
Hover Widgets: Using the Tracking State to Extend the
Capabilities of Pen-Operated Devices

Tovi Grossman1,2 Ken Hinckley1 Patrick Baudisch1 Maneesh Agrawala1,3 Ravin Balakrishnan2
1Microsoft Research

Redmond, WA
research.microsoft.com

{kenh, baudisch}@microsoft.com

2University of Toronto
Toronto, ON

www.dgp.toronto.edu
{tovi, ravin}@dgp.toronto.edu

3UC Berkeley
Berkeley, CA

www.cs.berkeley.edu
maneesh@cs.berkeley.edu

ABSTRACT
We present Hover Widgets, a new technique for increasing
the capabilities of pen-based interfaces. Hover Widgets are
implemented by using the pen movements above the
display surface, in the tracking state. Short gestures while
hovering, followed by a pen down, access the Hover
Widgets, which can be used to activate localized interface
widgets. By using the tracking state movements, Hover
Widgets create a new command layer which is clearly
distinct from the input layer of a pen interface. In a formal
experiment Hover Widgets were found to be faster than a
more traditional command activation technique, and also
reduced errors due to divided attention.

Author Keywords
Hover Widgets, pen input, gestures, tablets.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces, Graphical user interfaces.

INTRODUCTION
Pen-based interfaces are effective tools for a variety of
tasks, such as freeform note taking, and informal sketch
design. However, these devices typically lack the keyboard
keys, buttons, and scroll wheels that can provide shortcuts
for common tasks on the desktop. As a result, the user must
zigzag the pen back and forth between the work area and
the system menus. This slows users down and diverts their
visual attention from their actual task at hand.

Localized user interface elements attempt to solve this
problem by bringing the interface to the locus of the user’s
attention, as indicated by the current pen location [5, 10,
12]. A significant challenge for localized interfaces is that
the user must invoke them somehow, such that a pen stroke
on the screen activates the interface rather than leaving
behind ink. Even with the use of a well-crafted gesture

recognition engine, unrecognized gestures can be
misinterpreted as ink, and strokes intended as ink can be
falsely recognized as gestures, causing unexpected results.

One approach to address this problem is to require the user
to press a physical button to explicitly distinguish between
command modes and an ink input mode [12, 14]. A button
can provide an efficient and effective solution [11], but in
some situations it is just not practical. Many mobile devices
or electronic whiteboards lack a suitable button, and even if
a button is available, it may be awkward to use [18].

We seek new strategies and techniques for supporting
localized user interface interactions in pen interfaces. Many
pen devices (such as Wacom Tablets and Tablet PC’s)
support a tracking state. The tracking state senses the pen
location while the pen is proximal to the interaction surface.
However, the literature offers few examples of uses for the
tracking state other than cursor feedback [5, 7].

We propose Hover Widgets, a novel interaction technique
that extends the capabilities of pen-operated devices by
using the tracking state to access localized user interface
elements. A Hover Widget is invisible to the user during
typical pen use, but appears when the user starts moving the
pen along a path in the tracking state, and then activates
when the user reaches the end of the path and clicks the
widget with the pen. For example, the user might form a
backwards ’L’ shape to activate a marking menu (Figure 1).

Figure 1: (a) When the user starts a Hover Widget gesture

(here a backwards ‘L’), the widget fades in. (b) The user exits
the gesture, so the widget fades out (c) Upon completing the
gesture, the cursor is over the associated Hover Widget. (d)

The user clicks the widget to activate it. The dashed line is for
illustration only, showing the pen’s path in the tracking state.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22–28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

Our research contributes a new way of using the pen
tracking state to extend the capabilities of pen interfaces.
We discuss the design space of Hover Widgets, consider
various tracking state gestures which could be used, and
explore various means for activating the Hover Widgets
once the associated gestures are performed. In our
prototype application, four ‘L’ shaped Hover Widgets are
used to activate localized interactions, compensating for the
absence of time-saving desktop items not available in pen
interfaces, such as hotkeys, mouse buttons, and scroll
wheels. In our studies, we found that an 'L' shaped gesture
could be performed quickly, and had little chance of false
activation. In a task sensitive to the user’s focus of
attention, we found that the localized properties of Hover
Widgets made using them faster and also provided more
accurate results compared to using a standard toolbar icon.

RELATED WORK
Hover Widgets combine three fields of related work:
gestures, localized UIs, and uses for the tracking state.

A large amount of work exists in gesture-based systems for
pen input [12, 14, 15, 18, 19]. These systems differ from the
gestures used for Hover Widgets, as the gestures are carried
out on the surface of the display. A documented difficulty
associated with this technique is that the gestures can be
confused with the data input, generally ink, causing
unexpected results which must be undone [11, 15]. Even
the most obscure gesture could be falsely recognized - if the
user was illustrating the system’s gestures, for example,
then those illustrations would be recognized as the gestures
which they illustrate. To alleviate this problem, some
systems require users to explicitly switch between ink and
gesture modes [12, 14]. In a recent study, it was shown that
a button used by the non-dominant hand was most effective
for this mode switch [11].

Other localized interaction techniques, such as pop-up
menus, are generally activated with physical buttons. Two
implementations of localized scrolling techniques which
were recently developed supported scrolling as the only
input mode, so their invocation was not an issue [13, 16].

