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ABSTRACT 
We present Hover Widgets, a new technique for increasing 
the capabilities of pen-based interfaces. Hover Widgets are 
implemented by using the pen movements above the 
display surface, in the tracking state. Short gestures while 
hovering, followed by a pen down, access the Hover 
Widgets, which can be used to activate localized interface 
widgets. By using the tracking state movements, Hover 
Widgets create a new command layer which is clearly 
distinct from the input layer of a pen interface. In a formal 
experiment Hover Widgets were found to be faster than a 
more traditional command activation technique, and also 
reduced errors due to divided attention.  

Author Keywords 
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ACM Classification Keywords 
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User Interfaces, Graphical user interfaces. 

INTRODUCTION 
Pen-based interfaces are effective tools for a variety of 
tasks, such as freeform note taking, and informal sketch 
design. However, these devices typically lack the keyboard 
keys, buttons, and scroll wheels that can provide shortcuts 
for common tasks on the desktop. As a result, the user must 
zigzag the pen back and forth between the work area and 
the system menus. This slows users down and diverts their 
visual attention from their actual task at hand. 

Localized user interface elements attempt to solve this 
problem by bringing the interface to the locus of the user’s 
attention, as indicated by the current pen location [5, 10, 
12]. A significant challenge for localized interfaces is that 
the user must invoke them somehow, such that a pen stroke 
on the screen activates the interface rather than leaving 
behind ink. Even with the use of a well-crafted gesture 

recognition engine, unrecognized gestures can be 
misinterpreted as ink, and strokes intended as ink can be 
falsely recognized as gestures, causing unexpected results. 

One approach to address this problem is to require the user 
to press a physical button to explicitly distinguish between 
command modes and an ink input mode [12, 14]. A button 
can provide an efficient and effective solution [11], but in 
some situations it is just not practical. Many mobile devices 
or electronic whiteboards lack a suitable button, and even if 
a button is available, it may be awkward to use [18]. 

We seek new strategies and techniques for supporting 
localized user interface interactions in pen interfaces. Many 
pen devices (such as Wacom Tablets and Tablet PC’s) 
support a tracking state. The tracking state senses the pen 
location while the pen is proximal to the interaction surface. 
However, the literature offers few examples of uses for the 
tracking state other than cursor feedback [5, 7]. 

We propose Hover Widgets, a novel interaction technique 
that extends the capabilities of pen-operated devices by 
using the tracking state to access localized user interface 
elements. A Hover Widget is invisible to the user during 
typical pen use, but appears when the user starts moving the 
pen along a path in the tracking state, and then activates 
when the user reaches the end of the path and clicks the 
widget with the pen. For example, the user might form a 
backwards ’L’ shape to activate a marking menu (Figure 1).  

 
Figure 1: (a) When the user starts a Hover Widget gesture 

(here a backwards ‘L’), the widget fades in. (b) The user exits 
the gesture, so the widget fades out (c) Upon completing the 
gesture, the cursor is over the associated Hover Widget. (d) 

The user clicks the widget to activate it. The dashed line is for 
illustration only, showing the pen’s path in the tracking state. 
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Our research contributes a new way of using the pen 
tracking state to extend the capabilities of pen interfaces. 
We discuss the design space of Hover Widgets, consider 
various tracking state gestures which could be used, and 
explore various means for activating the Hover Widgets 
once the associated gestures are performed. In our 
prototype application, four ‘L’ shaped Hover Widgets are 
used to activate localized interactions, compensating for the 
absence of time-saving desktop items not available in pen 
interfaces, such as hotkeys, mouse buttons, and scroll 
wheels. In our studies, we found that an 'L' shaped gesture 
could be performed quickly, and had little chance of false 
activation. In a task sensitive to the user’s focus of 
attention, we found that the localized properties of Hover 
Widgets made using them faster and also provided more 
accurate results compared to using a standard toolbar icon.  

RELATED WORK 
Hover Widgets combine three fields of related work: 
gestures, localized UIs, and uses for the tracking state. 

A large amount of work exists in gesture-based systems for 
pen input [12, 14, 15, 18, 19]. These systems differ from the 
gestures used for Hover Widgets, as the gestures are carried 
out on the surface of the display. A documented difficulty 
associated with this technique is that the gestures can be 
confused with the data input, generally ink, causing 
unexpected results which must be undone [11, 15]. Even 
the most obscure gesture could be falsely recognized - if the 
user was illustrating the system’s gestures, for example, 
then those illustrations would be recognized as the gestures 
which they illustrate. To alleviate this problem, some 
systems require users to explicitly switch between ink and 
gesture modes [12, 14]. In a recent study, it was shown that 
a button used by the non-dominant hand was most effective 
for this mode switch [11].  

Other localized interaction techniques, such as pop-up 
menus, are generally activated with physical buttons. Two 
implementations of localized scrolling techniques which 
were recently developed supported scrolling as the only 
input mode, so their invocation was not an issue [13, 16]. 

The tracking state of the pen, when it is above the display 
surface, is one of the three states sensed by pen-based 
systems. The mouse can also be in the tracking state when it 
is moved without a button pushed [4]. Usually, this state is 
used to track the current position of the cursor, but there has 
been previous work using it for other functionality.  

