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Three scene properties determine the luminances in the image of a shaded object: the material reflectance, the illuminant
position, and the object’s shape. Because all three properties determine the image, one cannot solve for any one property
without knowing the other two. Nevertheless, people perceive consistent 3D shape and consistent lighting in shaded
images; they must therefore be making assumptions about the unknown properties. We conducted two psychophysical
experiments to determine how viewers use shape information to estimate the lighting direction from shaded images. In the
first experiment, we confirmed that observers use 3D shape information when estimating lighting direction. In the second
experiment, we investigated how different shape cues affect lighting direction estimates. Observers can accurately
determine lighting direction when a host of shape cues specify the objects. When shading is the only cue, observers always
set lighting direction to be from above. We modeled the results in a Bayesian framework that included a prior distribution
describing the assumed lighting direction. The estimated prior was slightly counterclockwise from above at a È30- slant.
Our model showed that an assumption of convexity provides an accurate estimate of lighting direction when the shape is
globally, but not locally, consistent with convexity.
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Introduction

The variation in luminance across the image of a
surface provides information about the 3D shape of the
surface, the material of which the surface is composed,
and the lighting or illumination falling on the surface.
Although the physics of light transport is well understood
(Kajiya, 1986), it remains unclear how human observers
estimate reflectance, lighting, and shape from a single
image. Consider the simple case of Lambertian reflec-
tance, a single distant light source that is always visible
and within 90- of any surface normal, and no inter-
reflections. Under these assumptions, the local diffuse
shading equation is

Iðx; yÞ ¼ >ðN̄ ðx; yÞ I L̄ Þ; ð1Þ

where > is the constant albedo, N̄ (x, y) is the surface
normal at point (x, y) in the image, and L̄ is the vector
pointing toward the light source. Thus, the observed
luminance in the image is determined by the reflective
properties of the material and the orientation of the

surface normal relative to the lighting direction. Because
shape, lighting direction, and material properties all
determine the observed image, one cannot in general
solve for any one of those properties without knowing the
other two. The problem of solving for any of these terms
(shape, lighting direction, or reflectance) is consequently
ill-posed.
Human observers have stable percepts of lighting

direction (Koenderink, Pont, van Doorn, Kappers, &
Todd, 2007) and stable percepts of shape (Koenderink,
van Doorn, Christou, & Lappin, 1996) in shaded images,
which makes sense if the object’s shape or the lighting
direction is known, respectively. However, observers also
have stable percepts of lighting direction when the shape
is not known (Koenderink, van Doorn, & Pont, 2004) and
stable percepts of shape when the lighting direction is not
known (Ho, Landy, & Maloney, 2006). The latter
observations suggest that observers are making assump-
tions about the two unknown properties in order to solve
for the third. Here we investigate how observers use the
available sensory data and assumptions to turn an ill-
posed problem of estimating lighting direction into a
solvable one.
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Models
Shape-based method

The lighting information contained in shaded objects is
illustrated in Figure 1. On the left is an irregular object
illuminated by a distant point light. Assume that the
observer knows the surface shape. Then one can deter-
mine how the observed luminance varies as a function of
the 3D orientation of different parts of the object. On the
right, we plot luminance as a function of surface slant and
tilt, where slant 8 is the angle between the line of sight
and the surface normal, and tilt E is the direction of that
angle relative to horizontal (Stevens, 1983). The plot is
regular with a clear peak. Assume also that the surface
material is Lambertian and the reflectance is constant.
Then from Equation 1, the luminance at each point in the
luminance map on the right is informative about the
direction of the light source. For instance, the point of
maximum luminance has a surface normal pointing
toward the light. Points with half the maximum luminance
have surface normals that point 60- (cos(60-) = 1/2) away
from the light. Assuming that the surface albedo is
constant and that the surface slant and tilt are estimated
with some degree of accuracy, we can rewrite Equation 1
as the product of two vectors:

Iðx; yÞò N̄ðx; yÞT L̄ ; ð2Þ

where N̄ ¼
Nx

Ny

Nz

2
4

3
5; L̄ ¼

Lx
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Lz

2
4

3
5,

and kN̄k = kL̄k = 1.

Using the positive luminance values (I(x, y) 9 0), we
can set up a linear system of equations:

AL̄ ¼ B; ð3Þ

where A =

Nxðx1; y1Þ Nyðx1; y1Þ Nzðx1; y1Þ
Nxðx2; y2Þ Nyðx2; y2Þ Nzðx2; y2Þ

s s s
Nxðxk; ykÞ Nyðxk; ykÞ Nzðxk; ykÞ

2
664

3
775

and B =

Iðx1; y1Þ
Iðx2; y2Þ

s
Iðxk; ykÞ

2
664

3
775 for k positive points in the image.

We can then estimate the lighting direction L̄ using a
linear least-squares approach:

L ¼ ðATAÞj1ATB: ð4Þ

Thus, we can solve for the lighting direction when
surface shape and reflectance are known. To estimate the
lighting direction in this way, the visual system must
measure the luminances and the 3D orientations of points
on the object (and the assumption of constant Lambertian
reflectance must be valid). Because this method depends
on knowing or estimating the 3D surface geometry, we
refer to it as the shape-based method for estimating
lighting direction. If the luminance and orientation
measurements are erroneous, the estimate of lighting
direction will be correspondingly erroneous.

Image-based method

Pentland (1982) developed one of the first image-based
methods for estimating lighting direction in an image.
Precluding any direct estimation of the 3D geometry of
the surface, but assuming the surface normals are isotropi-
cally distributed, he showed that the slant and tilt of the

Figure 1. Shaded object and its associated luminance map. The object (left) is illuminated from above (light slant 8 = 30-, light tilt E = 90-).
The luminance map plots the observed luminance value for each surface orientation in the image. The green cross indicates the true
lighting direction.
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lighting direction can be estimated from the local shading
derivatives. Lee and Rosenfeld (1985) extended and
improved the method, deriving the following estimate of
lighting tilt E:

E ¼ arctan
EðIyÞ
EðIxÞ

� �
; ð5Þ

where E(Iy) is the maximum-likelihood estimate of the
image derivative along the y direction and E(Ix) is the
maximum-likelihood estimate of the image derivative along
the x direction. The slant 8 of the lighting direction is

8 ¼ arccos
3EðI2Þ
12>2

j1

� �
; ð6Þ

where 1 is the illumination brightness, > is the surface
albedo, and E(I2) is the expectation of I2 taken along the
tilt direction E. The slant and tilt estimates determine the
lighting direction as follows:

L ¼
sinðEÞcosð8Þ
sinðEÞsinð8Þ

cosð8Þ

2
4

3
5: ð7Þ

Thus, we can solve for the lighting direction using the 2D
content of the image and an estimate of albedo and
illumination brightness, provided that the global shape of
the surface is convex. Because this approach is based on
the 2D image information, we refer to it as the image-
based method.