The tracking state of the pen, when it is above the display
surface, is one of the three states sensed by pen-based
systems. The mouse can also be in the tracking state when it
is moved without a button pushed [4]. Usually, this state is
used to track the current position of the cursor, but there has
been previous work using it for other functionality.

The Microsoft Windows operating system provides tool tips
when users hover above an icon. These pop-up boxes
display information about the icon, but cannot be clicked. A
more interesting example is seen in the Windows XP Table
PC Edition, which supports a gesture made in the tracking
state. If the user scribbles above the display surface, a
character entry tool pops up. Some users may find this
feature irritating. It can be activated accidentally, and there
is no visual guidance showing the user what to do for the
gesture to be recognized.

In [8], users could share documents between multiple tablet
PCs by performing a drag gesture from one device to
another called a “stitching” gesture. In one of the designs,
this gesture could be done in the display tracking zones.

The tracking menu is an interactive interface widget which
relies on tracking state actions [5]. The menu is a cluster of
graphical widgets surrounded by a border within which the
cursor moves. While the cursor is within the border, menu
items can be selected via the usual cursor movements.
However, if the cursor reaches the menu's border while
moving in the tracking state, the menu is dragged around
with the cursor. This allows for a smooth modeless
transition between menu repositioning and menu item
selection. Further, the contents of the menu are always in
close proximity to the cursor. However, unlike Hover
Widgets which are modeless, a tracking menu is modal in
that an explicit action is required to dismiss it. As with all
modal interface elements, while the tracking menu is active,
only commands within that menu can be executed. This
limitation of tracking menus is one motivation for exploring
the design space of modeless interface widgets - like Hover
Widgets - that leverage the tracking state.

HOVER WIDGETS

Design Properties
Hover Widgets offer a number of beneficial properties:

• New Command Layer: Hover Widgets use the
tracking state to create a new command layer which is
clearly distinguishable from the input layer of a user
interface. A user does not need to worry about the system
confusing ink and gestures.
• Localized UI: Hover Widgets are always local to the
cursor, which may save the user time and reduce physical
movements. For example, if a user needs to undo a mistake,
instead of traveling to the top of the interface to click an
icon, the user could make a gesture while hovering, and
then click to activate an “undo” Hover Widget.
• Undivided Attention: Hover Widgets allow users to
maintain their focus of attention on their current work area.
If a user is reading the bottom of a page that they are
annotating, a gesture in the tracking state could be used to
activate a virtual scroll ring [13], allowing them to scroll as
they continue to read. The user would not have to shift their
attention to an icon on the border to initiate scrolling.
• Button-Free UI Activation: Hover Widgets provide a
mechanism to quickly bring up other localized user
interface elements, without the use of a physical button. For
example, a Hover Widget could be used to activate a
marking menu or virtual scroll ring.
• Integration with Pen UI: Hover Widgets can be
integrated into pen-based user interfaces, allowing fast
transitions between ink and commands. If a user noticed a
mistake in a document while they were scrolling, they could
lift the pen and then draw a circle around the mistake. The
user could then activate the scroll tool to continue scrolling.

Design Space of Hover Widgets
Using the tracking state pen actions is a relatively new
topic. As a result there are a number of issues we must
consider in the design of Hover Widgets. We now discuss
the design space of Hover Widgets that we explored, and
the reasoning behind the design decisions which we made.

Shape
If a gesture in the tracking state will be required to activate
the Hover Widgets, then the gesture must be easy to
perform. At the same time, the gesture must not occur in
natural tracking state movements. Otherwise, Hover
Widgets would be activated unintentionally. This presents a
trade-off between simplicity and ambiguity. If the gesture is
complex, executing it will be slow. But reducing the
complexity may increase ambiguity, causing unintentional
activations.

Figure 2: (a) Single level stroke. (b) Two level stroke. (c) Three

level stroke. (d) Spiral stroke.

UniStroke characters [6] provide a good place to start when
searching for appropriate gestures. The simplest gestures
consist of a single directional stroke, but there are also
compound stroke gestures with one and two corners (Figure
2a, b, c). Although the single-level strokes are simple, they
will cause many false activations, as the pen only needs to
move in a single direction to activate the widget.

The two-level strokes are less likely to cause false
activations, so in our studies we focus on ‘L’ shape strokes,
which have 90 degree angles. These strokes have minimal
complexity, and we would not expect the sharp corners to
appear in tracking state pen actions. We verified this
intuition by simulating the Hover Widgets on captured pen
data from internal users. We analyze the results of a more
formal simulation study in Experiment 1.

While the two-level strokes may be the best shape strictly in
terms of the simplicity-ambiguity tradeoff, there is no
reason more complex strokes couldn’t be used. Along with
three stroke compound gestures, we have also explored
other stroke shapes such as spirals (Figure 2d). Although
the strokes are more complex, they could be used to
increase the vocabulary of an interface.

Gesture Recognition and Visualization
Two interrelated design issues for Hover Widgets are how
they are visualized, and how the system recognizes them.
The issues are associated because the visualization should
convey to the user the exact requirement for either invoking
the command or preventing the command from occurring.

Our strategy is to use gestures which are constrained and
guided by boundary walls surrounding the target stroke,
creating a tunnel that the user must traverse (Figure 3). The
visual appearance of the tunnel defines the movements
required to acquire the associated Hover Widget. The main

benefit of using such a simplified gesture recognition
strategy is that users can quickly understand exactly what is
required to activate a Hover Widget. Using the tunnel
boundaries also makes the gesture recognition algorithm
relatively simple. A more elegant recognition system could
possibly improve performance, but it would be challenging
to visualize complex gesture constraints.

