
Generalized Selection via Interactive Query Relaxation

Jeffrey Heer, Maneesh Agrawala, Wesley Willett

Computer Science Division and Berkeley Institute of Design

University of California, Berkeley

Berkeley, CA 94720-1776 USA

{jheer, maneesh, willettw}@cs.berkeley.edu

ABSTRACT

Selection is a fundamental task in interactive applications,
typically performed by clicking or lassoing items of

interest. However, users may require more nuanced forms

of selection. Selecting regions or attributes may be more

important than selecting individual items. Selections may
be over dynamic items and selections might be more easily

created by relaxing simpler selections (e.g., ―select all items

like this one‖). Creating such selections requires that

interfaces model the declarative structure of the selection,

not just individually selected items. We present direct

manipulation techniques that couple declarative selection

queries with a query relaxation engine that enables users to

interactively generalize their selections. We apply our

selection techniques in both information visualization and

graphics editing applications, enabling generalized selection

over both static and dynamic interface objects. A controlled

study finds that users create more accurate selection queries
when using our generalization techniques.

Author Keywords

Selection, annotation, pointing, reference, information

visualization, input techniques, query relaxation

ACM Classification Keywords

H.5.2 Information Interfaces: User Interfaces.

INTRODUCTION

Pointing to an item or region of interest is common in

everyday communication because it sets (or grounds) the

subject of the conversation or action. In the physical world,

people coordinate their gestures, gaze, and speech to

indicate the objects under discussion [7, 8]. In graphical

user interfaces, reference (or selection) remains of critical

importance, but is realized through a more limited set of

actions, such as clicking or lassoing items of interest. Most
interfaces model selections as a simple collection of selected

items. While this approach is simple to implement, it makes

it difficult for users to specify higher level selection criteria.

Consider the visualizations of reported homicides in Los

Angeles shown in Figures 1 and 5. Analysts collaborating

around these visualizations might refer to regions or

attributes of interest [8], such as ―East L.A.‖, ―homicides in

the month of May‖, or ―all gunshot victims‖. Similarly, an

analyst may point to an item and refer to ―all items blue like

this one,‖ verbally generalizing a deictic reference based on

the properties of the item [3, 7].

One way to express such selections is to use a higher level

query language such as SQL. For example, the SQL clause

(‘2007-05-01’ ≤ date AND date ≤ ‘2007-05-31’)

selects all homicides in the month of May 2007. The query

encodes the structure of the selection declaratively, and

applying the query results in a set of selected items. Systems

such as DEVise [19], VQE [9], and Improvise [27] have

recognized that maintaining query structure increases the

expressiveness of visualization applications. Each of these

systems provides graphical user interfaces for instantiating

such general queries visually.

In this paper, we also focus on building a selection interface
that represents the selection as a declarative query over the

attributes of interface objects or underlying data. Selection

queries are modeled in a SQL-like query language and as in

earlier systems (e.g., [9, 19, 23]) users create selection

queries through direct manipulation. Our system visualizes

the structure of the query and highlights the data or interface

objects selected by the query. This formulation supports

both selection of specific items and selections based on

attributes of the data, which may vary over time.

The unique contribution of our work is to couple this query-

based approach with generalization mechanisms that allow
users to expand their selections based on an initial selection.

This approach enables generalized selections such as ―select

all victims with the same age as this one‖ over both static

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CHI 2008, April 5–10, 2008, Florence, Italy.

Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

Figure 1. Map of reported homicides in Los Angeles, 2007. Color
indicates cause of death, shape indicates the victim’s race (the
complete visualization, with legends, is shown in Figure 5).

and dynamic data. Such selections are automatically

generated by a query relaxation engine that analyzes the

attributes and network topology of the interface objects or

underlying data. Users interactively select generalization

criteria through a pop-up dialog (providing choice

mediation [20]) or by repeatedly clicking to cycle through a
set of alternate selections (providing repetition mediation in

a manner similar to [24]).

We begin by reviewing related research on selection and

reference. Next, we demonstrate our approach in both a

data visualization system and a vector graphics drawing

program and describe our system architecture. We then

describe a user study of our selection techniques in a data

visualization application, finding that subjects used query

relaxation to more effectively author selections. Finally, we

discuss future work and conclude.

