 8� 8 block of pixels like JPEG. In the quantizationstage the DCT coe�cients are quantized to reduce theirmagnitude and to increase the number of zero value co-e�cients. We use the uniform mid-step quantizer witha di�erent step size for each DCT coe�cient. In thelossless coding stage we rearrange the quantized DCTcoe�cients into a zig-zag pattern. The zig-zag pattern isused to increase the run-length of zero coe�cients foundin the block. The DC coe�cients are coded by takingthe di�erence between the quantized DC coe�cient ofthe current block and the quantized DC coe�cient ofthe previous block. The quantized AC coe�cients usu-ally contain runs of consecutive zeroes. A coding advan-tage is obtained by using a run-length technique. Theblock codes from the DPCM and the run-length modelsare further reduced using Hu�man coding with customtables.We work in the YUV space as we can decimate Uand V horizontally and vertically by a factor of 2 ineach dimension without much loss in visual quality. Thesame compression algorithm is used for the Y, U and Vstreams. The only di�erence is the quantization for Yand U,V data di�er. Thus the di�erent algorithms arecompared for the bitrate and PSNR in the Y, U and Verror streams.

4.2.2 Compressing Motion InformationTo compare methods such as BRUTE and LSQ6 fairly,we also need to consider the overhead required to encodethe motion parameters required by each scheme. Thetranslational motion vectors in BRUTE and P-BRUTEare compressed via Hu�man coding.For the least-squares and hybrid methods, we codefour di�erent types of blocks: blocks containing back-ground information, identity blocks (i.e. blocks thathave not moved from their position in the previousframe), translational blocks with integral components,and six-parameter or nine-parameter motion blocks. Aag is used to distinguish between the four block types.To reduce the number of bits required by these ags, weHu�man code them.The motion parameters for each of the four di�erenttypes of blocks can be coded via a di�erent scheme. Themotion parameters for translational blocks can be codedlike the translational vectors of BRUTE, using losslessHu�man coding. Six and nine parameter motion blocksare coded via the VQ method described in section 2.7.Background and identity blocks require no additionalbits beyond the ag.
5 RESULTSIn this section the performance of the model-based mo-tion estimation algorithms is compared with image-based brute force motion estimation in terms of errorframe PSNR (i.e. quality) and bitrate. Summary re-sults for all the animations in the animation databaseare presented in tables 6, 7, 8, 9 and 10 In section5.1 we show that LSQ6(LSQ-ONE) is the best leastsquares method. In sections 5.2 5.3 and 5.4 we com-pare the P-BRUTE, LSQ6(LSQ-ONE) and hybrid al-gorithms to the BRUTE algorithm. Although there areseveral image-based block motion estimation algorithmsthat are faster than BRUTE, we do not compare theaccuracy of our model-based algorithms with the accu-racy of those algorithms because most of them are lessaccurate than BRUTE. All of the results described inthis section were collected for animations rendered at400� 400 pixels, with a block size of 16 � 16 pixels.

Algorithm BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNYLSQ6 (LSQ-ONE) 24.375 18.772 13.788 27.080 13.137 20.629 11.201LSQ6 (LSQ-ALL) 25.957 20.136 13.788 27.080 13.137 22.561 11.201LSQ9 (LSQ-ONE) 24.378 18.782 13.788 27.080 13.137 20.629 11.201LSQ9 (LSQ-ALL) 25.962 20.145 13.788 27.080 13.137 22.561 11.201Table 7: Average bitrate per frame, measured in kilobits, for each of the least squares algorithms. Lossless codingof the motion parameters is assumed, and the overhead required by the motion parameters is not included in thesenumbers.Algorithm Channel BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNYBRUTE Y 40.19 40.29 43.19 40.10 43.93 42.48 43.91U 38.77 41.57 53.51 47.92 53.36 42.75 53.36V 41.01 41.83 52.50 46.80 52.33 43.85 52.33P-BRUTE Y 40.35 40.30 43.22 40.20 44.10 42.50 44.57U 39.67 41.60 53.66 48.31 53.98 42.73 55.58V 42.52 41.86 52.50 47.20 53.08 43.82 54.51LSQ6 (LSQ-ONE) Y 42.20 42.79 44.51 41.71 45.63 42.85 46.14U 45.03 44.59 54.51 48.89 52.45 43.67 57.34V 46.70 45.01 53.80 48.04 51.70 45.46 56.67HYBRID-SMPL Y 42.45 42.99 44.95 42.10 46.17 43.75 46.52(BRUTE) U 45.55 46.64 55.34 50.00 55.83 44.95 58.13V 47.45 47.06 54.50 49.05 