The Microsoft Windows operating system provides tool tips 
when users hover above an icon. These pop-up boxes 
display information about the icon, but cannot be clicked. A 
more interesting example is seen in the Windows XP Table 
PC Edition, which supports a gesture made in the tracking 
state. If the user scribbles above the display surface, a 
character entry tool pops up. Some users may find this 
feature irritating. It can be activated accidentally, and there 
is no visual guidance showing the user what to do for the 
gesture to be recognized. 

In [8], users could share documents between multiple tablet 
PCs by performing a drag gesture from one device to 
another called a “stitching” gesture. In one of the designs, 
this gesture could be done in the display tracking zones.  

The tracking menu is an interactive interface widget which 
relies on tracking state actions [5]. The menu is a cluster of 
graphical widgets surrounded by a border within which the 
cursor moves. While the cursor is within the border, menu 
items can be selected via the usual cursor movements. 
However, if the cursor reaches the menu's border while 
moving in the tracking state, the menu is dragged around 
with the cursor. This allows for a smooth modeless 
transition between menu repositioning and menu item 
selection. Further, the contents of the menu are always in 
close proximity to the cursor. However, unlike Hover 
Widgets which are modeless, a tracking menu is modal in 
that an explicit action is required to dismiss it. As with all 
modal interface elements, while the tracking menu is active, 
only commands within that menu can be executed. This 
limitation of tracking menus is one motivation for exploring 
the design space of modeless interface widgets - like Hover 
Widgets - that leverage the tracking state. 

HOVER WIDGETS 

Design Properties 
Hover Widgets offer a number of beneficial properties: 

• New Command Layer: Hover Widgets use the 
tracking state to create a new command layer which is 
clearly distinguishable from the input layer of a user 
interface. A user does not need to worry about the system 
confusing ink and gestures. 
• Localized UI: Hover Widgets are always local to the 
cursor, which may save the user time and reduce physical 
movements. For example, if a user needs to undo a mistake, 
instead of traveling to the top of the interface to click an 
icon, the user could make a gesture while hovering, and 
then click to activate an “undo” Hover Widget. 
• Undivided Attention: Hover Widgets allow users to 
maintain their focus of attention on their current work area. 
If a user is reading the bottom of a page that they are 
annotating, a gesture in the tracking state could be used to 
activate a virtual scroll ring [13], allowing them to scroll as 
they continue to read. The user would not have to shift their 
attention to an icon on the border to initiate scrolling. 
• Button-Free UI Activation: Hover Widgets provide a 
mechanism to quickly bring up other localized user 
interface elements, without the use of a physical button. For 
example, a Hover Widget could be used to activate a 
marking menu or virtual scroll ring. 
• Integration with Pen UI: Hover Widgets can be 
integrated into pen-based user interfaces, allowing fast 
transitions between ink and commands. If a user noticed a 
mistake in a document while they were scrolling, they could 
lift the pen and then draw a circle around the mistake. The 
user could then activate the scroll tool to continue scrolling. 



Design Space of Hover Widgets 
Using the tracking state pen actions is a relatively new 
topic. As a result there are a number of issues we must 
consider in the design of Hover Widgets. We now discuss 
the design space of Hover Widgets that we explored, and 
the reasoning behind the design decisions which we made. 

Shape 
If a gesture in the tracking state will be required to activate 
the Hover Widgets, then the gesture must be easy to 
perform. At the same time, the gesture must not occur in 
natural tracking state movements. Otherwise, Hover 
Widgets would be activated unintentionally. This presents a 
trade-off between simplicity and ambiguity. If the gesture is 
complex, executing it will be slow. But reducing the 
complexity may increase ambiguity, causing unintentional 
activations. 

 
Figure 2: (a) Single level stroke. (b) Two level stroke. (c) Three 

level stroke. (d) Spiral stroke. 

UniStroke characters [6] provide a good place to start when 
searching for appropriate gestures. The simplest gestures 
consist of a single directional stroke, but there are also 
compound stroke gestures with one and two corners (Figure 
2a, b, c). Although the single-level strokes are simple, they 
will cause many false activations, as the pen only needs to 
move in a single direction to activate the widget.  

The two-level strokes are less likely to cause false 
activations, so in our studies we focus on ‘L’ shape strokes, 
which have 90 degree angles. These strokes have minimal 
complexity, and we would not expect the sharp corners to 
appear in tracking state pen actions. We verified this 
intuition by simulating the Hover Widgets on captured pen 
data from internal users. We analyze the results of a more 
formal simulation study in Experiment 1.  

While the two-level strokes may be the best shape strictly in 
terms of the simplicity-ambiguity tradeoff, there is no 
reason more complex strokes couldn’t be used. Along with 
three stroke compound gestures, we have also explored 
other stroke shapes such as spirals (Figure 2d). Although 
the strokes are more complex, they could be used to 
increase the vocabulary of an interface. 

Gesture Recognition and Visualization 
Two interrelated design issues for Hover Widgets are how 
they are visualized, and how the system recognizes them. 
The issues are associated because the visualization should 
convey to the user the exact requirement for either invoking 
the command or preventing the command from occurring. 