Figure 3: (a) A cursor moves through the Hover Widget

tunnel. (b) The tunnel is repositioned if the cursor leaves its
boundaries. (c) The Hover Widget can be activated once the

cursor reaches the activation zone, shown in red.

If the cursor leaves the boundaries of the tunnel, then the
origin of the tunnel is repositioned to the earliest point of
the current hover stroke which could begin a successful
gesture (Figure 3b). As long as a user’s stroke ends with the
required movements, the Hover Widget will be activated.
This makes, the ‘L’ shaped gesture semi-scale independent,
as the first segment of the stroke does not have a maximum
length (Figure 3c). A consequence of this algorithm, is that
the sections of the tunnel boundaries act similarly to the
borders of tracking menus [5]. The Hover Widget, however,
is not simply an ‘L’ shape tracking menu, since intersecting
with other sections of the tunnel will reset the origin of the
tunnel, ensuring that only ‘L’ shaped pen movements can
activate the Hover Widget.

Activation
Once the cursor travels through a tunnel, the associated
Hover Widget can be activated. We have explored three
methods for activation: pen down, tapping, and crossing.

With pen down activation, the user simply brings then pen
in contact with the activation zone after completing a
gesture in the tracking state. In initial user tests, we found
that errors caused by overshooting the activation zone could
be adequately prevented by making the region twice as long
in the direction of movement (Figure 3a). The tunnel is
reset if the cursor leaves this activation zone. Pen down is
the default activation method in our application, and is the
technique used in our experiments.

Tapping to activate the Hover Widgets is another option
which we have explored. Instead of just bringing the pen in
contact with the display, the pen quickly taps the display
(i.e. a pen down event followed by a pen up event). This
technique could be used to reduce false activations.

In the case of crossing activation, the Hover Widget is
activated as soon as the pen crosses the end of a tunnel,
while still in the tracking state. Implementing this technique
increased the frequency of unintentional activations of ‘L’
shaped tunnels, but with more complex tunnels, such as
spirals, false activations do not occur.

Visualization Techniques
Earlier we argued that recognition should be correlated to
the way that Hover Widgets are visualized. While we
observed that drawing the tunnels is beneficial when
learning to use the Hover Widgets, seeing the tunnels at all
times would become visually distracting, especially when
the Hover Widgets were not in use. Expert users may not
need to see the tunnel at all. In this section we outline
strategies for visualizing the Hover Widgets such that the
user sees what they need to see, when they need to see it.

Figure 4: (a) The tunnel and activation zone fades in after
40% progress has been made. (b) The activation zone is

displayed as a square icon. (c) The cursor trail visualization
shows the path of the pen in the tracking state. (d) The cursor
trail turns green when the cursor reaches the activation zone.

Both the tunnel and activation zone can either be displayed
or hidden. When displayed, a fade-in point can be set,
which defines how much progress must be made before the
widget becomes visible. For example, a user may only want
to see the activation zone or tunnel after they have
progressed through 40% of the tunnel (Figure 4a). Once the
cursor reaches the fade-in point, the widget slowly fades in.
The activation zone is displayed as a square icon, which
illustrates its associated functionality. Because the
activation zone is actually rectangular, the icon will drag
along with the cursor until it exits the region (Figure 4b).

We have also explored a dwelling fade-in, where the Hover
Widget becomes visible if the pen dwells in any fixed
location of the tracking zone. This is especially useful when
multiple tunnels are present, so users can see which tunnel
to follow to access a certain Hover Widget (Figure 5).

A final visualization technique which we have explored is
the cursor trail. The path that the cursor has taken is shown,
beginning at the tunnel origin, and ending at the current
cursor location (Figure 4c). If the cursor completes the
gesture, the trail turns green, indicating that the Hover
Widget can be activated (Figure 4d).

Multiple Hover Widgets
Multiple Hover Widgets can be used simultaneously, with
each one having its own parameters (Figure 5). When
multiple Hover Widgets do exist, each individual Hover
Widget is updated independently of the others. This
approach ensures that each Hover Widget will still be
activated if and only if its corresponding gesture is made.
The relative positions of the 4 tunnels illustrated in Figure 5
are not locked. If the pen first moved to the right, it could
still move up and then to the left to activate undo icon,
without the need to first backtrack. This is a difference from
Tracking Menus, which has a constant interface layout [5].

APPLICATION
We implemented a painting program, with all functionality
of the application accessed via Hover Widgets. Hover
Widgets are not limited to drawing applications; this
context was used as a proof-of-concept prototype.

The system allows us to explore how Hover Widgets can
replace desktop user interface elements using localized
interactions. The only standard GUI element is a control
panel that can be used to modify various parameters of the
Hover Widgets. By using the Hover Widgets for all
functionality we are pushing the limits of Hover Widgets,
allowing us to see how far we could extend their use. In an
actual application, the Hover Widgets would likely
complement standard menus and tool bars. Four ‘L’ shaped
Hover Widgets are used in the application (Figure 5). We
now describe the functionality of these four Hover Widgets.

Figure 5: The four ‘L’ shaped Hover Widgets used in our

application. Users would only see this entire “road map” if a
dwelling fade-in occurred.