55.12 46.09 57.34HYBRID-SMPL Y 42.46 42.99 44.95 42.10 46.20 43.74 46.55(P-BRUTE) U 45.60 46.67 55.34 50.00 55.83 44.95 58.13V 47.52 47.06 54.50 49.10 55.12 46.09 57.34HYBRID-EDGE Y 42.25 42.91 44.89 42.11 45.96 43.51 46.52(BRUTE) U 45.63 46.64 54.91 49.56 52.57 44.93 57.34V 47.38 47.06 54.10 48.64 51.90 46.14 56.67HYBRID-EDGE Y 42.26 42.91 44.89 42.11 45.98 43.51 46.52(P-BRUTE) U 45.65 46.64 54.91 49.56 52.69 44.93 57.34V 47.38 47.06 54.10 48.64 51.90 46.14 56.67Table 8: Average PSNR for the YUV channels for each algorithm. These numbers include the e�ects of using lossillycompressed motion parameters.5.1 Choosing the Best LSQ MethodAs shown in �gure 3 there are several variations witheach of the model-based algorithms. We initially con-sider the performance of each of the four least squaresalgorithms to determine which one performs best. Theaverage PSNR and average bitrate for these schemes arepresented in tables 6 and 7. Both are calculated underthe assumption that the 2D motion matrices are codedlosslessly. Furthermore, these bitrates do not includethe overhead required by the motion matrices. However,it is possible to determine which least squares techniqueperforms best based on these results.Tables 6 and 7 show that across all the animationsLSQ-ALL performs worse than LSQ-ONE and thatLSQ6 and LSQ9 are roughly equivalent. Since LSQ6 re-quires only six motion parameters rather than the ninerequired by LSQ9, the overhead required by the motionparameters is smaller for LSQ6 than LSQ9. Based onthese observations we choose LSQ6(LSQ-ONE) as theleast squares algorithm for the hybrid schemes.5.2 Predictive Brute Force ResultsThe simplest model-based scheme is P-BRUTE. Likethe BRUTE scheme, it only accounts for translational
block motion. The search window size for all of theBRUTE and P-BRUTE results presented in this sec-tion is [-16,16]. As shown in table 8, the average PSNRfor the Y channel is slightly better for P-BRUTE thanBRUTE across all of the animations. The main advan-tage of P-BRUTE is that for a �xed reconstruction qual-ity it typically requires a smaller search window thanBRUTE. Given a large enough search window, BRUTEand P-BRUTE will perform equivalently in terms ofquality. With smaller search windows the di�erencesbetween the two brute force schemes are more dramaticas reported in [9].In table 9, we consider the average bitrate per framerequired by P-BRUTE for each of the animations inthe database. The �rst row of the table lists the aver-age motion parameter overhead per frame, and the sec-ond row lists the total average bitrate per frame. Thethird row shows the percentage of average total bits perframe saved by using a model-based algorithm insteadof BRUTE. With P-BRUTE for example, this numberis computed by di�erencing the average total bits perframe for P-BRUTE and BRUTE, and then dividingthe di�erence by the average total bits per frame forBRUTE. The P-BRUTE algorithm requires fewer bitsthan BRUTE for most of the animations. However, itdoes slightly worse than BRUTE for the CUBES-SPIN

Algorithm BALLS CUBES-SPIN FINDSPOT ROTBUNNY SCALEBUNNY TOP-SPIN TRANSBUNNYBRUTE 2.718 2.741 2.365 3.117 2.410 1.720 1.67238.291 32.913 20.511 40.030 20.225 26.273 19.667|| || || || || || ||P-BRUTE 2.974 3.300 2.373 3.208 2.451 1.724 1.66336.257 33.428 20.450 38.444 19.487 26.402 17.0365.31% -1.56% 2.97% 3.96% 3.65% -0.49% 13.38%LSQ6 (LSQ-ONE) 3.670 4.295 5.472 4.760 4.955 2.879 4.32228.085 23.312 19.347 31.953 18.173 23.623 15.75826.65% 29.17% 5.68% 20.18% 10.15% 10.09% 19.88%HYBRID-SMPL 3.539 4.226 5.180 4.660 4.785 2.583 4.176(BRUTE) 25.729 20.869 18.255 29.434 16.536 21.240 15.18532.82% 36.59% 11.00% 26.47% 18.24% 19.16% 22.79%HYBRID-SMPL 3.569 4.268 5.183 4.664 4.786 2.602 4.163(P-BRUTE) 25.759 20.903 18.264 29.416 16.512 21.320 15.13532.73% 36.49% 10.96% 26.52% 18.36% 18.86% 23.04%HYBRID-EDGE 3.761 4.321 5.298 4.703 4.879 2.766 4.243(BRUTE) 26.286 21.004 18.593 29.784 17.770 21.782 15.36631.35% 36.18% 9.35% 25.59% 12.14% 17.09% 21.87%HYBRID-EDGE 3.767 4.329 5.300 4.709 4.875 2.767 4.234(P-BRUTE) 26.296 21.002 18.598 28.768 17.715 21.781 15.32331.33% 36.19% 9.33% 25.64% 12.41% 17.10% 22.09%Table 9: Average bitrate per frame, measured in kilobits, resulting from the di�erent algorithms. The �rst number ineach row is the average number of bits per frame required to code the motion parameters. The second number is