Outline

In this paper, we first investigate whether human
observers use a shape-based or image-based approach to
estimate the lighting direction in a scene. We then
examine humans’ ability to infer lighting direction when
the material property was provided and shape information
was indicated to greater or lesser extents. In so doing, we
learn more about the computations and assumptions that
viewers make while interpreting shaded images. When
the sensory data (i.e., the image content) reliably specified
the 3D shape, the observer could in principle determine the
lighting direction (Equation 4). When the sensory data did
not specify the 3D shape well, the observer could not
determine the lighting direction from those data directly;
in that case, the observer had to make assumptions about
the shape and the lighting, and those assumptions were
presumably based on previous experience.
In our analysis of the results, we use a Bayesian

framework to fit a model to the data. We show that a
simple model incorporating information from the sensory
data and expectations based on previous experience fits

the data well. The best-fitting model implies that observ-
ers use the sensory data and prior expectations, but that
they rely on the prior expectations when the sensory data
are unreliable. By making observers familiar with the
material properties and manipulating the shape informa-
tion, we were able to determine the usefulness of various
shape cues and to measure the direction and variance of
the prior for lighting direction.

General methods

Apparatus

We displayed stimuli on a custom stereoscope with two
arms that rotated about vertical axes co-linear with the
rotation axes of the eyes (Backus, Banks, van Ee, &
Crowell, 1999). Each arm used a mirror to position the
image from a CRT in front of each eye. The CRTs were
ViewSonic G225f displays with a resolution of 1280 �
1024. The physical distance from each eye to the
appropriate CRT was 39 cm, so each pixel subtended
2.8 � 2.6 arcmin. We gamma-corrected each display to
linearize the luminance function for the grayscale images.
Except for the CRTs, the room was dark.
The observers stabilized their head position using a bite

bar fastened to an adjustable mount. We adjusted the
separation of the rotation centers of the stereoscope arms
to match each observer’s inter-ocular distance. We rotated
the arms so that the vergence angle matched the viewing
distance of 39 cm.

Lighting parameters

We parameterized lighting direction in terms of slant
and tilt in much the way Stevens (1983) described surface
slant and tilt. Lighting slant (8) is the angle between a line
from the eye (or cyclopean eye) to the center of the object
and a vector from the center of the object to the light.
Lighting tilt (E) is the angle between the horizontal axis
and the projection of the lighting direction onto the frontal
plane. The slant and tilt of the light correspond,
respectively, to the zenith and azimuth of the light
(Lopez-Moreño, Hadap, Reinhard, & Gutierrez, 2009).

Stimuli and procedure

On each trial, we presented two stimuli simultaneously:
a test object and a response object (Figure 2). The two
objects were rendered using the OpenGL graphics library
and C++. The objects were composed of matte material
(i.e., Lambertian reflectance). We told the observers that
the material was similar to matte paper. We also showed
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them that the luminance does not vary as a function of
viewpoint. We made clear that the stimuli were com-
posed of the same material as used in the demonstration.
The response object contained all of the shape cues

under investigation. We chose to examine a set of shape
cues commonly found in the shape perception literature.

1. Shading: Each pixel was given the appropriate
luminance given the object’s shape, Lambertian
reflectance, and the direction of the light source at
infinite distance. The shading method correctly
generated attached shadows. Cast shadows were
not rendered, but the lighting slant was never greater
than 45-, so there would have been few such
shadows anyway.

2. Texture gradient: We applied a texture by rendering
small gray disks on the object. The disks were
oriented in the tangent plane of the surface. We
positioned the disks using a dart-throwing algorithm
to generate a Poisson-disk sampling of the vertices
(Dunbar & Humphreys, 2006). The texture gradient
fully specified the 3D shape of the object up to an
unknown scale factor. Because the light source is at
infinite distance, the scale factor does not need to be
known to estimate the lighting direction, so the
texture provided the information required to esti-
mate lighting direction accurately (Equation 4).

3. Binocular disparity: Each point on the object was
given the appropriate horizontal and vertical dispar-
ities for the specified shape. This cue fully specified
the 3D shape of the object and therefore provided
the information needed to estimate light direction
accurately (Equation 4).

4. Global convexity: When this cue was present, the
object was a sphere with random radial perturba-
tions. Because the object was approximately spher-
ical, the orientation at a point on the surface was
highly correlated with the point’s position in the
image. For example, surface points above and to the
right of the center of the image had tilts on average
of 45-. Thus, observers could in principle have used
such regularity to estimate light direction (Lopez-
Moreño et al., 2009). The fact that the surface was
globally convex is consistent with the convexity
assumption observers tend to make about surfaces
(Langer & Bülthoff, 2001; Mamassian & Landy,
1998).

5. Occluding contour: When this cue was present, the
silhouette of the object was visible. The silhouette
provides information about 3D shape (Ikeuchi &
Horn, 1981; Malik & Maydan, 1989). The slant of
the surface at the occluding contour is 90- because
that part of the surface is by definition orthogonal to
the viewing direction. The tilt is equal to the
orientation of the tangent to the contour at that point.
Because surface orientation is known at the occluding
contour, luminance values along the contour could
provide useful information about the lighting direc-
tion. Of course, the surface at the occluding contour is
invisible to the viewer, so one cannot measure
luminance at precisely that point, but one can
estimate the luminance by extrapolating from nearby
points (Nillius & Eklundh, 2001). From these
measurements, one can estimate the tilt of the light:
Specifically, the tilt is perpendicular to the orienta-
tion of the contour at the brightest point on the

Figure 2. Experimental stimuli. The test object was rendered with different sets of shape cues in different conditions; in the example above,
all cues were present including having the familiar shape of a sphere. The response object was always rendered with all shape cues
(disparity, texture gradient, global convexity, occluding contour, and shading). Observers adjusted the direction of the light on the
response object until it appeared to be the same as the light illuminating the test object.
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occluding contour. We can see this relationship in
the luminance map in Figure 1 where the brightest
portion of the map at large surface slants indicates
the light tilt.