Our strategy is to use gestures which are constrained and 
guided by boundary walls surrounding the target stroke, 
creating a tunnel that the user must traverse (Figure 3). The 
visual appearance of the tunnel defines the movements 
required to acquire the associated Hover Widget. The main 

benefit of using such a simplified gesture recognition 
strategy is that users can quickly understand exactly what is 
required to activate a Hover Widget. Using the tunnel 
boundaries also makes the gesture recognition algorithm 
relatively simple. A more elegant recognition system could 
possibly improve performance, but it would be challenging 
to visualize complex gesture constraints. 

 
Figure 3: (a) A cursor moves through the Hover Widget 

tunnel. (b) The tunnel is repositioned if the cursor leaves its 
boundaries. (c) The Hover Widget can be activated once the 

cursor reaches the activation zone, shown in red. 

If the cursor leaves the boundaries of the tunnel, then the 
origin of the tunnel is repositioned to the earliest point of 
the current hover stroke which could begin a successful 
gesture (Figure 3b). As long as a user’s stroke ends with the 
required movements, the Hover Widget will be activated. 
This makes, the ‘L’ shaped gesture semi-scale independent, 
as the first segment of the stroke does not have a maximum 
length (Figure 3c). A consequence of this algorithm, is that 
the sections of the tunnel boundaries act similarly to the 
borders of tracking menus [5]. The Hover Widget, however, 
is not simply an ‘L’ shape tracking menu, since intersecting 
with other sections of the tunnel will reset the origin of the 
tunnel, ensuring that only ‘L’ shaped pen movements can 
activate the Hover Widget. 

Activation 
Once the cursor travels through a tunnel, the associated 
Hover Widget can be activated. We have explored three 
methods for activation: pen down, tapping, and crossing. 

With pen down activation, the user simply brings then pen 
in contact with the activation zone after completing a 
gesture in the tracking state. In initial user tests, we found 
that errors caused by overshooting the activation zone could 
be adequately prevented by making the region twice as long 
in the direction of movement (Figure 3a). The tunnel is 
reset if the cursor leaves this activation zone. Pen down is 
the default activation method in our application, and is the 
technique used in our experiments. 

Tapping to activate the Hover Widgets is another option 
which we have explored. Instead of just bringing the pen in 
contact with the display, the pen quickly taps the display 
(i.e. a pen down event followed by a pen up event). This 
technique could be used to reduce false activations.  

In the case of crossing activation, the Hover Widget is 
activated as soon as the pen crosses the end of a tunnel, 
while still in the tracking state. Implementing this technique 
increased the frequency of unintentional activations of ‘L’ 
shaped tunnels, but with more complex tunnels, such as 
spirals, false activations do not occur.  



Visualization Techniques 
Earlier we argued that recognition should be correlated to 
the way that Hover Widgets are visualized. While we 
observed that drawing the tunnels is beneficial when 
learning to use the Hover Widgets, seeing the tunnels at all 
times would become visually distracting, especially when 
the Hover Widgets were not in use. Expert users may not 
need to see the tunnel at all. In this section we outline 
strategies for visualizing the Hover Widgets such that the 
user sees what they need to see, when they need to see it. 

 

Figure 4: (a) The tunnel and activation zone fades in after 
40% progress has been made. (b) The activation zone is 

displayed as a square icon. (c) The cursor trail visualization 
shows the path of the pen in the tracking state. (d) The cursor 
trail turns green when the cursor reaches the activation zone. 

Both the tunnel and activation zone can either be displayed 
or hidden. When displayed, a fade-in point can be set, 
which defines how much progress must be made before the 
widget becomes visible. For example, a user may only want 
to see the activation zone or tunnel after they have 
progressed through 40% of the tunnel (Figure 4a). Once the 
cursor reaches the fade-in point, the widget slowly fades in. 
The activation zone is displayed as a square icon, which 
illustrates its associated functionality. Because the 
activation zone is actually rectangular, the icon will drag 
along with the cursor until it exits the region (Figure 4b).  

We have also explored a dwelling fade-in, where the Hover 
Widget becomes visible if the pen dwells in any fixed 
location of the tracking zone. This is especially useful when 
multiple tunnels are present, so users can see which tunnel 
to follow to access a certain Hover Widget (Figure 5).  

A final visualization technique which we have explored is 
the cursor trail. The path that the cursor has taken is shown, 
beginning at the tunnel origin, and ending at the current 
cursor location (Figure 4c). If the cursor completes the 
gesture, the trail turns green, indicating that the Hover 
Widget can be activated (Figure 4d).  

Multiple Hover Widgets 
Multiple Hover Widgets can be used simultaneously, with 
each one having its own parameters (Figure 5). When 
multiple Hover Widgets do exist, each individual Hover 
Widget is updated independently of the others. This 
approach ensures that each Hover Widget will still be 
activated if and only if its corresponding gesture is made. 
The relative positions of the 4 tunnels illustrated in Figure 5 
are not locked. If the pen first moved to the right, it could 
still move up and then to the left to activate undo icon, 
without the need to first backtrack. This is a difference from 
Tracking Menus, which has a constant interface layout [5]. 

APPLICATION 
We implemented a painting program, with all functionality 
of the application accessed via Hover Widgets. Hover 
Widgets are not limited to drawing applications; this 
context was used as a proof-of-concept prototype. 