Tools Hover Widget
The tools Hover Widget (right-up) can be thought of as
replacing an icon toolbar, found in most drawing
applications. Activating the Hover Widget brings up a
single level marking menu. From this menu, the following
command selections are available: selection tool, pen tool,
square tool, circle tool, and pen properties. The pen
properties option pops up a localized CrossY Menu [2],
allowing users to select the color and width of their pen.

Edit Hover Widget
The edit Hover Widget (up-left) replaces the standard
“Edit” menu, by popping up a marking menu. Its options
include the commands typically found in an application’s
“Edit” menu: undo, redo, clear, cut, copy and paste.

Scroll Hover Widget
The scroll Hover Widget (down-left) allows users to scroll,
without the need to travel to display borders. It can be
thought of replacing the scroll wheel of a mouse. Activating
this Hover Widget brings up a virtual scroll ring [13]. With
this tool, users can make a circling gesture clockwise to
scroll down, and counter-clockwise to scroll up.

Right Click Hover Widget
The right click Hover Widget (right-down) activates a right
click tool. Once activated, the cursor is drawn as a right
button icon. Subsequent pen down events simulate the
functionality generally associated with clicking the right

mouse button. For example, clicking on a pen stroke pops
up a marking menu, which provides options specific to that
stroke, such as cut, copy, and properties.

Application Control Panel
The application contains a control panel which is opened by
selecting a tab at the bottom right corner of the interface.
This control panel allows users to explore the various
Hover Widget settings and parameters. For example, users
can switch to crossing or tapping activation, manipulate the
width and length of the tunnels, and enable or disable the
various visualization techniques. Parameters for the
visualization techniques can also be modified, such as the
fade-in point and the dwelling fade-in time threshold.

Informal User Feedback
We had roughly 10 computer literate users explore the
application in short and informal demonstration sessions.
While most users were able to use the Hover Widgets
immediately, some needed a few minutes of practice. One
of the most useful features seemed to be the dwelling fade-
in. Users understood the required gestures when the tunnels
were displayed, and could discover the various functionality
of the application. All users liked the idea of using the
tracking state for added pen input functionality.

EXPERIMENTS

Goals
The application which we developed allowed us to explore
various uses of Hover Widgets in an interactive pen-based
application. We now present a pilot study and two
experiments designed to answer three main questions:

(1) How do the parameters of the Hover Widgets affect
their usability? The parameters we are primarily concerned
with are the shape, orientation, tunnel width, tunnel length,
and visualization technique (Figures 2, 4, 6).

(2) How can these parameters be optimized to minimize
false activations?

(3) How do Hover Widgets with such optimal parameters
perform in comparison to the status quo command selection
techniques?

The first question, in itself, would require a great deal of
experimentation, due to the number of parameters which
may affect the Hover Widgets’ performance.

To narrow down the number of variables in our
experiments, we focused on a single value for some of these
parameters. First, we only tested the ‘L’ shaped hover
gestures, as they seemed to perform well in our initial
observations. We set the length of the tunnel for these
gestures to a value of 78 pixels, 39 pixels per direction.
This length was found to cause few false activations in our
preliminary captured data, and allowed users to complete
the tunnels while resting their hand and moving mostly
their fingers, with minimal movement from the wrist.

Pilot Study
We conducted a pilot study with six internal participants to
determine appropriate values for the tunnel width and
orientation for the full study. We expected the width (W),
and length, or amplitude (A), to affect movement time (MT)
as governed by the steering law [1]:

+=

W
AbaMT (1)

where a and b are empirically determined constants. The
study also allowed us to get a quick sense of whether or not
gesture orientation would significantly affect performance.

Figure 6: The 8 possible ‘L’ shape orientations.

Apparatus
The experiment was conducted on a Toshiba Portege 3500
TabletPC running Windows XP SP1 Tablet Edition, with a
24.5 x 18.5 cm (1024 x 768 pixel) display. A stylus was
used for input.

Procedure
A circle was placed in the center of the screen, which the
user tapped to begin a trial. The user could then begin the
required Hover Widget gesture, and the trial ended when
the user successfully clicked on the Hover Widget
activation zone. The tunnel and activation zone were
displayed at all times, before and after a trial began. The
cursor trail was also displayed once a trial began. The
activation zone was displayed as a red rectangle, and turned
green when the pen was above it.

Subjects were told to complete the trials as quickly as
possible while minimizing errors. An error occurred when
the pen clicked outside of the Hover Widget activation
zone, in which case the user would have to start over from
the beginning of the tunnel. Subjects were also told to avoid
colliding with the walls of the tunnel.

Design
The tunnel length had a constant value of 78, and we tested
4 values of Width (12, 16, 20, and 24 pixels). The length of
the activation zone (measured along the direction of
movement) was set to two times the value of the Width. The
Width values were fully crossed with all 8 possible
Orientation values (Figure 6), resulting in 32 conditions. A
repeated measures design was used - subjects completed 4
blocks, consisting of all 32 Width-Orientation combinations
appearing 2 times each in random order.

Pilot Results and Discussion
In our analysis of movement time we discarded trials in
which the tunnel was reset to the cursor position, due to a
clicking error or a collision. A repeated measures analysis
of variance showed a significant main effect for both Width
(F3,15 = 88, p <.0001) and Orientation (F7,28 = 3, p <.005)

on movement time. Regression analyses showed that the
data for all conditions fit the Steering Law (Equation 1)
with an r2

 value of 0.98 (Figure 7). Although Orientation
had a significant effect on movement time, the values only
ranged from a minimum of 0.69 seconds for Orientation 5
and a maximum of 0.74 seconds for Orientation 8.