RELATED WORK

Our work on interactive query relaxation draws on research

on direct manipulation selection techniques, including

brushing, linking, and dynamic queries, as well as query
relaxation techniques from the database community. We

consider each of these in turn.

Selection Techniques and Reference

Social psychologists have examined the basic prerequisites

for communication, including reference: indicating items,

people, and places to be discussed. Clark and Brennan [3, 7,

8] explain that spatial reference to visible objects and

regions takes many forms. Such references may be general

(e.g., ―north by northwest‖), definite (e.g., named entities),

detailed (e.g., described by attributes, such as the ―blue

ball‖), or deictic (e.g., pointing to an object and saying ―that

one‖). People often apply multiple forms of reference in

tandem, across modalities such as speech and gesture.

However, graphical interfaces rarely support such fluid and
general forms of reference.

Clark [8] further divides deictic reference into pointing and

placing. Pointing involves vectorial reference, such as

pointing a finger or directing one‘s gaze to a specific item.

Placing involves referencing a region of space imbued with

a shared meaning, such as placing groceries on a counter to

indicate items for purchase. To varying degrees, graphical

interfaces use both forms of reference. Pointing actions

using the mouse cursor are the most common. Placing also

occurs, most notably in drag-and-drop, where drop targets

have defined semantics. However, systems rarely support
interactive specification of new ―places.‖ In interfaces, such

places may include both spatial regions and abstract spaces

defined by data attributes.

In this paper, we describe interface mechanisms that better

support these forms of communication. Our selection query

and relaxation model enables interactive generalization of

deictic references and specification of placing regions

whose contents may change over time.

Dynamic Queries, Brushing, and Linking

Our work is closely related to selection techniques used in

information visualization. Dynamic queries [1] typically

take the form of widgets, such as range sliders, with which

users incrementally filter visualizations. Brushing [2, 4, 21]

enables selection through direct manipulation, typically via

clicking, lassoing, or ―painting‖ over items of interest.

One class of systems focuses on interactive selection within

visualizations [1, 2, 10]. Martin and Ward [21] introduce
multi-dimensional brushing, in which users can brush over

projected data using 2D selection regions. Their system

then considers the min/max values of the brushed points to

compute a hypercube enclosing the brushed points in all

dimensions. Hypercube construction is a specialized form

of query relaxation: the items initially selected are extended

to a full hypercube. Hochheiser and Shneiderman‘s time

boxes [14] are dynamic queries that select all time-series

that pass through brush regions; our approach generates a

similar tool through relaxation of range queries.

Another class of systems uses visual query mechanisms to
create visualizations and specify linking relationships for

coordinated brushing across visualizations. Snap-Together

Visualization [22] implements linking using ―primary key

actions‖ that communicate the individual tuples that have

been selected. Chen‘s compound brushing [4] provides a

graphical data-flow language enabling user-created

brushing operations across visualizations.

Some of these systems explicitly represent the structure of

selection queries. Linking in DEVise [19] is specified

through chains of linked plots, specified in part with

brushing gestures. The system maintains a declarative query
structure to perform linking across views. Improvise [27]

supports coordinated queries authored in an auxiliary tree

editor for defining and linking visualizations. Derthick et

al‘s Visual Query Environment (VQE) [9], provides a form-

based interface for specifying intentional (declarative)

queries coupled with brushable visualizations for specifying

extensional queries (selection of specific items). Olston et

al‘s VIQING [23] provides a direct manipulation interface

for specifying queries; users rubber-band a set of visualized

tuples to select them and they drag visual canvases on top

of one another to join the underlying data. Polaris [25]

allows specification of both queries and visualizations by
dragging database column names from a list onto ―shelves‖

for visual variables such as position, color, and shape.

Our work follows in the tradition of these systems, enabling

users to interactively select visualized data or other interface

objects. Similar to DEVise, VQE, and Improvise, our system

uses a declarative query model that supports coordination

and reuse across visualizations. Like VIQING, our system

supports the creation of declarative selection queries

through direct manipulation of the visualization itself. Most

importantly, our system is unique in using query relaxation

to interactively generalize selection queries.

Query Relaxation

The database community has developed query relaxation

with the goal of creating ―cooperative‖ databases that return
information beyond that specified by a standard query.