We generated the 3D objects by subdividing the
triangles of an initial control mesh. We created the
spheres by subdividing an icosahedron (20-sided regular
polyhedron) and normalizing the vertices to be equidistant
from the origin of the object. The final spheres were
composed of approximately 25,000 triangles. The irregu-
lar shapes were created using an implementation of the
Catmull–Clark subdivision surfaces algorithm that gen-
erates smooth surfaces with C1 continuity (Catmull &
Clark, 1978). The resulting objects were spheres with
random radial perturbations (Figures 2 and 3). We created
the surface perturbations by randomly displacing the
position of each vertex prior to the third iteration of the
subdivision. We continued to run the subdivision algo-
rithm until each object consisted of approximately
100,000 polygons. The globally flat shapes were generated
from a planar control mesh. The resulting objects were
planes with random perturbations in depth.
We illuminated the test and response objects with point

light sources at infinite distance, one source for the test
object and another for the response. We told the observers
that the light was at infinite distance and thus similar to
the sun. Observers moved a trackball to adjust the 2D
orientation (8, E) of the light on the response object. Their
task was to make the lighting direction on the response
object match the perceived lighting direction on the test
object. Lighting direction was not changed online with the
trackball movement. Instead, after adjusting the trackball,
observers clicked a button to update the lighting on the
response object. Thus, they could not see changes in
shading due to movement of the light source and,
therefore, could not use light motion as an additional cue

to shape. They kept making adjustments until the
perceived lighting directions on the response and test
objects were the same. They indicated that they were the
same by clicking a mouse button. The test object appeared
on the left for half the trials and on the right for the other
half. A new pair of objects appeared on each trial. The
shape of the response object was always well specified, so
observers should have accurately perceived its shape
regardless of how accurately they perceived the shape of
the test object.
To measure the perceived direction of the illuminant,

we could conceivably have used an estimation procedure
such as asking observers to indicate light direction with
a pointer. We chose not to use this approach because we
had no way of knowing the mapping between perceived
direction and pointer orientation, the so-called response-
mapping problem. Said another way, one cannot know
from the responses of such an estimation procedure which
effects are due to the mapping between the percept and the
response and which effects are directly indicative of the
percept. By focusing on perceptual equivalence, we can be
more confident that our results reflect perceptual processes.

Experiment 1

We first investigated whether observers use a shape-
based or image-based approach to estimate the lighting
direction in a scene. To do so, we displayed irregular test
objects that were globally concave and varied the disparity
information specifying the 3D shape. The response object
was always globally convex.
First, consider the predictions for image-based methods.

If the lighting direction on the test and response objects
were the same, the shading patterns on the two objects

Figure 3. Examples of stimuli used in Experiment 1. The test surface was always globally concave, and we varied the disparity information
used to specify its 3D shape. The response object was convex. Observers adjusted the direction of the lighting on the response object
until it appeared to be the same as the lighting direction on the test object.

Journal of Vision (2010) 10(12):21, 1–21 O’Shea, Agrawala, & Banks 5



would be in opposite directions (Figure 3). For example, if
the lighting on both objects was from above, the response
object would be brighter on the top than the bottom and
the test object would be brighter on the bottom than the
top. To match the shading patterns, the observer would
have to set the tilt of the lighting direction on the response
object 180- from the lighting tilt on the test object. Thus,
image-based methods should yield tilt errors of 180-.
Now consider the predictions for the shape-based

method. We manipulated the information specifying the
test object’s 3D shape by setting the disparities to zero
(specifying a flat surface) or to the correct values for the
shape (specifying a concave surface). With zero dispar-
ities, the shape of the test object was ambiguous, and
observers generally perceived the shape as globally
convex (Langer & Bülthoff, 2001; Mamassian & Landy,
1998). In this case, they would set the tilt of the lighting
direction on the response object 180- from the tilt on the
response object. With correct disparities, the shape of the
test object was well specified and observers would
therefore set the tilt of the lighting on the response object
to a value close to the tilt of the lighting on the test object.
Thus, the condition with zero disparities yields the same
predictions for the image- and shape-based methods, and
the condition with correct disparities yields entirely
different predictions for the two methods.

Methods
Observers

Three female observers participated. They were 22–27
years of age and had normal visual acuity and stereopsis.
They wore their optical corrections during testing. They
were experienced psychophysical observers but were
unaware of the experimental hypothesis.

Lighting parameters

We presented eight lighting tilts (0, 45, 90, 135, 180,
225, 270, and 315-) while keeping the lighting slant
at 30-.

Shape conditions

We presented the test objects with two different
combinations of shape cues.

A. Shading and global concavity: We made disparity
uninformative in this condition by presenting the
test objects with zero disparity. They were shaded
appropriately for a globally concave object. The
image- and shape-based methods both predict 180-
tilt errors.

Figure 4. Responses from one subject for one lighting direction. The dots represent individual settings plotted in polar coordinates in which
the angle is lighting tilt and the radius is lighting slant. The ellipse is centered on the mean of the settings and is adjusted in size and
orientation to contain all of the settings out to one standard deviation from the mean. The ellipse axes are oriented along the principal
components of the data, which are the orthogonal vectors that account for the maximum amount of variance (determined by a principal
component analysis using the Karhunen–Loeve transform; Jolliffe, 2002; Leong & Carlile, 1998). We draw a line from the true lighting
direction to the mean response to show the bias in the settings.
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B. Shading, global concavity, and binocular disparity:
The test objects again were globally concave with
appropriate shading. Disparities were correct and
therefore specified their true shape. Image-based
methods predict 180- tilt errors, and shape-based
methods predict small errors.

Before running the experiment, we familiarized observ-
ers with the physics of lighting and shading by showing
sample surfaces with various lighting directions. We did
not use these surfaces as stimuli in the actual experiment.
We collected 20 settings from each observer for each
lighting direction in each disparity condition, yielding
320 settings per observer.