Overall, 11.6% of the trials had collisions, and only 0.78%
of the trials had clicking errors. This is a good result, since
a collision only indicates suboptimal performance, while a
clicking error in an actual application could cause
unexpected results. The collision rate was so high because
of the condition where Width = 12, which had a 26.6%
collision rate. With that condition removed, the average
collision rate decreased to 6.7%.

Figure 7: Movement time by the index of difficulty.

These results give us the required data to choose
appropriate parameter values for our full study. We will
include all 8 values of orientation to try to understand the
cause for its differing effects on movement time. The pilot
experiment, in addition to our preliminary captured data,
shows that a width of 20 produces a good trade-off between
minimizing movement time and error rate, while also
preventing false activations. Therefore we used a width of
20 for the remaining studies.

Experiment 1
We now describe the first of two formal experiments which
we conducted, testing how the orientation and visualization
technique affect the Hover Widget performance.

Apparatus
The experiment was conducted on a Toshiba Portege M200
Tablet PC running Windows XP SP1 Tablet Edition, with a
24.5 x 18.5 cm (1024 x 768 pixel) display.

Participants
Twelve volunteers (two female, ten male) participated in
the experiment. Participants were all right-handed, and
controlled the stylus with their right hand. Five of the
participants were experienced Tablet PC users.

Pen Capture/Warm up Session
Before starting the experiment, a twelve minute Tablet PC
warm up session was given. This session was used for two
purposes. First, it gave subjects who had never used pen

input systems a chance to get used to Tablet PCs. Second, it
allowed us to capture pen data to verify our preliminary
false activation findings. The capture sessions were broken
up into three tasks, all using Windows Journal. Task one
was to write a grocery list. In task two, participants drew
directions to their house. In task three, they drew a picture
of their dream house. At this point, participants had no
knowledge of the Hover Widgets, and did not know their
data would be used to test for false activations. Although
only twelve participants went on to participate in the study,
we captured pen data from fifteen participants, resulting in
just over three hours of captured data.

Procedure
The procedure used for this experiment was similar to the
pilot study. Above the starting circle, we displayed an
arrow indicating the ’L’ shape orientation for the current
trial, both before and after the trial began. The tunnel still
had a constant length of 78 and now also had a constant
width of 20. The activation zone length was 40.

Design
We tested all 8 possible values of Orientation. We also
tested the effects of the presence or absence of the Cursor
Trail, and the Fade-in Point. The Fade-in Point values
which we tested were 20% (early) and 70% (late),
indicating the percentage of the tunnel that had to be
traveled before the Hover Widget became visible.

A repeated measures within-participant design was used. A
fully crossed design resulted in 32 combinations of
Orientation (1-8), Cursor Trail (on, off), and Fade-in Point
(early, late). Each participant performed the experiment in
one session lasting approximately 20 minutes. The session
was broken up by the 4 combinations of visualization
techniques, with 5 blocks of trials for each of the
visualizations. Each block consisted of all 8 orientations,
appearing 2 times each in random order. Presentation order
of the visualization techniques was counterbalanced using a
Latin Square design, resulting in four orderings.
Participants were randomly divided into 4 groups of 3, with
each group performing one of the 4 orderings.

At the start of the experiment, participants were given a
single warm-up block with the Hover Widget and cursor
trail always visible, to familiarize them with the technique.

Results
We first discuss the results of the false activation analysis.
We simulated the data from the pen capture sessions on all
8 possible ‘L’ shaped orientations. We report the results
from two tunnel widths (16, 20 pixels), with all tunnels
having a length of 78 pixels. Figure 8 shows the number of
false activations which occurred in the 3 hours, broken up
by orientation. Even at the larger width, orientations 6 and 7
had no false activations, while orientations 2 and 5 had 11
each. The captured data confirms our hypothesis that some
gestures in the tracking state will rarely occur, but it also
shows that corners in certain directions will be seen.

Figure 8: Number of false activations which occurred in the 3

hours of captured data.

We measured movement time (MT) defined as the time
between lifting the pen after clicking to start the trial, and
clicking the Hover Widget activation zone. We discarded
trials in which clicking errors occurred in our analysis of
MT. A repeated measures analysis of variance showed a
significant main effect for Fade-in Point (F1,11 = 38.24, p <
.0001), but not Cursor Trail or Orientation. With the early
Fade-in Point the average movement time was 1.16s, and
with the late Fade-in Point, the movement time was 1.30s.

We also found that the experienced tablet users performed
significantly faster (F1,11 = 292.42, p < .0001). The average
movement time was 1.41 seconds for non-tablet users, and
0.99 seconds for tablet users.

Clicking errors only occurred in 0.92% of all trials. This
error rate was 1.4% for the late visualization, and 0.4% with
the early visualization. This shows that even with the late
visualization, the user had enough feedback to know when
they could and could not activate the Hover Widget.

Learning Effects
Block number had a significant effect on movement time
(F3,33 = 6.15, p < 0.0005), and a significant interaction with
Fade-in Point (F4,44 = 2.71, p < 0.05) (Figure 9). Post hoc
analysis revealed that the Fade-in Point only had a
significant effect in block 1 (p < .0001). This result
indicates that the early fade-in point would make for an
effective training visualization, which the user could
subsequently disable.