The system allows us to explore how Hover Widgets can 
replace desktop user interface elements using localized 
interactions. The only standard GUI element is a control 
panel that can be used to modify various parameters of the 
Hover Widgets. By using the Hover Widgets for all 
functionality we are pushing the limits of Hover Widgets, 
allowing us to see how far we could extend their use. In an 
actual application, the Hover Widgets would likely 
complement standard menus and tool bars. Four ‘L’ shaped 
Hover Widgets are used in the application (Figure 5). We 
now describe the functionality of these four Hover Widgets.  

 
Figure 5: The four ‘L’ shaped Hover Widgets used in our 

application. Users would only see this entire “road map” if a 
dwelling fade-in occurred. 

Tools Hover Widget 
The tools Hover Widget (right-up) can be thought of as 
replacing an icon toolbar, found in most drawing 
applications. Activating the Hover Widget brings up a 
single level marking menu. From this menu, the following 
command selections are available: selection tool, pen tool, 
square tool, circle tool, and pen properties. The pen 
properties option pops up a localized CrossY Menu [2], 
allowing users to select the color and width of their pen.  

Edit Hover Widget  
The edit Hover Widget (up-left) replaces the standard 
“Edit” menu, by popping up a marking menu. Its options 
include the commands typically found in an application’s 
“Edit” menu: undo, redo, clear, cut, copy and paste.  

Scroll Hover Widget  
The scroll Hover Widget (down-left) allows users to scroll, 
without the need to travel to display borders. It can be 
thought of replacing the scroll wheel of a mouse. Activating 
this Hover Widget brings up a virtual scroll ring [13]. With 
this tool, users can make a circling gesture clockwise to 
scroll down, and counter-clockwise to scroll up.  

Right Click Hover Widget  
The right click Hover Widget (right-down) activates a right 
click tool. Once activated, the cursor is drawn as a right 
button icon. Subsequent pen down events simulate the 
functionality generally associated with clicking the right 



mouse button. For example, clicking on a pen stroke pops 
up a marking menu, which provides options specific to that 
stroke, such as cut, copy, and properties. 

Application Control Panel 
The application contains a control panel which is opened by 
selecting a tab at the bottom right corner of the interface. 
This control panel allows users to explore the various 
Hover Widget settings and parameters. For example, users 
can switch to crossing or tapping activation, manipulate the 
width and length of the tunnels, and enable or disable the 
various visualization techniques. Parameters for the 
visualization techniques can also be modified, such as the 
fade-in point and the dwelling fade-in time threshold. 

Informal User Feedback 
We had roughly 10 computer literate users explore the 
application in short and informal demonstration sessions. 
While most users were able to use the Hover Widgets 
immediately, some needed a few minutes of practice. One 
of the most useful features seemed to be the dwelling fade-
in. Users understood the required gestures when the tunnels 
were displayed, and could discover the various functionality 
of the application. All users liked the idea of using the 
tracking state for added pen input functionality. 

EXPERIMENTS 

Goals 
The application which we developed allowed us to explore 
various uses of Hover Widgets in an interactive pen-based 
application. We now present a pilot study and two 
experiments designed to answer three main questions: 

(1) How do the parameters of the Hover Widgets affect 
their usability? The parameters we are primarily concerned 
with are the shape, orientation, tunnel width, tunnel length, 
and visualization technique (Figures 2, 4, 6). 

(2) How can these parameters be optimized to minimize 
false activations? 

(3) How do Hover Widgets with such optimal parameters 
perform in comparison to the status quo command selection 
techniques? 

The first question, in itself, would require a great deal of 
experimentation, due to the number of parameters which 
may affect the Hover Widgets’ performance.  

To narrow down the number of variables in our 
experiments, we focused on a single value for some of these 
parameters. First, we only tested the ‘L’ shaped hover 
gestures, as they seemed to perform well in our initial 
observations. We set the length of the tunnel for these 
gestures to a value of 78 pixels, 39 pixels per direction. 
This length was found to cause few false activations in our 
preliminary captured data, and allowed users to complete 
the tunnels while resting their hand and moving mostly 
their fingers, with minimal movement from the wrist.  

Pilot Study 
We conducted a pilot study with six internal participants to 
determine appropriate values for the tunnel width and 
orientation for the full study. We expected the width (W), 
and length, or amplitude (A), to affect movement time (MT) 
as governed by the steering law [1]: 







+=

W
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where a and b are empirically determined constants. The 
study also allowed us to get a quick sense of whether or not 
gesture orientation would significantly affect performance.  

 
Figure 6: The 8 possible ‘L’ shape orientations. 

Apparatus 
The experiment was conducted on a Toshiba Portege 3500 
TabletPC running Windows XP SP1 Tablet Edition, with a 
24.5 x 18.5 cm (1024 x 768 pixel) display. A stylus was 
used for input. 

Procedure 
A circle was placed in the center of the screen, which the 
user tapped to begin a trial. The user could then begin the 
required Hover Widget gesture, and the trial ended when 
the user successfully clicked on the Hover Widget 
activation zone. The tunnel and activation zone were 
displayed at all times, before and after a trial began. The 
cursor trail was also displayed once a trial began. The 
activation zone was displayed as a red rectangle, and turned 
green when the pen was above it.  