Results

Each setting is the lighting direction on the response object
that the observer perceived as the same as the lighting
direction on the test object. Figure 4 shows how we plot the

settings for each observer in each condition. Each dot is one
settingVa combination of lighting slant and tiltVin polar
coordinates. The ellipses are best fits to capture one standard
deviation in all directions. The line segments connect the
actual lighting direction with the average setting.
Figure 5 summarizes the individual observer and

average data for the two conditions. The columns and
rows show the data from different observers and different
conditions, respectively. All observers behaved similarly,
so we can focus on the data averaged across observers,
which are shown in the rightmost column. Without reliable
shape information to specify that the test surfaces are
concave, all observers made large errors in Condition A,
primarily due to 180- tilt errors. The average angular error
was 62.0- (Figure 5), and the average tilt error was 177.6-
(Figure 6). When correct disparity information reliably
specified the 3D shape, observers made 5.6- average
angular errors (Figure 5), and the tilt error was only 0.46-
(Figure 6).
Adding the correct disparity information had a signifi-

cant effect on the results. Specifically, the errors in setting

Figure 5. Summary of data from Experiment 1. (Top) In Condition A, the globally concave surfaces were specified using only shading
information. The disparities were set to zero. (Bottom) In Condition B, the same surfaces were specified with shading and correct
disparities. Colors represent different lighting tilts on the test object. The ellipses summarize the mean and standard deviation of the
settings for each condition with lighting tilt and slant represented as in Figure 4. The line segments connect the center of each ellipse (the
average setting) to the true lighting direction. The numbers under each plot are the average angular error (() and the average standard
deviation of the settings (SD).
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lighting direction were significantly smaller when the test
object’s shape was well specified.

Discussion

The same stimuli were used in the two conditions, so
the 2D image content was identical. Thus, any image-
based method would have yielded the same pattern of
settings whether disparity was informative or not. This
means that observers used the 3D shape information to
match the true lighting directions even though it produced
opposing 2D shading patterns on the test and response
objects. The results, therefore, demonstrate that people use
a shape-based approach to estimate lighting direction.

Experiment 2

We next examined how 3D shape information affects
estimates of lighting direction. Specifically, we varied the
shape cues used to specify the test objects in the same
matching task. Our analysis of shading suggests that with
reliable 3D shape information, observers should be able to

accurately estimate the lighting direction. When the 3D
shape is poorly specified, we expect observers to rely
more on their prior expectations of lighting direction.

Methods
Observers

Four female observers participated. They were 22–28
years of age and had normal visual acuity and stereopsis.
They wore their optical corrections during testing. They
were experienced psychophysical observers but were
unaware of the experimental hypotheses.

Lighting parameters

We presented each combination of four lighting slants
(0, 15, 30, and 45-) and eight lighting tilts (0, 45, 90, 135,
180, 225, 270, and 315-). Tilt is undefined when slant is
0-, so we considered a total of 25 combinations of lighting
directions.

Shape conditions

We presented the test objects with four different
combinations of shape cues (Figure 7).

A. All cues present: The test objects were rendered
with shading, global convexity, occluding contour,
binocular disparity, and texture gradient. The cue of
familiar shape was also present in that the test
object was a sphere, a well-known shape. Because
all cues were present in Condition A, the 3D shape
was very well specified.

B. Shading, global convexity, and occluding contour:
We eliminated disparity by presenting the stimuli
monocularly. We eliminated the texture gradient by
deleting the random-element texture. We eliminated
familiar shape by using 3D shapes that were
randomly perturbed as shown in Figure 7. By
comparing responses in Condition B to those in
Condition A, we could assess the combined contribu-
tion of the texture gradient, disparity, and familiar
shape in specifying 3D shape and thereby aiding the
estimation of lighting direction.

C. Shading and global convexity: We eliminated the
occluding contour by presenting the stimulus in a
circular software aperture. By comparing responses
in this condition to those in Condition B, we could
determine the role of occluding contour in specify-
ing 3D shape in the estimation of lighting direction.

D. Shading only: We eliminated global convexity by
creating the stimulus from a frontoparallel plane
(rather than a sphere) that was randomly perturbed
in depth as shown in Figure 7. We clipped the
stimulus with a square aperture to avoid an additional

Figure 6. Average tilt errors across observers for the two
conditions. We calculated the tilt error by measuring the angular
tilt difference between the average response and the true lighting
direction. Error bars are standard errors of the mean. Observers
averaged 177.6- tilt errors when the concave shape of the test
object was poorly specified (Condition A). When the shape of the
test object was well specified (Condition B), observers average
0.46- tilt errors.
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cue to convexity. By comparing responses in this
condition to those in Condition C, we could
determine the role of global convexity in specifying
3D shape and thereby aiding the estimation of
lighting direction. Performance in this condition also
tells us how well people can use shading alone to
estimate light direction.

We collected 20 settings from each observer for each
lighting direction in each shape condition, yielding 2000
settings per observer.

Results

Figure 8 summarizes the individual observer and
average data for the four test-object conditions. The
columns and rows show the data from different observers
and different conditions, respectively. The data were quite
similar across observers, so we can focus on the data
averaged across observers, which are shown in the
rightmost column. Changing the set of available shape
cues had a systematic effect on observers’ settings. The
left panel of Figure 9 plots the average angular difference

Figure 7. Sample stimuli. The shape of the test object was specified by different sets of cues in each condition (listed on the left). The
shape of the response object was specified by the same set of cues in all four conditions (disparity, texture gradient, global convexity,
occluding contour, and shading).
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Figure 8. Summary of the data from all shape-cue conditions and observers. The columns show data from different observers and the
average. The rows show the data from the four test-object conditions. Colors represent different lighting tilts on the test object. The
ellipses summarize the mean and standard deviation of the settings for each condition, lighting tilt, and lighting slant as described in
Figure 4. The line segments connect the average setting to the actual lighting direction. Numbers under each plot are average angular
error (() and average standard deviation of the settings (SD).
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between the actual and responded lighting directions,
while the right panel plots the standard deviation of the
settings.
To determine which effects were statistically reliable,

we conducted repeated-measures ANOVAs with angular
error and with standard deviation as dependent measures.
With angular error as the dependent measure, there were
significant effects of shape-cue condition, lighting slant,
and lighting tilt on angular error (p G 0.001 in all three
cases); there were also significant interactions of condition
and slant and of condition and tilt (p G 0.001 in both
cases). With standard deviation as the dependent measure,
there were significant main effects of condition, slant, and
tilt (p G 0.001) and again significant interactions of
condition and slant and of condition and tilt (p G 0.001).