Figure 9: Movement time by Block and Fade-in Point.

Experiment 2
The results of Experiment 1 gave us a good understanding
of how the parameters of the Hover Widgets would affect
their performance in a controlled environment. Average
movement times were comparable to those of 2-level
simple and compound marking menus reported in the
previous literature [10, 20]. The controlled environment,
where the user performed all trials from a constant starting
position, was well suited to answer our initial fundamental
question about the Hover Widget parameters. Specifically,
we found that the orientation did not have a significant
effect on movement time, but did affect the number of
observed false activations. Furthermore, we found that the
cursor trail provided no advantage, while the early fade-in
point significantly reduced movement time.

In Experiment 2, we explore the benefits gained from
Hover Widget's property of being a localized interaction
technique. We designed the experiment to allow us to
analyze two potential benefits - faster access to commands
and maintained focus on the primary task. The experimental
task is an abstraction of real interface tasks which demand
that the user focus their attention on a particular locale on
screen, while at the same time requiring command
selections. Examples of such tasks are scrolling or selecting
a highlighter while proof-reading a document. Similar
studies in two-handed input have been carried out exploring
the effects of visual diversions during a drawing task [9].

Apparatus
We used a Wacom Cintiq 18SX interactive LCD graphics
display tablet with a 32.9 x 29.9 cm (1280 x 1024 pixel)
display. The display ran on a 1.4Ghz Windows XP desktop
machine. This large-sized Tablet allowed greater variation
in the distance variable which we would be testing than the
Tablet PC used in Experiment 1.

Participants
Ten volunteers (one female, nine male) participated in the
experiment. One participant was left-handed, and all
participants controlled the stylus with their dominant hand.
Four of the participants were experienced Tablet users.

Figure 10: Experiment 2 setup (GridN = 8, D = 300). A trial

was completed by selecting the blue target cell, which was only
visible for 0.7 seconds. The red circle shows the position of the

target needed to be selected in the icon condition. The
dimensions of the grid (GridN) and its distance from the icon
(D) varied. The top and left display borders are illustrated.

Procedure
At the start of a trial set, a square grid consisting of an array
of 12x12 pixel square cells was displayed. The top left
corner of the grid was aligned with the top-left to bottom-
right diagonal of the display, at varying distances. The user
clicked in the grid to start a trial, at which point a target cell
in the grid would flash blue for 0.7 seconds. The target cell
only flashed once, after which it returned to being visually
indistinguishable from the other cells in the grid. To
complete a trial, the user clicked this cell. Once the target
cell was clicked, a new cell flashed, immediately beginning
the next trial (Figure 10).

Before clicking the target cell, the user was required to
make a successful command selection. Two command
selection conditions were used. In the Icon condition, a
single red circle was drawn in the top left corner of the
screen, representing a traditional menu icon (Figure 10).
The icon had a diameter of 24 pixels, which is about as
large as any icon which appears in today’s GUIs. In the
Hover Widget condition, users were required to activate a
Hover Widget before clicking the cell that had flashed. The
Hover Widget parameters were set based on the results of
Experiment 1. The Hover Widget tunnel had a width of 20,
a length of 78, and ‘L’ shape orientation 7 (up-right). No
cursor trail was displayed, and the fade-in point was 20%.

Since the target cell was only temporarily distinguishable
from the surrounding cells, users had to attend to the grid
when it flashed. Users would also benefit from attending to
the grid after the target cell flashed, to reduce the reliance
on their spatial memory of the target cell location, in order
to successfully select it later. If participants were unable to
recall the appropriate target cell and clicked a different cell,
then they had to pause for 2 seconds, after which the target
cell was highlighted to be clicked. This time penalty put it
in the participants’ best interest to select the correct target
cell on their first attempt, allowing us to reliably correlate
accuracy with maintained focus of attention.

Because gestures are generally not self-revealing [3]
discoverability may be an issue with Hover Widgets. To
explore this, participants were given no initial verbal
instructions as to how to use the technique. Instead, a small
text description and 40 second video clip were shown prior
to using the Hover Widgets. This approach mimics what
could be a start-up tutorial for first-time users of an
application using Hover Widgets. If participants had
subsequent questions, the experimenter would only repeat
instructions that were already given in the video or text.

Design
A repeated measures within-participant design was used.
Independent variables were command technique CT (Icon,
Hover Widget), grid dimension GridN (4, 8, 12), measured
as the grid side length in cells, and distance, D (300, 600,
900, 1200), measured as the distance between the top left
corners of the grid and the display in pixels. A fully crossed
design resulted in 24 combinations of CT, GridN, and D.

Each participant performed the experiment in one session
lasting approximately 60 minutes. The session was broken
up by the 2 command selection techniques, with 4 blocks
appearing for each of the command techniques. Each block
consisted of 24 trial sets, with each GridN-D combination
appearing twice in random order. A trial set consisted of 5
trials on the same grid, with a different target cell for each
of the 5 trials. Presentation order of the command
techniques was counterbalanced with half the participants
performing each technique first. A two minute warm-up
session was given before each command technique.

Results
We removed subject 5 from the analysis, as the error rate
for that subject was disproportionately high, and movement
times were much faster, indicating that the subject was
racing through the experiment. We also removed outliers
more than 3 standard deviations from the group mean
movement time. A total of 2.01% of the data was removed.