Query relaxation expands the query selection criteria to

include additional relevant information, often by consulting

a semantic model of the data domain. For example, a user

seeking to travel from New York to Boston might query for

morning flights. If no matches are found, relaxed queries

might instead return train routes in the same time frame.

Gaasterland [11] introduces query relaxation techniques in

deductive databases, using logic rules to specify legal

relaxation constraints. Chu et al provide query relaxation

for relational databases [5] and XML documents [6], using
type-abstraction hierarchies (hierarchical ontologies) to find

semantically similar query results. Hierarchies can be hand-

authored or generated by unsupervised clustering [5, 15].

Our work adapts query relaxation techniques to support

generalized selection in graphical interfaces. As described

in the following sections, our system supports configurable

relaxation operations based on the attributes of interface

items and relations between them. In most cases our system

can produce a variety of relaxations from an initial query.

We provide interaction techniques that enable users to relax

selection queries, cycle through the generated selections,

and combine relaxed selections as desired. These techniques
are modeled after mediation interfaces that disambiguate

input among multiple alternatives (e.g., [16, 20, 24]). For

example, text editors such as Microsoft Word set the cursor

position on a single click, select a word on a double click,

and select a paragraph on a third click. By cycling through

the alternatives users can find the appropriate selection.

EXAMPLE: INFORMATION VISUALIZATION

We have integrated our generalized selection and query

relaxation techniques with flare (http://flare.prefuse.org), an

open-source visualization toolkit for the Adobe Flash Player.

Basic Brushing and Selection

Our selection framework supports common brushing and

dynamic query operations. Figure 2 is a scatter plot of

development statistics from the World Bank [28], including

per capita income, internet usage, and population data for

the countries of the world (c.f., Gapminder [12]). As shown

in Figure 3, our framework translates selection operations

in the visualization into declarative queries over the

visualized data. The selection query is in turn used to
generate interactive range brushes and highlighting effects.

Users can click an item to select it (Figure 3, top), and

optionally hold the shift key to select multiple items. Users

can click and drag over the visualization to create a range

query (Figure 3, middle). The range is persistent and users

can reposition and resize the range as they desire. Users can

also drag along the axis labels of the chart to create one-

dimensional ranges. Additionally, all legends also function

as dynamic query selectors (Figure 3, bottom). Users can

select collections of items in discrete legends or select

ranges in continuous legends, just as they can in the chart.

Selection Reuse

Because our system maintains the structure of the selection

query, it can reapply the selection dynamically over
streaming or time-varying data sets. Figure 4 illustrates

countries passing in and out of a range selection as the

visualization is updated with new data for each year.

Our system can also reapply selection queries across

different visualizations of a data set and thereby supports

linking across views. Figure 5a shows a visualization of

reported homicides in Los Angeles in 2007, collected by the

L.A. Times [18]. Color indicates the cause of death and

shape indicates the victim‘s race. The current selection

Figure 2. World Development Statistics. The visualization plots

income against internet usage for the world’s countries (c.f., [12]).

Item Selection by Clicking

(id = ‘China’)

Range Selection by Dragging

(2000 < gni AND gni < 10000) AND

(.1 < internet AND internet < .2)

Attribute Selection with Legends

(region = ‘The Americas’)

Figure 3. Basic selection operations and resulting query

“WHERE” clauses. Images are close-ups from the plot in Figure 2.

Figure 4. Selection over time-varying data. The selection updates
dynamically as animated data points pass through the selection
range. The sequence shows views for the years 2000 to 2002.

2000 2001 2002

highlights Hispanic victims in central L.A. Figure 5b shows

the same data plotted as a scatter plot of incident date and
victim‘s age. The selection made in the geographic

visualization is preserved across the two views: range

criteria for latitude and longitude from the geographic view

appear as interactive ranges within query histograms next to

the scatter plot. Our system inspects the clauses of the

selection query to automatically generate the additional

range visualizations and thereby ensure that the complete

structure of the selection query is visible.

Data-Aware Annotation

In addition to exploration, selections are important for

indicating items for collaboration and presentation [13, 26].

Users can add text annotations as they explore a data set.

Our system links the annotation to the data using the current

selection query. When collaborators view each others‘
annotations, the system applies the saved query. Because

our system enables reuse of queries across different views,

collaborators can view each others‘ annotations under

different visual encodings, potentially providing additional

perspectives in subsequent collaborative analysis.