Settings were most accurate in the full-cue condition
(Condition A). Figure 8 shows that the angular errors in
this condition were smallest and did not vary systemati-
cally with lighting tilt or slant. The average angular error
was only 11.9- (Figure 9, upper row). The settings were
also the most precise in this condition. The best-fitting
ellipses in Figure 8 were small for all tilts and slants. The
average standard deviation was only 6.7- (Figure 9, upper
row).
The settings in Condition B were somewhat less

accurate than those in Condition A. The average angular
error and average standard deviation were slightly greater
at 13.2- and 7.2-, respectively (Figure 9, upper row).
These values were significantly greater than in Condition A:
t(6) = 1.6, p = 0.04 (one-tailed) and t(6) = 1.4, p = 0.05

Figure 9. (Upper row) Average angular errors (left) and average standard deviations (right) for each shape-cue condition using all trials.
The errors and standard deviations are expressed in angular units irrespective of the light direction. Error bars represent standard errors
of the mean. (Lower row) Average angular errors (left) and average standard deviations (right) for each shape-cue condition after
excluding flips in the sign of the tilt. We define a sign flip as any trial with a tilt error between 135- and 225-.
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(one-tailed), respectively. The small decrease in perfor-
mance shows that the cues of familiar shape, disparity,
and texture provided useful information for specifying
shape and thereby aided the estimation of lighting
direction. It is somewhat surprising, however, that
removing these shape cues had such a small effect; we
will return to this observation in the Discussion section.
The settings in Condition C were less accurate than

those in Condition B. The average angular error and
standard deviation were now 18.9- and 9.6-, respectively
(Figure 9, upper row). Both of these values were
significantly greater than in Condition B: t(6) = 6.7, p G
0.001 and t(6) = 4.5, p G 0.01. The decrease in accuracy
and precision means that the occluding contour (the cue
not presented in Condition C) helped specify the shape of
the test object and that observers used this greater
specification to make better settings.
The settings in Condition D were much less accurate

than those in Condition C. The average angular error and
standard deviation were 41.6- and 30.8-, respectively
(Figure 9, upper row). Both of these values were
significantly greater than in Condition C: t(6) = 5.7, p G
0.001 and t(6) = 10.2, p G 0.001. These results show that
observers are much better at determining the lighting
direction when the object is globally convex than when it
is not. The pattern of errors is particularly interesting.
Figure 8 shows that when the lighting direction was below
the line of sight (i.e., lighting tilt was between 180 and
360-), observers often made tilt errors of È180- in their
settings. In other words, they perceived the light as above
the line of sight even though it was below. This pattern of
responses resulted in a bimodal distribution of settings and
contributed to the large angular errors in Condition D
(Figure 9, upper row).
This observation is clearer in Figure 10, which plots

average angular error as a function of lighting slant and

tilt. Notice that tilt had essentially no effect on error in
Conditions A, B, and C but had a large and systematic
effect in Condition D. In particular, large errors were
observed when the tilt was between 180 and 360-, i.e.,
cases in which the actual light direction was below the
line of sight. We also examined angular errors after
excluding trials with tilt errors of È180-. Specifically, we
excluded trials for which the tilt error was between 135
and 225-. The results are shown in the lower row of
Figure 9. The average angular error and standard devia-
tion for Conditions A–C are nearly unchanged, but the
average error in Condition D decreased from 41.6- to
17.7- and the standard deviation from 30.8- to 9.3-. Thus,
the error pattern in Condition D shows that shading
information alone is not sufficient for viewers to estimate
lighting direction; when shape is not specified by other
cues, they tend to see the light as coming from above the
line of sight even when it is actually coming from below.

Bayesian model

To further analyze the data, we used a Bayesian
framework to represent the information about lighting
direction contained in the sensory data and the informa-
tion provided by previous experience, and the means by
which observers should combine such information. Bayes’
Rule provides the optimal method (Kersten, Mamassian,
& Yuille, 2004):

PðLkIÞ ò PðIkLÞPðLÞ: ð8Þ

The first term on the right side of the equation is the
likelihood distribution, which represents the information
in the sensory data (i.e., the image I). In this paper, we do

Figure 10. Angular error for different lighting tilts. Each panel plots angular error averaged across observers as a function of lighting tilt.
Different colors represent the data for different lighting slants, red for 15-, blue for 30-, and green for 45-. (A–D) The data from
Conditions A–D. Error bars represent standard errors of the mean.
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not present a generative model of how surface shape,
material properties, and illumination combine to produce
the likelihood distribution. We simply use the distribution
to represent the light-direction information available in the
sensory data. We assume that the likelihood distribution is
unbiased. The second term on the right side of the
equation is the prior, which represents the distribution of
likely lighting directions independent of the sensory data.
We know that observers tend to assume that light comes
from above and slightly to the left (Adams, Graf, & Ernst,
2004; Mamassian & Goutcher, 2001; O’Shea, Agrawala,
& Banks, 2008; Sun & Perona, 1998). Observers should
base their estimates of lighting direction on the product of
the likelihood and prior, which is the posterior distribution
on the left side of Equation 8.
We parameterized lighting directions in spherical coor-

dinates, so we used Von Mises–Fisher (VMF) distributions
to model the data. The VMF distribution is an isotropic
continuous probability distribution that describes spherical
data with a mean of 2 and a concentration of .. The
distribution on a sphere for x Z R3 is

+ x;2;.ð Þ ¼ .