Movement Time
Movement time was defined as the time taken to select the
target cell once a trial had started. Our analysis of
movement time does not include trials in which an error
was made during the command selection. Repeated
measures analysis of variance shows significant effects for
CT (F1,8 = 1549, p < .0001), D (F3,51 = 167, p < .0001), and
GridN (F2,34 = 499, p < .0001), and significant CT x GridN
and CT x D interactions (p < .0001). Overall movement
times were 2.19s for Icon, and 1.76s for Hover Widget.

Figure 11: Movement time for the command techniques, by

grid dimension and distance.

Figure 11 shows movement times for each of the 12 GridN-
D combinations, illustrating the interactions. As expected,
increased distance had little effect on the Hover Widget,
while it increased times for the icon. Post-hoc analysis
shows the Hover Widget technique to be significantly faster
for every condition except at D = 300, where the
differences were not significant for the 4x4 and 12x12
grids. This is a good result, showing Hover Widgets to be
advantageous, even when the icon is near the grid.

It is interesting to note that GridN had an effect on the
Hover Widget technique. This is in part due to the larger
distances being traveled to get to the target cell. However
the time to activate the Hover Widget once a trial started

was also significantly effected by GridN (F2,16 = 123.28
p<.0001). This was the result of users sometimes moving
off the grid before activating the Hover Widget. We believe
users did this to prevent their hand and Hover Widget from
occluding the grid and target cell when it flashed.

As in Experiment 1, tablet experience significantly reduced
Hover Widget movement times (F1,9 = 31.1, p < .0001), and
also had a significant interaction with Block (F3,27 = 6.92, p
< .0001). Post Hoc analysis showed that only in the first
block were movement times significantly faster (p < .0001),
demonstrating that, with practice, users new to Tablet PCs
could use the technique just as well as experienced users.

Target Error Rate
We defined target errors as trials in which users selected the
wrong target cell. Repeated measures analysis of variance
shows significant effects for CT (F1,8 = 166, p < .0001), D
(F3,51 = 4.03, p < .01), and GridN (F2,34 = 166, p < .0001),
and a significant CT x GridN interaction (F5,45 = 65.7, p <
.0001). Figure 12a illustrates the interaction between CT
and GridN. The data shows that users have the ability to
maintain their focus of attention on the grid while activating
the Hover Widget, while selecting the icon causes divided
attention. Surprisingly, with the icon technique, target error
rate actually decreased with an increase of distance. This
decrease may have been due to users spending more time
focusing on the target cell before selecting the icon for
larger distances. Regardless, users had trouble maintaining
their focus of attention, even when the icon was close.

Figure 12: (a) Effect of grid dimension on the target error

rate. (b) Movement time by block number, illustrating
learning differences for the two techniques

Learning
We analyzed the effects of learning on each of the
command techniques. Movement time was significantly
affected by both Block (F = 143, p < .0001) and the Block x
CT (F = 25.3, p < .0001) interaction. As can be seen in
Figure 12b, learning is more apparent with the Hover
Widget technique. Post hoc analysis shows that significant
learning occurred after each block with the Hover Widgets,
while the only significant change for the icon was between
the first and second block (p < .01). Also of interest is that
the Hover Widget was significantly faster in each of the
four blocks, including the first (p < .0001).

Hover Widget Discoverability
To analyze the discoverability, we looked at the mean time
to activate the hover widget in the warm-up trials, prior to
which no verbal instructions had been given to participants

(see Procedure). Only one subject took more than 20
seconds for their first successful hover widget activation,
and after the 6th trial the mean activation time across all
subjects was under 3 seconds for each of the remaining
trials in the warm-up. This data, in combination with the
fact that Hover Widgets were significantly faster in the first
block of the real experiment, shows that if proper system
instructions are given, discoverability will not be an issue.

Trial Errors
We defined trial errors to be trials in which the user missed
the icon or the Hover Widget. The error rate was 5.6% with
the Hover Widgets, and 1.3% with the icon. Although the
error rate for Hover Widgets is acceptably low, times may
not have been as advantageous with equal error rates.

Hover Widget Collision Errors
We defined a collision error as any time the user aborted a
hover widget after making at least 40% progress through
the tunnel. Collision errors occurred in 4.1% of all trials. It
is important to note that trials in which collision errors
occurred were included in our analyses of movement time.
The errors simply resulted in suboptimal trial performance.

DISCUSSION AND CONCLUSIONS
We have presented Hover Widgets, interactive widgets
which are activated through simple gestures in the tracking
state of pen-based interfaces. We have shown how Hover
Widgets can be integrated into an application, replacing
interface elements which can be inconvenient when using a
pen. Users who tried the application liked the idea of using
gestures while hovering, and were able to activate the
Hover Widgets with little practice.

Furthermore, we have explored a method of pen interaction
without the need for a button. Because our motivation for
this is qualitative, as buttons can be unavailable or awkward
to use, and not quantitative, our experiments did not
compare Hover Widgets to button pressing techniques [11].

In an initial controlled experiment, we found acquisition
times of Hover Widgets closely matched the movement
times reported previously for similar simple and compound
marking menu strokes. Our captured data showed that a
number of these gestures will rarely occur unintentionally,
some not seen once in 3 hours of pen usage. These results
could drive the design of applications which use Hover
Widgets. For example, we have modified our application to
use orientations 1, 4, 6 and 7 to minimize false activations.