Furthermore, the query structure can be leveraged to rank

and filter annotations. For example, when a selection query

results in a null result set due to external filtering criteria, it

might be omitted from the list of relevant annotations. In

addition, the data columns referenced by the query can be

compared with the data columns being visualized to form a

similarity measure between the selection query and the
current view. We apply this measure to sort annotations

according to their relevance to the current view.

Query Relaxation: Generalizing to Related Selections

Our system also supports the construction of generalized

selections from simpler selections using query relaxation

techniques. Users can pick an item or region of interest and

generalize the selection to include additional items related

to the initial selection (e.g., ―select all items like this one‖).

Consider the date-by-age scatter plot in Figure 5b. Clicking

an individual item queries the backing data tuple. Figure 6
depicts the use of repeated clicks to cycle through relaxed

queries for the date attribute, expanding the selection to

include items in the same day, week, and month. In this

case, our query relaxer generates sequential relaxations by

traversing a semantic model of time.

A click-and-hold invokes a dialog box, with which the user

can choose attributes of interest, such as cause of death,

race, and age (Figure 7, left). The relaxed query selects all

items that match the attribute values of the initially selected

items (Figure 7, right). In this fashion, users construct

expanded selections based on attributes of interest.

Query relaxation can also be applied to multiple items or to
range queries. Figure 8 shows a range selection that has

been relaxed along the ‗race‘ dimension. The resulting

query selects all victims whose race matches that of any

victim contained within the range bounds. Figure 9 shows a

similar relaxation in a time-series visualization. The plot

shows aggregated homicide counts over time, grouped by

age into 5-year bins. Creating a range query over this

visualization selects all individual data points within the

range. Relaxing the query along the age dimension selects

all time-series that pass through the selection range.

Because we retain the query structure, subsequent resizing
or repositioning of the range results in dynamic updates to

the selection, enabling interactive querying similar to

Hochheiser and Shneiderman‘s TimeSearcher [14].

Alternate Output Modalities

Developers can further extend or customize how selections

are presented. Selection queries can be output in a SQL-like

syntax to be exported (as in Figure 3) to databases or hand-

modified by proficient users. Selection queries can also be

mapped into a natural language representation, providing

automated captioning for selections and potentially aiding

visually impaired users. Using a simple rule-based approach,

Figure 5. Reported Homicides in Los Angeles County, 2007. (a) Left: Geographic distribution of homicides, including the cause of death
(color) and victim’s race (shape). A selection highlights Hispanic victims (using a legend selection) in central L.A. (using a range selection).
(b) Right: The same data plotted using incident date vs. victims’ ages. The selection made in the geographic display has been mapped to the

scatter plot. Our system extracts the latitude/longitude ranges from the selection query and generates appropriate dynamic query widgets.

our system generates text descriptions of selections. For

example, our captioner outputs “All items from August 1 to

August 31” for Figure 6 (right panel) and “All items with

race equal to „White‟” for Figure 7.

EXAMPLE: VECTOR GRAPHICS EDITOR

Although our primary motivation for building generalized

selection techniques comes from data visualization, our

approach is applicable in other visual interfaces. To

demonstrate the generalizability of our approach, we have
applied our selection techniques in a vector graphics editor,

similar to programs such as PowerPoint and Visio. As in

the earlier visualization examples, users can select both

individual items and ranges, create data-aware annotations

(e.g., for design reviews), and generalize selections through

query relaxation. The principal difference is that for the

vector graphics editor, no translation between visual and

data variables is needed, as the data set being queried

consists of the graphic objects themselves.

As before, clicking and holding over an item provides a

dialog allowing users to generalize their selection to items
with matching shapes, colors, and fonts (Figure 10). For

example, one can click a text object and generalize by the

font type to select all matching text boxes, enabling

subsequent batch editing. Thus, our system automatically

generates operations similar to the ―Select > Same‖ and

―Select > Object‖ menu commands in Adobe Illustrator.

Moreover, the query relaxer supports additional forms of

query relaxation. The drawing editor includes connectors,

which link items in an underlying network. This network

provides a substrate on which to perform query relaxation.