Subjects were told to complete the trials as quickly as 
possible while minimizing errors. An error occurred when 
the pen clicked outside of the Hover Widget activation 
zone, in which case the user would have to start over from 
the beginning of the tunnel. Subjects were also told to avoid 
colliding with the walls of the tunnel. 

Design 
The tunnel length had a constant value of 78, and we tested 
4 values of Width (12, 16, 20, and 24 pixels). The length of 
the activation zone (measured along the direction of 
movement) was set to two times the value of the Width. The 
Width values were fully crossed with all 8 possible 
Orientation values (Figure 6), resulting in 32 conditions. A 
repeated measures design was used - subjects completed 4 
blocks, consisting of all 32 Width-Orientation combinations 
appearing 2 times each in random order. 

Pilot Results and Discussion 
In our analysis of movement time we discarded trials in 
which the tunnel was reset to the cursor position, due to a 
clicking error or a collision. A repeated measures analysis 
of variance showed a significant main effect for both Width 
(F3,15 = 88, p <.0001) and Orientation (F7,28  = 3, p <.005) 



on movement time. Regression analyses showed that the 
data for all conditions fit the Steering Law (Equation 1) 
with an r2

 value of 0.98 (Figure 7). Although Orientation 
had a significant effect on movement time, the values only 
ranged from a minimum of 0.69 seconds for Orientation 5 
and a maximum of 0.74 seconds for Orientation 8. 

Overall, 11.6% of the trials had collisions, and only 0.78% 
of the trials had clicking errors. This is a good result, since 
a collision only indicates suboptimal performance, while a 
clicking error in an actual application could cause 
unexpected results. The collision rate was so high because 
of the condition where Width = 12, which had a 26.6% 
collision rate. With that condition removed, the average 
collision rate decreased to 6.7%.  

 
Figure 7: Movement time by the index of difficulty. 

These results give us the required data to choose 
appropriate parameter values for our full study. We will 
include all 8 values of orientation to try to understand the 
cause for its differing effects on movement time. The pilot 
experiment, in addition to our preliminary captured data, 
shows that a width of 20 produces a good trade-off between 
minimizing movement time and error rate, while also 
preventing false activations. Therefore we used a width of 
20 for the remaining studies.   

Experiment 1 
We now describe the first of two formal experiments which 
we conducted, testing how the orientation and visualization 
technique affect the Hover Widget performance. 

Apparatus 
The experiment was conducted on a Toshiba Portege M200 
Tablet PC running Windows XP SP1 Tablet Edition, with a 
24.5 x 18.5 cm (1024 x 768 pixel) display.  

Participants 
Twelve volunteers (two female, ten male) participated in 
the experiment. Participants were all right-handed, and 
controlled the stylus with their right hand. Five of the 
participants were experienced Tablet PC users. 

Pen Capture/Warm up Session 
Before starting the experiment, a twelve minute Tablet PC 
warm up session was given. This session was used for two 
purposes. First, it gave subjects who had never used pen 

input systems a chance to get used to Tablet PCs. Second, it 
allowed us to capture pen data to verify our preliminary 
false activation findings. The capture sessions were broken 
up into three tasks, all using Windows Journal. Task one 
was to write a grocery list. In task two, participants drew 
directions to their house. In task three, they drew a picture 
of their dream house. At this point, participants had no 
knowledge of the Hover Widgets, and did not know their 
data would be used to test for false activations. Although 
only twelve participants went on to participate in the study, 
we captured pen data from fifteen participants, resulting in 
just over three hours of captured data. 

Procedure 
The procedure used for this experiment was similar to the 
pilot study. Above the starting circle, we displayed an 
arrow indicating the ’L’ shape orientation for the current 
trial, both before and after the trial began. The tunnel still 
had a constant length of 78 and now also had a constant 
width of 20. The activation zone length was 40. 

Design 
We tested all 8 possible values of Orientation. We also 
tested the effects of the presence or absence of the Cursor 
Trail, and the Fade-in Point. The Fade-in Point values 
which we tested were 20% (early) and 70% (late), 
indicating the percentage of the tunnel that had to be 
traveled before the Hover Widget became visible. 

A repeated measures within-participant design was used. A 
fully crossed design resulted in 32 combinations of 
Orientation (1-8), Cursor Trail (on, off), and Fade-in Point 
(early, late). Each participant performed the experiment in 
one session lasting approximately 20 minutes. The session 
was broken up by the 4 combinations of visualization 
techniques, with 5 blocks of trials for each of the 
visualizations. Each block consisted of all 8 orientations, 
appearing 2 times each in random order. Presentation order 
of the visualization techniques was counterbalanced using a 
Latin Square design, resulting in four orderings. 
Participants were randomly divided into 4 groups of 3, with 
each group performing one of the 4 orderings.  

At the start of the experiment, participants were given a 
single warm-up block with the Hover Widget and cursor 
trail always visible, to familiarize them with the technique. 