In the second experiment, we found that Hover Widgets
reduced movement time and improved accuracy, when
compared to a standard toolbar icon, in a task sensitive to
the user’s focus of attention. Movement time was
significantly reduced in all conditions when the distance
needed to travel to the icon was 600 pixels or greater, or
about half the length of most Tablet PC displays. The
analysis of accuracy showed that users were able to activate
the Hover Widgets with a minimal shift of attention.

In Experiment 2, we also explored the discoverability of
Hover Widgets by not providing any verbal instructions as
to how to use them. Results showed that Hover Widgets
could indeed be a walk-up-and-use interaction technique, if
a start up tutorial is presented to first time users.

FUTURE WORK
The design space of Hover Widgets is very large, and there
are a number of paths which we have not yet taken. More
complex gestures could be investigated. The shape of the
gestures could even represent their functionality. For
example, the letter ‘N’ could be traced in the tracking state
to activate a ‘NEW’ command Hover Widget. Sensiva
Symbol Commander (www.sensiva.com) contains such
gestures, but the pen must be down with a button pushed.

In the application that we developed, users manually
controlled the parameters of the Hover Widget. This
approach could be extended to allow users to design their
own Hover Widgets, and customize their functionality.

Lastly, we believe Hover Widgets could be a beneficial
technique for large display interfaces. In such setups, it
becomes even more critical that a localized user interface is
available, since the borders of the display may be difficult
or impossible to reach. Generally, buttons are not available,
but some electronic whiteboard technologies do sense the
tracking state [17], so Hover Widgets could be used.

As for the controlled evaluation of Hover Widgets,
Experiment 2 provided very positive results for the
technique. However, the task was a simplified usage
scenario, as only a single Hover Widget was used. We
would like to explore what happens when the user must
choose from multiple Hover Widgets, and how effectively
Hover Widgets can be used to activate marking menus. We
would expect to see similar benefits, with a possible
overhead cost to learning multiple gestures.

It would also be interesting to evaluate the costs of
performing gestures above the display surface. From our
observations, the lack of force feedback when activating a
Hover Widget was not problematic. However when
combined with techniques which required the pen to be
down, such as marking menus, some users needed practice
before remembering that the pen had to be up for the Hover
Widget, and down for the marking menu.

Overall, the Hover Widgets are a promising technique for
extending the capabilities of pen-based interfaces. Our
studies showed Hover Widgets to have strong qualitative
and quantitative benefits which warrant future explorations.

ACKNOWLEDGEMENTS
We thank members of the ASI and VIBE groups at
Microsoft Research and members of the DGP at the
University of Toronto for insightful suggestions. We also
thank David Thiel for producing the video, and all of our
study participants.

REFERENCES
1. Accot, J. and S. Zhai. Beyond Fitts' Law: Models for

trajectory-based HCI tasks. ACM CHI 1997, 295-302.
2. Apitz, G. and F. Guimbretière. CrossY: a crossing-

based drawing application. in ACM UIST 2004, 3-12.
3. Baudel, T. and M. Beaudouin-Lafon, Charade: remote

control of objects using free-hand gestures.
Communications of the ACM, 1993. 36(7): p. 28-35.

4. Buxton, W. Three-state model of graphical input. in
Interact. 1990. Amsterdam: Elsevier Science, 449-456.

5. Fitzmaurice, G., et al. Tracking menus. in ACM UIST
2003, 71-79.

6. Goldberg, D. and C. Richardson, Touch-typing with a
stylus. in ACM CHI 1993, 80-87.

7. Hinckley, K., et al. Interaction and modeling
techniques for desktop two-handed input. in UIST
1998, 49-58.

8. Hinckley, K., et al. Stitching: Pen gestures that span
multiple displays. in AVI 2004, 23-31.

9. Kabbash, P., et al. Two-handed input in a compound
task. in ACM CHI. 1994, 417-423.

10. Kurtenbach, G. and W. Buxton. The limits of expert
performance using hierarchical marking menus. in
ACM CHI 1993, 482-487.

11. Li, Y., et al., Experimental analysis of mode switching
techniques in pen-based user interfaces in ACM CHI
2005, 461-470.

12. Moran, T.P., et al. Pen-based interaction techniques for
organizing material on an electronic whiteboard. in
ACM UIST 1997, 45-54.

13. Moscovich, T. and J.F. Hughes, Navigating documents
with the virtual scroll ring in ACM UIST 2004, 57-60.

14. Newman, M., et al., DENIM: An Informal Web Site
Design Tool Inspired by Observations of Practice.
Human-Computer Interaction, 2003. 18(3): p. 259-324.

15. Saund, E. and E. Lank, Stylus input and editing without
prior selection of mode in ACM UIST 2003, 213-216.

16. Smith, G.M. and m.c. schraefel, The radial scroll tool:
scrolling support for stylus- or touch-based document
navigation in ACM UIST 2004, 53-56.

17. SMART Tehcnologies, Digital Vision Touch
Technologyg(2003):
http://www.smarttech.com/dvit/DViT_white_paper.pdf

18. Zeleznik, R. and T. Miller, Fluid Inking: Modeless
Integration of Gestures with Inking, in Tech Report CS-
05-10. 2005, Brown University Computer Science.

19. Zeleznik, R., et al. SKETCH: An interface for
sketching 3D scenes. in SIGGRAPH 1996, 163-170.

20. Zhao S. and R. Balakrishnan, Simple vs. compound
mark hierarchical marking menus in UIST 2004, 33-42.