As shown in Figure 11, one click selects an item, two clicks
also selects all items one hop away, and three clicks selects

the entire connected component. We describe other forms

of relaxation over networks in the implementation section.

IMPLEMENTATION

Our generalized selection techniques are implemented in

the ActionScript 3 programming language and are intended

for use within the Adobe Flash Player. A selection

controller enables selection over visual items in the Flash

Player scenegraph, using queries over the properties and

sub-properties of these objects. In addition to processing

input events, the controller coordinates query generation,

query visualization, and query relaxation components.

Initialization

The controller takes as input both a container object holding

the selectable objects and a schema mapping describing the

accessible properties of interface objects. If visual variables

(e.g., position, color, shape) are determined from backing
data, the schema object maintains this mapping, including

scale transforms (e.g., ordinal, linear, log scales).

Figure 6. Relaxation of date ranges. One click selects an incident,

two clicks selects the day on which the incident occurred, three
clicks selects the entire week, four clicks selects the month. The
images are cropped close-ups from the scatter plot in Figure 5b.

Figure 7. Relaxation by attributes. A click-and-hold action invokes

a dialog for relaxing selections using one or more attributes. Above,
a user selects all victims whose race matches the initial selection.
The images are cropped close-ups from the scatter plot in Figure 5b.

Figure 8. Range selection relaxed along the ‘race’ attribute. The
generalized query selects all victims whose race matches that of any
victim within the range bounds. Matching colors for the range

selection and legend border indicate the relaxation relation. The
image is a cropped close-up of the scatter plot in Figure 5b.

Figure 9. Time-searcher created by query relaxation. A user

selects a range and relaxes the selection to create a tool that selects
the time-series that pass through the range. Moving or resizing the
range updates the relaxed query results. The images are cropped

close-ups of a time-series of homicide counts by age group.

Query Generation

Our query builder converts selection interactions into

queries. For example, shift-clicking two items in the

geographic plot of Figure 5a generates a query of the form

SELECT * FROM data WHERE (id = 10556 OR id = 10548)

The query directly selects items via unique IDs (e.g.,

primary keys). (For simplicity, we show only the ―WHERE‖
clause for the rest of the examples in this section.) Dragging

a range creates a query of the form

(-118.371 ≤ longitude AND longitude ≤ -118.164)
AND

(33.915 ≤ latitude AND latitude ≤ 34.089)

As specified by the schema mapping, our system replaces

visual variables such as x and y with backing data variables

such as latitude and longitude. Similarly, clicking on a

legend generates a clause for the corresponding attribute

value, e.g., (cause = ‘Gunshot’).

Selection queries are represented internally as a tree of query

operators, including nodes for literal values, variables,

comparison operators, and Boolean logic. By default, query

clauses generated in the same region of the interface are

combined in an OR clause and the results are then combined

by AND clauses. For example, creating two y-axis range
selections and clicking the ―Stabbing‖ legend entry in

Figure 5b could result in the query clause:

((0 ≤ age AND age ≤ 10) OR (30 ≤ age AND age ≤ 40))
AND

(cause = ‘Stabbing’)

Query Visualization

The query visualizer is responsible for visually conveying
the structure of the query and indicating the items selected

by the query. The query visualizer first traverses the query

operator tree to construct an index of the various clause

types (e.g., item selections, ranges, attribute selections, and

nested queries). Individual query results can be highlighted

using any visual highlighting effect, such as fade, blur,

glow, and spotlight [17] effects. We use fade and blue

transparent overlays as the default highlighting mechanism.

For range clauses, the visualizer generates range brush

controls, which users can interactively drag or resize (e.g.,

Figure 1). The query builder updates range clauses in
response to these drag and resize actions. For attribute

selections, the visualizer highlights each selected attribute

in the legend or palette displays (Figure 3). For nested

queries, such as the results of query relaxation, the

visualizer highlights both the initial selection and the

relaxed attributes using matching colors (Figure 8).

Query Relaxation

Query relaxation generalizes the query structure to create

expanded selections based on the properties of interface

items. We define a relaxation operation based on the

semantic structure of the attributes of the underlying data

and a policy for generating relaxed queries by traversing

this structure. Here we consider three forms of relaxation

and their corresponding semantic models.