thetotal average bitrate per frame which is computed by adding the motion parameter overhead to the average bitrateper frame required to code the compressed error frames. The third number is the di�erence between the average totalbitrate per frame BRUTE and that algorithm, as a percentage of the average total bitrate per frame for BRUTE.and TOP-SPIN animations.In picking the mode of the optical ow vectors forcentering a brute force search, the basic assumptionbehind P-BRUTE is that many pixels in a block willhave similar optical ow vectors. If however, a blockcontains many di�erent optical ow vectors, the modevector may not be representative of the block motion.Both the CUBE-SPIN and TOP-SPIN animations con-tain rotating objects, and the optical ow vectors foradjacent pixels within these rotating objects may havevery di�erent optical ow vectors. Thus, the mode op-tical ow vector is probably not a good predictor of themotion for these blocks and P-BRUTE performs poorlyon these animations.5.3 Six Parameter LSQ ResultsThe LSQ6(LSQ-ONE) algorithm performs much bet-ter than BRUTE both in terms of average PSNR andaverage total bitrate per frame. In particular, for theBALLS animation using LSQ6(LSQ-ONE), the averagePSNR per frame in the Y channel is 2.1 dB higherthan the average PSNR with BRUTE on this anima-tion. Similarly the average total bitrate per frame forthe BALLS animation is 26.65 percent less than theaverage total bitrate per frame with the BRUTE algo-rithm.Although the LSQ6(LSQ-ONE) algorithm performsbetter than BRUTE for all the animation sequences,with the FINDSPOT, SCALEBUNNY, and TOP-SPINanimations it only achieves a 5.68 to 10.15 percentgain in average bitrate per frame over BRUTE. Thescaling motion in SCALEBUNNY occurs in small in-crements and the object color varies slowly over the

surface of the bunny. Thus, the translational mo-tions found by BRUTE work well on this sequence andLSQ6(LSQ-ONE) does not have much of an advantageover BRUTE. The FINDSPOT sequence similarly con-tains a lot of incremental scaling on the bunny objectand the gains with LSQ6(LSQ-ONE) are small. In theTOP-SPIN animation many blocks contain object edgesand LSQ6(LSQ-ONE) does not reconstruct these blocksvery well. Because all the surfaces in this animation aretexture mapped with textures containing high frequencyedges, small inaccuracies in the motion parameters cancause the error frame to contain a large amount of in-formation. The LSQ6(LSQ-ONE) algorithm does muchbetter than BRUTE with animations containing lots ofrotations such as CUBE-SPIN and BALLS.5.4 Hybrid Algorithm ResultsThe hybrid algorithms are the most accurate of all themodel-based techniques we consider as shown in tables8 and 9. The di�erences between the BRUTE and P-BRUTE versions of the hybrid algorithms are minor,mainly because the search window of [-16, 16] is rela-tively large for both algorithms.While HYBRID-SMPL performs slightly better thanHYBRID-EDGE both in terms of average PSNRand average bitrate per frame, its algorithmic com-plexity makes it less practical than HYBRID-EDGE.Across all of the animations, the average PSNRof HYBRID-EDGE(BRUTE) is within 0.24 dB ofHYBRID-SMPL (BRUTE) and the average total bi-trate of HYBRID-EDGE(BRUTE) is within 2% ofHYBRID-SMPL(BRUTE).As described in section 3 the complexity of HYBRID-EDGE is dependent on the number of blocks that con-

Average Averagenumber edge percentage edgeAnimation or new blocks or new blocksBALLS 116.65 18.66%CUBES-SPIN 114.85 18.38%FINDSPOT 92.29 14.77%ROTBUNNY 97.08 15.53%SCALEBUNNY 72.34 11.57%TOP-SPIN 49.53 7.92%TRANSBUNNY 96.69 15.47%Table 10: The average number and percentage perframe of blocks containing object edges or new infor-mation. The percentages given in the third column arebased on scenes rendered at 400�400 pixels with 16�16blocks for a total of 625 blocks per frame.tain edges and new information in each frame. Table 10presents the average number of blocks per frame con-taining edges or new information for each for the ani-mations in the database.Compared to BRUTE, the HYBRID-EDGE(BRUTE) scheme performs signi�cantly better.As shown in table 8, HYBRID-EDGE (BRUTE)produces a PSNR that is between 1.03 dB and 2.63dB higher than BRUTE across all the animations.The HYBRID-EDGE(BRUTE) algorithm also givesbetween 9.35 and 36.18 percent smaller average totalbitrates per frame than BRUTE.