Results  
We first discuss the results of the false activation analysis. 
We simulated the data from the pen capture sessions on all 
8 possible ‘L’ shaped orientations. We report the results 
from two tunnel widths (16, 20 pixels), with all tunnels 
having a length of 78 pixels. Figure 8 shows the number of 
false activations which occurred in the 3 hours, broken up 
by orientation. Even at the larger width, orientations 6 and 7 
had no false activations, while orientations 2 and 5 had 11 
each. The captured data confirms our hypothesis that some 
gestures in the tracking state will rarely occur, but it also 
shows that corners in certain directions will be seen. 



 
Figure 8: Number of false activations which occurred in the 3 

hours of captured data. 

We measured movement time (MT) defined as the time 
between lifting the pen after clicking to start the trial, and 
clicking the Hover Widget activation zone. We discarded 
trials in which clicking errors occurred in our analysis of 
MT. A repeated measures analysis of variance showed a 
significant main effect for Fade-in Point (F1,11 = 38.24, p < 
.0001), but not Cursor Trail or Orientation. With the early 
Fade-in Point the average movement time was 1.16s, and 
with the late Fade-in Point, the movement time was 1.30s.  

We also found that the experienced tablet users performed 
significantly faster (F1,11  = 292.42, p < .0001). The average 
movement time was 1.41 seconds for non-tablet users, and 
0.99 seconds for tablet users.  

Clicking errors only occurred in 0.92% of all trials. This 
error rate was 1.4% for the late visualization, and 0.4% with 
the early visualization. This shows that even with the late 
visualization, the user had enough feedback to know when 
they could and could not activate the Hover Widget.  

Learning Effects 
Block number had a significant effect on movement time 
(F3,33 = 6.15, p < 0.0005), and a significant interaction with 
Fade-in Point (F4,44 = 2.71, p < 0.05) (Figure 9). Post hoc 
analysis revealed that the Fade-in Point only had a 
significant effect in block 1 (p < .0001). This result 
indicates that the early fade-in point would make for an 
effective training visualization, which the user could 
subsequently disable. 

 
Figure 9: Movement time by Block and Fade-in Point. 

Experiment 2 
The results of Experiment 1 gave us a good understanding 
of how the parameters of the Hover Widgets would affect 
their performance in a controlled environment. Average 
movement times were comparable to those of 2-level 
simple and compound marking menus reported in the 
previous literature [10, 20]. The controlled environment, 
where the user performed all trials from a constant starting 
position, was well suited to answer our initial fundamental 
question about the Hover Widget parameters. Specifically, 
we found that the orientation did not have a significant 
effect on movement time, but did affect the number of 
observed false activations. Furthermore, we found that the 
cursor trail provided no advantage, while the early fade-in 
point significantly reduced movement time. 

In Experiment 2, we explore the benefits gained from 
Hover Widget's property of being a localized interaction 
technique. We designed the experiment to allow us to 
analyze two potential benefits - faster access to commands 
and maintained focus on the primary task. The experimental 
task is an abstraction of real interface tasks which demand 
that the user focus their attention on a particular locale on 
screen, while at the same time requiring command 
selections. Examples of such tasks are scrolling or selecting 
a highlighter while proof-reading a document. Similar 
studies in two-handed input have been carried out exploring 
the effects of visual diversions during a drawing task [9].  

Apparatus 
We used a  Wacom Cintiq 18SX interactive LCD graphics 
display tablet with a 32.9 x 29.9 cm (1280 x 1024 pixel) 
display. The display ran on a 1.4Ghz Windows XP desktop 
machine. This large-sized Tablet allowed greater variation 
in the distance variable which we would be testing than the 
Tablet PC used in Experiment 1.  

Participants 
Ten volunteers (one female, nine male) participated in the 
experiment. One participant was left-handed, and all 
participants controlled the stylus with their dominant hand. 
Four of the participants were experienced Tablet users. 

 
Figure 10: Experiment 2 setup (GridN = 8, D = 300). A trial 

was completed by selecting the blue target cell, which was only 
visible for 0.7 seconds. The red circle shows the position of the 

target needed to be selected in the icon condition. The 
dimensions of the grid (GridN) and its distance from the icon 
(D) varied. The top and left display borders are illustrated. 



Procedure 
At the start of a trial set, a square grid consisting of an array 
of 12x12 pixel square cells was displayed. The top left 
corner of the grid was aligned with the top-left to bottom-
right diagonal of the display, at varying distances. The user 
clicked in the grid to start a trial, at which point a target cell 
in the grid would flash blue for 0.7 seconds. The target cell 
only flashed once, after which it returned to being visually 
indistinguishable from the other cells in the grid. To 
complete a trial, the user clicked this cell. Once the target 
cell was clicked, a new cell flashed, immediately beginning 
the next trial (Figure 10).  

Before clicking the target cell, the user was required to 
make a successful command selection. Two command 
selection conditions were used. In the Icon condition, a 
single red circle was drawn in the top left corner of the 
screen, representing a traditional menu icon (Figure 10). 
The icon had a diameter of 24 pixels, which is about as 
large as any icon which appears in today’s GUIs. In the 
Hover Widget condition, users were required to activate a 
Hover Widget before clicking the cell that had flashed. The 
Hover Widget parameters were set based on the results of 
Experiment 1. The Hover Widget tunnel had a width of 20, 
a length of 78, and ‘L’ shape orientation 7 (up-right). No 
cursor trail was displayed, and the fade-in point was 20%. 