4:sinhð.Þ e
.ðxI2Þ; ð9Þ

where . Q 1 and k2k = kxk = 1. The parameter 2 has the
coordinates [cos(E)sin(8), sin(E)sin(8), cos(8)], which

correspond to the Cartesian coordinates of lighting slant
(0- e 8 e 90-) and tilt (0- e E e 360-). The parameter . is
inversely proportional to the spread of the distribution, so
as . increases, the variance of the distribution decreases.
Figure 11 shows some sample distributions.
We assumed that observers based their judgments on the

peak of the posterior distribution, which is proportional to
the product of the likelihood and prior (Equation 8). In
particular, we assumed that the judgments were derived
from the maximum of the posterior. We then found the
likelihood and prior distributions that best predicted the
observers’ responses for each experimental condition. In
doing so, we assumed that the likelihood distributions
were unbiased (that is, that the peaks of those distribu-
tions were centered on the true lighting direction). In
finding the best-predicting distributions, the likelihoods
had one free parameter . for each of the four test-object
conditions. Thus, we found .A for the data in Condition
A, and likewise .B, .C, and .D for the appropriate data
sets. The prior had two free parameters for the coordinates
of the peak of the distribution (8P and EP) and one
parameter .P for the spread. We found one set of prior
parameters for all four conditions because we assumed an
observer’s prior did not change over the course of the
experiment.
Because we assumed unbiased likelihoods, we set the

means of the likelihoods equal to the coordinates of the

Figure 11. Von Mises–Fisher (VMF) distributions and implementation in Bayesian framework. (Upper row) From left to right, the VMF
distributions represent the posterior, likelihood, and prior distributions in a Bayesian framework. The posterior is the product of the
likelihood and prior. Here the likelihood has lower variance than the prior, so the posterior is similar to the likelihood. (Lower row) A
likelihood with greater variance (lower .) leads to a greater influence of the prior on the posterior.
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Figure 12. The likelihood and prior distributions that best fit each observer’s data. The first four columns represent the distributions for
individual observers. The rightmost column represents the distributions derived from fitting the combined data from all four observers. The
ratio of the best-fitting likelihood variance to the best-fitting prior variance is given below each likelihood panel. In this graphical
representation, the means of the likelihoods have been set to [8 = 0, E = 0], but the means were actually the true lighting slants and tilts for
each lighting direction.
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actual lighting direction in each condition. As we said,
there were four parameters for the variances of the
likelihoods (.A, .B, .C, and .D) and one for the variance
of the prior (.P). However, the position of the maximum
of the posterior is determined by ratios of likelihood . and
prior ., so there were only four free parameters for .. To
deal with this constraint, we set .D to 1 and found the best
values for the other four. Thus, we fixed the likelihood
locations for all lighting directions within a shape
condition. We found the best values for the six free
parameters for the complete set of data from each
observer using a non-linear, least-squares optimization
routine (Matlab’s lsqnonlin routine). The routine found
the set of parameters that minimized Chi square (#2), the
sum of the squares of the angular errors. We did not
attempt to fit the variances of the observer settings.
Figure 12 displays the likelihood and prior distributions

that best fit each observer’s data. The first four columns
represent the results for the four observers and the
rightmost column the results averaged across observers.
The top row represents the best-fitting prior distributions
and the next four rows the best-fitting likelihood distribu-
tions for Conditions A, B, C, and D, respectively. Note that
the means of the likelihoods have been plotted at [0, 0]
because many different directions were actually presented
and could not be readily shown in one graph.
The results were strikingly similar across observers. For

example, the prior distribution is centered above the visual
axis for all four observers; specifically, the best-fitting tilt
varies from 89.7 to 97.1-; tilts greater than 90- are
counterclockwise from vertical. This result is consistent
with the aforementioned light-from-above prior (Adams

et al., 2004; Mamassian & Goutcher, 2001; O’Shea et al.,
2008; Sun & Perona, 1998). The prior distribution is also
roughly equally displaced from the origin in all four
observers; the best-fitting slant varies from 28.1 to 41.6-.
This result is nicely consistent with our earlier finding that
the assumed slant for lighting direction is 20–30- above
the line of sight (O’Shea et al., 2008). The best-fitting
likelihood distributions were also remarkably similar
across observers. The spread of the distributions increased
in quite similar fashion for all four observers as we took
shape information away in going from Condition A to
Condition D.
As we said earlier, the location of the maximum of

the product of two VMF distributions is determined by
the ratio of the distributions’ variances. The ratio reflects
the degree to which the likelihood or prior determines the
location of the posterior. In Figure 13, we plot the
average ratio of the likelihood and prior variancesVe.g.,
.A/.PVfor all observers for each shape condition. The
ratio is large in Condition A where all shape cues were
present, which is consistent with the fact that observers
made quite accurate settings in that condition. As shape
cues were taken away, the ratio became smaller, which is
consistent with the observation that observers made
successively less accurate settings as their settings drifted
toward above the line of sight. Indeed, the ratio is less
than 1 for Condition D where only shading was available,
consistent with the observers relying primarily on their
prior expectation of lighting direction in that case.
We next investigated how well our model fit the data

compared with other plausible models. To do this, we
computed #2 for four models.

Figure 13. The ratio of the likelihood .L and prior .P for the four shape conditions. The ordinate is the likelihood variance parameter (e.g.,
.A, .B) divided by the prior variance parameter (.P). The values that went into computing the ratio are the across-observer averages. Error
bars represent the standard error of the mean.
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1. The first was a random model with six free
parameters (the same six as in the model that
generated Figure 12). In this model, we first
randomly reassigned settings to conditions (with
replacement) and then we fit the parameters to the
data. This model provides an upper bound on our
measure of goodness of fit for comparison with the
fits of the other models.

2. The second was the model described earlier that was
used to generate Figure 12. There are six free
parameters in this model.

3. The third model was similar to the second except
that the likelihood variance parameters (.A, .B, .C,
and .D) were allowed to differ for each of the four
lighting slants. The parameters of the prior were the
same as in Models 1 and 2. Thus, this model has
14 free parameters (two for the prior and 12 for the
likelihoods).

4. The fourth model was similar to the third except that
the likelihood variance parameters were allowed to
differ for each combination of lighting slant and tilt.
The parameters of the prior were the same as in the
above models. Thus, this model has 98 free param-
eters (two for the prior and 96 for the likelihoods).