6 CONCLUSIONSOne approach to performing motion estimation on syn-thetic animations is to treat them as video sequencesand use standard image-based block motion estimationmethods. In this paper we have shown how one cantake advantage of information used in rendering the an-imation to perform fast, accurate block-based motionestimation. We have found that our model-based algo-rithms perform better than the image based BRUTEmethod in terms of complexity, quality of compressederror frames and bit rate.Both our LSQ6 and HYBRID-EDGE algorithms gen-erate six parameters per block. We use vector quantiza-tion for compressing this motion information. A slightlydi�erent approach for compressing this motion infor-mation would be to �rst factor each 2D transformationmatrix into the simple transformations that comprise it:translations in x and y, a rotation in the xy plane, scal-ings in x and y, shears, and perspective warps. Thisdecomposition is described in [1]. This factorizationshould decorrelate some of the motion parameters andthereby allow us to quantize the parameters more e�ec-tively.Another model-based approach for doing motioncompensation would be to run the least square algo-rithm on larger blocks like 64 � 64 to compensate forrotations etc. and then use brute force motion estima-tion on compensated 16�16 subblocks. This would havethe advantage of sending less motion information, whileallowing us to exploit the model-based motion informa-tion to account for non-translational block motion.

In the motion estimation system we have described,the estimation is being done open loop. That is, the en-coder determines the motion parameters using originalframes only. We are working on a closed-loop system, inwhich the encoder performs the motion estimation usinga reconstructed frame N and an original frame N . Thismore closely models how the motion parameters will beused by the decoder, since the decoder only has accessto a reconstructed frame N . This model-based motionestimation system will be part of a complete end to endcompression system which we are currently designing.
7 ACKNOWLEDGMENTSWe would like to thank Marc Levoy and Anoop Guptafor their fruitful discussions over the course of thisproject.
References[1] James Arvo, editor. Graphics Gems II. AcademicPress, Inc., 1991.[2] Shenchang Eric Chen and Lance Williams. View in-terpolation for image synthesis. In James T. Kajiya,editor, Computer Graphics (SIGGRAPH '93 Pro-ceedings), volume 27, pages 279{288, August 1993.[3] P. A. Chou, T. Lookabaugh, and R. M. Gray. Op-timal pruning with applications to tree-structuredsource coding and modelling. IEEE Transactionson Information Theory, 35:299{315, 1989.[4] A. Gersho and R. M. Gray. Vector Quantization andSignal Compression. Kluwer Academic Publishers,1991.[5] Brian K. Guenter, Hee Cheol Yun, and Russell M.Mersereau. Motion compensated compression ofcomputer animation frames. In James T. Kajiya,editor, Computer Graphics (SIGGRAPH '93 Pro-ceedings), volume 27, pages 297{304, August 1993.[6] A. C. Hung and T. H. Meng. Parallel array ar-chitechures for motion estimation. In T. Valero,M.; Lang, Sun-Yuan Kung, and J. Fortes, editors,Proceedings of the International Conference on Ap-plication Speci�c Array Processors, pages 214{235.IEEE, September 1991.[7] D. LeGall. MPEG: A video compression standardfor multimedia applications. Communications of theACM, 34(4):46{58, April 1991.[8] E. A. Riskin and R. M. Gray. A greedy tree growingalgorithm for the design of variable rate quantizers.IEEE Transations on Signal Processing, 39:2500{2507, 1991.[9] Dan S. Wallach, Sharma Kunapalli, and Michael F.Cohen. Accelerated MPEG compression of dynamicpolygonal scenes. In Andrew Glassner, editor, Pro-ceedings of SIGGRAPH '94 (Orlando, Florida, July24{29, 1994), Computer Graphics Proceedings, An-nual Conference Series, pages 193{197. ACM SIG-GRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