Since the target cell was only temporarily distinguishable 
from the surrounding cells, users had to attend to the grid 
when it flashed. Users would also benefit from attending to 
the grid after the target cell flashed, to reduce the reliance 
on their spatial memory of the target cell location, in order 
to successfully select it later. If participants were unable to 
recall the appropriate target cell and clicked a different cell, 
then they had to pause for 2 seconds, after which the target 
cell was highlighted to be clicked. This time penalty put it 
in the participants’ best interest to select the correct target 
cell on their first attempt, allowing us to reliably correlate 
accuracy with maintained focus of attention. 

Because gestures are generally not self-revealing [3] 
discoverability may be an issue with Hover Widgets. To 
explore this, participants were given no initial verbal 
instructions as to how to use the technique. Instead, a small 
text description and 40 second video clip were shown prior 
to using the Hover Widgets. This approach mimics what 
could be a start-up tutorial for first-time users of an 
application using Hover Widgets. If participants had 
subsequent questions, the experimenter would only repeat 
instructions that were already given in the video or text. 

Design 
A repeated measures within-participant design was used. 
Independent variables were command technique CT (Icon, 
Hover Widget), grid dimension GridN (4, 8, 12), measured 
as the grid side length in cells, and distance, D (300, 600, 
900, 1200), measured as the distance between the top left 
corners of the grid and the display in pixels. A fully crossed 
design resulted in 24 combinations of CT, GridN, and D.  

Each participant performed the experiment in one session 
lasting approximately 60 minutes. The session was broken 
up by the 2 command selection techniques, with 4 blocks 
appearing for each of the command techniques. Each block 
consisted of 24 trial sets, with each GridN-D combination 
appearing twice in random order. A trial set consisted of 5 
trials on the same grid, with a different target cell for each 
of the 5 trials. Presentation order of the command 
techniques was counterbalanced with half the participants 
performing each technique first. A two minute warm-up 
session was given before each command technique.  

Results  
We removed subject 5 from the analysis, as the error rate 
for that subject was disproportionately high, and movement 
times were much faster, indicating that the subject was 
racing through the experiment. We also removed outliers 
more than 3 standard deviations from the group mean 
movement time. A total of 2.01% of the data was removed. 

Movement Time 
Movement time was defined as the time taken to select the 
target cell once a trial had started. Our analysis of 
movement time does not include trials in which an error 
was made during the command selection. Repeated 
measures analysis of variance shows significant effects for 
CT (F1,8 = 1549, p < .0001), D (F3,51 = 167, p < .0001), and 
GridN (F2,34 = 499, p < .0001), and significant CT x GridN 
and CT x D interactions (p < .0001). Overall movement 
times were 2.19s for Icon, and 1.76s for Hover Widget.  

 
Figure 11: Movement time for the command techniques, by 

grid dimension and distance. 

Figure 11 shows movement times for each of the 12 GridN-
D combinations, illustrating the interactions. As expected, 
increased distance had little effect on the Hover Widget, 
while it increased times for the icon. Post-hoc analysis 
shows the Hover Widget technique to be significantly faster 
for every condition except at D = 300, where the 
differences were not significant for the 4x4 and 12x12 
grids. This is a good result, showing Hover Widgets to be 
advantageous, even when the icon is near the grid. 

It is interesting to note that GridN had an effect on the 
Hover Widget technique. This is in part due to the larger 
distances being traveled to get to the target cell. However 
the time to activate the Hover Widget once a trial started 



was also significantly effected by GridN (F2,16 = 123.28 
p<.0001). This was the result of users sometimes moving 
off the grid before activating the Hover Widget. We believe 
users did this to prevent their hand and Hover Widget from 
occluding the grid and target cell when it flashed. 

As in Experiment 1, tablet experience significantly reduced 
Hover Widget movement times (F1,9 = 31.1, p < .0001), and 
also had a significant interaction with Block (F3,27 = 6.92, p 
< .0001). Post Hoc analysis showed that only in the first 
block were movement times significantly faster (p < .0001), 
demonstrating that, with practice, users new to Tablet PCs 
could use the technique just as well as experienced users. 

Target Error Rate 
We defined target errors as trials in which users selected the 
wrong target cell. Repeated measures analysis of variance 
shows significant effects for CT (F1,8 = 166, p < .0001), D 
(F3,51 = 4.03, p < .01), and GridN (F2,34 = 166, p < .0001), 
and a significant CT x GridN interaction (F5,45 = 65.7, p < 
.0001). Figure 12a illustrates the interaction between CT 
and GridN. The data shows that users have the ability to 
maintain their focus of attention on the grid while activating 
the Hover Widget, while selecting the icon causes divided 
attention. Surprisingly, with the icon technique, target error 
rate actually decreased with an increase of distance. This 
decrease may have been due to users spending more time 
focusing on the target cell before selecting the icon for 
larger distances. Regardless, users had trouble maintaining 
their focus of attention, even when the icon was close. 