Figure 14 shows goodness of fit (#2) for the four tested
models. As one would expect, the random model provides
a poor fit. The other three models provide roughly
equivalent fits. Models 3 and 4 have many more free
parameters than Model 2, yet Model 2 provides essentially
the same fit to the data. We conclude that Model 2Vthe
one used to generate Figure 12Vprovides the most
parsimonious account for the data.

Discussion

Summary of results

In Experiment 1, we showed that observers use 3D
shape information to match the lighting direction in a
scene. In Experiment 2, we examined how specific shape
cues affect observer estimates of lighting direction. Our
results show, as expected, that accurate perception of
lighting direction depends on reliable shape information.
When the 3D shape of the object was specified by many
robust shape cues, observers estimated direction accu-
rately. When the shape was poorly specified, responses
were very inaccurate: In that case, the perceived direction
was above the view direction and slightly counterclock-
wise from vertical no matter what the actual light
direction was. We used a Bayesian framework to model
the data. The framework combined light-direction infor-
mation contained in the images with a light-direction
prior. The prior was centered above and slightly to the
left: tilt and slant of 93.2- and 33.9-, respectively.

We summarize the findings with a simple demonstration
in Figure 15. The upper panel is a shaded image of a
surface whose 3D shape is poorly specified. The surface is
globally flat, the occluding contour is not visible, and
disparity and texture are not available; the shape is
specified by shading only. Notice that the light source
appears to be above the panel. The lower panel is the same
shaded image, but now 3D shape is well specified by
disparity and the texture gradient. It is now evident that
the light source is actually below. The figure shows that
the light direction is correctly perceived when the shaded
object’s 3D shape is well specified and is incorrectly
perceived to be in the direction of the light-from-above
prior when we specify the 3D shape using only shading.

Light-direction prior

There is a great deal of evidence that viewers assume
light comes from above and slightly to the left. Convexity–
concavity judgments are consistent with an assumed

Figure 14. Goodness of fit for the models tested. Chi square (#2) is
plotted for each model. Model 1 is a random model in which the
observed settings were randomly reassigned to condition and we
then found the six parameters that provided the best fit to the
reassigned data. Model 2 is the model used to generate Figure 12;
we found the six parameters that provided the best fit to the
observers’ settings across experimental conditions. Model 3 is
similar to Model 2 except that the likelihood . is allowed to differ for
different lighting slants; the model has 14 free parameters. Model 4
is similar except the likelihood . is allowed to differ for different
lighting slants and tilts; it has 98 free parameters.
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lighting tilt of È110- (Adams et al., 2004; Jenkin, Jenkin,
Dyde, & Harris, 2004; Mamassian & Goutcher, 2001;
Morgenstern & Murray, 2009; Sun & Perona, 1998).
Speed of visual search is greatest when the tilt is roughly
the same value (Adams, 2007; Enns & Rensink, 1990;
Kleffner & Ramachandran, 1992). To our knowledge, only
one previous study has made measurements relevant to
specifying the slant of the lighting prior. O’Shea et al.
(2008) showed that 3D shape judgments of shaded objects
were most accurate when the lighting slant was 20–30-.
With the exception of Morgenstern and Murray (2009),

our task was very different from the ones used in the
above-mentioned studies. We estimated the prior for light
direction by having observers adjust the direction of the
illumination on an object whose shape was well specified
to match the perceived direction of the illumination on an
object whose shape was poorly specified. The average tilt
of the prior was 93.2- and the average slant was 33.9-.
These estimates of the prior parameters are remarkably
consistent with the estimates from previous work despite
the use of an entirely different task.

Perceiving lighting inconsistencies

Ostrovsky, Cavanagh, and Sinha (2005) reported that
people have considerable difficulty detecting inconsisten-
cies in the direction of lighting in scenes composed of

several objects. In a visual search task, they presented
nine objects. In one condition, all nine were illuminated
with the same light. In another, eight of the nine were
illuminated with one light and one was illuminated with a
light whose tilt differed by 90-. The task was to indicate
whether the lighting was consistent or inconsistent. The
shapes were reasonably well specified; the stimuli were
most similar to the test objects of Condition B in our
experiment. Ostrovsky et al. found that people could
discriminate the inconsistent from the consistent displays,
but performance was far from perfect. The relatively poor
performance seems inconsistent with our results. In our
Condition B, observers made accurate and precise
settings. Average angular error was 13.2- and the standard
deviation was 7.2-, values that are much lower than the
90- differences in the lights in the experiment of
Ostrovsky et al. Their result is similar to findings that
people have difficulty detecting inconsistencies in
attached and cast shadows in complex scenes (Farid &
Bravo, 2010; Mamassian, 2004).
Ostrovsky et al. hypothesize that the visual system can

compute illumination direction for individual objects when
shape is well specified and this is consistent with our data.
They also speculate that multiple estimates of light direction
from various objects “may not support any accumulation
into a group direction” (p. 1311). Thus, the limit may have
to do with accumulating estimates from individual objects
into one global estimate of scene illumination.

Figure 15. Demonstration of how shape information affects the estimation of lighting direction. (Upper row) A shaded object in which the
3D shape is poorly specified. Most viewers of this image think the illumination is from above. (Lower row) The same object and illuminant,
but now the shape is well specified. For cross-fusing, use the two panels on the left. For divergent fusing, use the two on the right. When
the image is fused, the object’s 3D shape is specified by disparity and texture as well as shading. If you are correctly fusing, you should
see the brighter parts of the surface as slanted top near and bottom far. Most viewers of the lower panels now think the illumination is from
below. The reliable shape cues in the lower panels allow one to estimate the true light direction (Equation 4). Those cues are not available
in the upper panel, so the light-direction prior dictates the perceived light direction.
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Effectiveness of different shape cues