 
Figure 12: (a) Effect of grid dimension on the target error 

rate. (b) Movement time by block number, illustrating 
learning differences for the two techniques 

Learning 
We analyzed the effects of learning on each of the 
command techniques. Movement time was significantly 
affected by both Block (F = 143, p < .0001) and the Block x 
CT (F = 25.3, p < .0001) interaction. As can be seen in 
Figure 12b, learning is more apparent with the Hover 
Widget technique. Post hoc analysis shows that significant 
learning occurred after each block with the Hover Widgets, 
while the only significant change for the icon was between 
the first and second block (p < .01). Also of interest is that 
the Hover Widget was significantly faster in each of the 
four blocks, including the first (p < .0001). 

Hover Widget Discoverability  
To analyze the discoverability, we looked at the mean time 
to activate the hover widget in the warm-up trials, prior to 
which no verbal instructions had been given to participants 

(see Procedure). Only one subject took more than 20 
seconds for their first successful hover widget activation, 
and after the 6th trial the mean activation time across all 
subjects was under 3 seconds for each of the remaining 
trials in the warm-up. This data, in combination with the 
fact that Hover Widgets were significantly faster in the first 
block of the real experiment, shows that if proper system 
instructions are given, discoverability will not be an issue. 

Trial Errors 
We defined trial errors to be trials in which the user missed 
the icon or the Hover Widget. The error rate was 5.6% with 
the Hover Widgets, and 1.3% with the icon. Although the 
error rate for Hover Widgets is acceptably low, times may 
not have been as advantageous with equal error rates. 

Hover Widget Collision Errors 
We defined a collision error as any time the user aborted a 
hover widget after making at least 40% progress through 
the tunnel. Collision errors occurred in 4.1% of all trials. It 
is important to note that trials in which collision errors 
occurred were included in our analyses of movement time. 
The errors simply resulted in suboptimal trial performance.  

DISCUSSION AND CONCLUSIONS  
We have presented Hover Widgets, interactive widgets 
which are activated through simple gestures in the tracking 
state of pen-based interfaces. We have shown how Hover 
Widgets can be integrated into an application, replacing 
interface elements which can be inconvenient when using a 
pen. Users who tried the application liked the idea of using 
gestures while hovering, and were able to activate the 
Hover Widgets with little practice. 

Furthermore, we have explored a method of pen interaction 
without the need for a button. Because our motivation for 
this is qualitative, as buttons can be unavailable or awkward 
to use, and not quantitative, our experiments did not 
compare Hover Widgets to button pressing techniques [11].   

In an initial controlled experiment, we found acquisition 
times of Hover Widgets closely matched the movement 
times reported previously for similar simple and compound 
marking menu strokes. Our captured data showed that a 
number of these gestures will rarely occur unintentionally, 
some not seen once in 3 hours of pen usage. These results 
could drive the design of applications which use Hover 
Widgets. For example, we have modified our application to 
use orientations 1, 4, 6 and 7 to minimize false activations. 

In the second experiment, we found that Hover Widgets 
reduced movement time and improved accuracy, when 
compared to a standard toolbar icon, in a task sensitive to 
the user’s focus of attention. Movement time was 
significantly reduced in all conditions when the distance 
needed to travel to the icon was 600 pixels or greater, or 
about half the length of most Tablet PC displays. The 
analysis of accuracy showed that users were able to activate 
the Hover Widgets with a minimal shift of attention.  



In Experiment 2, we also explored the discoverability of 
Hover Widgets by not providing any verbal instructions as 
to how to use them. Results showed that Hover Widgets 
could indeed be a walk-up-and-use interaction technique, if 
a start up tutorial is presented to first time users.  

FUTURE WORK 
The design space of Hover Widgets is very large, and there 
are a number of paths which we have not yet taken. More 
complex gestures could be investigated. The shape of the 
gestures could even represent their functionality. For 
example, the letter ‘N’ could be traced in the tracking state 
to activate a ‘NEW’ command Hover Widget. Sensiva 
Symbol Commander (www.sensiva.com) contains such 
gestures, but the pen must be down with a button pushed. 

In the application that we developed, users manually 
controlled the parameters of the Hover Widget. This 
approach could be extended to allow users to design their 
own Hover Widgets, and customize their functionality.  

Lastly, we believe Hover Widgets could be a beneficial 
technique for large display interfaces. In such setups, it 
becomes even more critical that a localized user interface is 
available, since the borders of the display may be difficult 
or impossible to reach. Generally, buttons are not available, 
but some electronic whiteboard technologies do sense the 
tracking state [17], so Hover Widgets could be used.  

As for the controlled evaluation of Hover Widgets, 
Experiment 2 provided very positive results for the 
technique. However, the task was a simplified usage 
scenario, as only a single Hover Widget was used. We 
would like to explore what happens when the user must 
choose from multiple Hover Widgets, and how effectively 
Hover Widgets can be used to activate marking menus. We 
would expect to see similar benefits, with a possible 
overhead cost to learning multiple gestures. 

It would also be interesting to evaluate the costs of 
performing gestures above the display surface. From our 
observations, the lack of force feedback when activating a 
Hover Widget was not problematic. However when 
combined with techniques which required the pen to be 
down, such as marking menus, some users needed practice 
before remembering that the pen had to be up for the Hover 
Widget, and down for the marking menu.   

Overall, the Hover Widgets are a promising technique for 
extending the capabilities of pen-based interfaces. Our 
studies showed Hover Widgets to have strong qualitative 
and quantitative benefits which warrant future explorations. 
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