We observed a small decrease in performance between
Conditions A and B. Thus, removing the robust shape
cues of disparity, texture, and familiar shape had a small
but noticeable effect. This result means that observers
could use the cues of occluding contour, global convexity,
and shading to estimate lighting direction reasonably
accurately, which is consistent with previous work on
illumination matching (Pont & Koenderink, 2007). We
also found a small decrease in performance between
Conditions B and C, which means that removing the
occluding contour had a discernible but small effect. This
result suggests that observers could use the remaining
cues of global convexity and shading to estimate light
direction fairly accurately. There was a large decrease in
performance between Conditions C and D, which suggests
that global convexity had a significant effect on the ability
to estimate light direction.
We first consider the information provided by the

occluding contour. As we noted earlier, the variation in
luminance near the occluding contour of an object can be
used to estimate the tilt of the lighting (Nillius & Eklundh,
2001; Figure 1). This estimation technique has been
utilized effectively to detect illumination inconsistencies
within photographs (Johnson & Farid, 2005). One cannot,
however, estimate the slant of the lighting from this cue
without inferring the shape of the rest of the object. Thus,
the cues of global convexity and shading must have been
the primary determinants of direction estimates.
We next examine the lighting information available

with globally convex stimuli and relate that information to
observed performance. People tend to assume that
surfaces are globally convex (Langer & Bülthoff, 2001;
Mamassian & Landy, 1998). This assumption is consistent
with the test objects presented in Conditions A–C. As we
said earlier, lighting direction can be recovered if the
object’s shape is known and the surface albedo is
constant. The lighting information contained in shaded
globally convex objects is illustrated in Figure 16. The
stimulus is the irregular object in Figure 1 seen through an
aperture so that the occluding contour is not visible. This
stimulus corresponds to Condition C in our experiment. In
constructing the luminance maps in the upper row, we
assumed that the object’s shape was estimated accurately.
Thus, the plots of luminance as a function of surface tilt
and slant are regular with clear peaks at the slant and tilt
values corresponding to the slant and tilt of the light
source. The luminance maps in the lower row were
constructed with the same stimulus and lighting direc-
tions, but we assumed that the object is a sphere. By
making this assumption, the observer can estimate the
slant and tilt of each point in the image based on the
coordinates of the point in the image. The luminance maps
are of course less regular than in the upper row, but they
still contain the same general pattern. Is there sufficient
information to make a reasonably accurate estimate of

light direction? We examined this by using the least-
squares approach summarized by Equation 4.
We ran the analysis for each of the test stimuli from

Condition C using two assumed sphere sizes. In the first
analysis, the radius of the assumed sphere was equal to the
average radius of the test shapes. The average angular
error (angular difference between the estimated and true
lighting directions) was 15.8- (SD = 10.4-). The blue stars
represent the estimates. In the second analysis, the radius
of the assumed sphere was equal to the radius of the
aperture. This assumed shape is less consistent with the
true 3D surface geometry, and the errors of the resulting
estimates were slightly higher. The average angular error
was 17.4- (SD = 10.5-). We also ran the analysis using
stimuli rendered with a constant ambient light term. The
ambient term changes the luminance values in the image,
but the overall pattern remains the same and the resulting
estimates were similar to the previous analyses.
We observed that the least-squares estimates were

reasonably similar to observers’ settings for most of the
stimuli. (The left panel represents one of the most accurate
cases and the right panel one of the least accurate.) The
similarity shows that human viewers could use a shape
assumptionVin this case, an assumption of sphericityVto
estimate light direction reasonably accurately when the
actual stimulus is only globally consistent with the assumed
shape.
It is also important to consider the illumination

information when the stimulus is globally flat, as it
was in Condition D of our experiments. If the stimulus
is a plane, the luminance map is flat: The angle between
surface normals and a distant light source is constant,
so the luminance is constant (Equation 4). Therefore,
even a correct assumption about object shape (globally or
locally correct) would not allow the observer to estimate
light direction. Thus, an observer prior for lighting
direction should dictate their responses as we observed
in Condition D.

Applications

Our findings have implications for the construction of
shaded images. In the absence of robust shape cues, such as
texture, disparity, convexity, and familiar shape, our
observers misestimated the direction of lighting with
shaded images. When only shading was available, the
Bayesian prior for light directionVslant of roughly 30- and
tilt of slightly more than 90- (i.e., above and slightly to the
left)Vdictated the estimate. Because of the interaction
between light direction and 3D shape (Equation 1),
misestimating the light direction can lead to misestimating
the shape. Thus, to assure reasonably accurate perception
of the 3D shape of shaded images, it is important to place
directional lights near the prior. Such placement is
relevant to recent work on automatic lighting design
(Gumhold, 2002; Lee, Hao, & Varshney, 2006; Shacked

Journal of Vision (2010) 10(12):21, 1–21 O’Shea, Agrawala, & Banks 18



& Lischinski, 2001) and on non-photorealistic rendering
techniques designed to affect the perception of 3D shape
(Rusinkiewicz, Burns, & DeCarlo, 2006).

Conclusion

In Experiment 1, we found that observers use a shape-
based rather than image-based approach to estimate the
lighting direction of a scene. Analyses of the information
contained in shading reveals that the lighting direction
could in principle be correctly inferred if the reflectance
properties of the surface material are known and the 3D

shape of the object generating the image is known. Our
results from Experiment 2 confirm this expectation. We
found that observers can match the lighting directions on
two objects when the shapes of the objects are well
specified. We found that they set the lighting direction
quite inaccurately when the shape of one of the objects is
specified by shading only; instead they set the lighting
direction consistent with a light-from-above prior. Thus,
shading alone does not provide sufficient shape informa-
tion to estimate light direction accurately. We also found
that global convexity is a very effective cue in determin-
ing light direction and that this finding is expected when
one considers the information contained in a globally
convex object. Given our results, algorithms for producing

Figure 16. Luminance maps for estimated surface orientation of stimuli. The upper row shows the luminance maps for a stimulus in
Condition C under the (unlikely) assumption that the 3D surface orientation was estimated accurately. The lighting direction was [8 = 30-,
E = 90-] on the left and [8 = 15-, E = 225-] on the right. The green crosses indicate the true lighting direction. The lower row shows the
luminance maps for the same stimuli under the assumption that the assumed shape is a sphere. Now the luminance map is distorted
because the assumed surface orientation at each stimulus point is not necessarily correct. The green crosses again represent the true
lighting directions. The blue stars represent the lighting directions estimated by the least-squares algorithm described in the Introduction
section. Although the assumed shape is incorrect, the lighting-direction estimate is within 20- of the true direction. The red dots represent
the settings from each of the four observers when presented these stimuli.
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images with shaded objects should be consistent with
viewer assumptions that the light comes from above and
that most objects are globally convex.
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