Relaxation using Semantic Hierarchies

Hierarchies are a common structure for modeling a data
domain. For example, we can hierarchically organize time

into days, weeks, months, of years, as in the example shown

in Figure 6. Similarly, we might hierarchically organize

geographic regions into neighborhoods, cities, counties, and

states. We can also generate semantic hierarchies in a data-

driven fashion. For instance, an analyst might apply

hierarchical clustering (c.f., [5]) to analyze her data, and use

the resulting cluster trees to describe the data at different

levels of abstraction.

To perform relaxation, we traverse these semantic

hierarchies. With each relaxation step, the relaxer moves

one level higher in the hierarchy and generates a query that
selects all values in the current sub-hierarchy. For instance,

relaxing date as in Figure 6 results in the query

Figure 10. Vector Graphics Editor. Palettes on the right provide
drawing operations. Our selection framework has been applied to
enable generalized selection: here a user uses attribute relaxation to

select all items with a matching shape and fill color.

Figure 11. Query Relaxation of Networks. Connectors link visual

items in a network. Query relaxation can be performed on the
network structure. Here, one click selects an item, two clicks selects
connected items, three clicks selects the connected component.

SELECT * FROM data WHERE
RELAX('date', 1, SELECT * FROM data WHERE id = x)

The relaxation is specified as a nested query. The result set

of the initial selection is used as input to a relaxation

operator. The relaxation operator takes two additional

parameters: the name of the semantic structure to use and a

parameter specifying a traversal policy. In the example

above, the parameter ‘date’ indicates that the semantic
hierarchy for dates should be used, and the parameter ‗1‘

indicates that the query should be relaxed by one level of

abstraction, to include all items that occurred on the same

day as the initial selection. A level of ‗2‘ would relax the

selection to all items in the same week. The relaxation

operator outputs a new query clause that can be analyzed by

the query visualizer. For example, in the example above the

relaxation operator returns a comparison clause for the

selected day, (date = ‘2007-08-05’).

Our system includes a general software interface for

specifying hierarchical ontologies. We also include basic

ontologies for common data types such as time (e.g., days,

weeks, months, years) and numbers (e.g., relaxing by

increasing powers of ten). Application designers can

provide their own ontologies for custom data types, whether
hand-crafted or data-driven.

Relaxation using Attributes

For some types of data and attributes, semantic structures

are not available. When no explicit semantic structure is

provided, our system assumes a ―flat‖ hierarchy and relaxes

the query to select all items with attributes exactly matching

those contained in the initial selection.

The resulting relaxed queries select all items with some

subset of attributes matching items contained in the initial

selection, as in Figures 7-10. Consider Figure 5b. If the

initial selection is a single object (id = 10556), relaxation
of the ‗race‘ attribute results in the query:

SELECT * FROM data WHERE
(race IN SELECT race FROM data WHERE (id = 10556))

Because the hierarchy here is ―flat,‖ we can forego the
relaxation operator. As before, the relaxed query is

specified in terms of a nested sub-query. In the example

above, the inner query returns the set of ‗race‘ attributes

present in the result set of the initial selection (id = 10556).

If we update the selection clause for the inner query, the

result set of the relaxed query also updates. For instance, if

we relax a range query rather than an item selection

(Figures 8 and 9), we can interactively update the range

bounds to refine the inner query, dynamically changing the
input to the relaxation. If dynamic updates are not desired,

we can collapse the query structure by evaluating the inner

query to generate a query without nesting. To generate a

―collapsed‖ query, we evaluate the relaxation clause,

replacing it with a static clause such as (race = ‘Asian’).

Relaxation using Networks

General network (graph) structures can also serve as

semantic structures for query relaxation. Our internal query

language includes traversal policies for such network

structures. We have implemented traversals for selecting

neighbors, connected components, ancestors or descendants

(for DAG structures), or all items along the shortest-paths

between items in the initial selection. Figure 11 depicts

relaxations over a network in our vector graphics editor. As
before, the relaxed query takes the form of a nested query:

SELECT * FROM data WHERE
NEIGHBOR-OF(SELECT * FROM data WHERE id = x)

The formulation of this query is similar to the semantic

hierarchy example, except that in this case the semantic

structure and traversal policy are implicit for the

―NEIGHBOR-OF‖ operator.

Configuration

Application designers can parameterize the query relaxation
process by providing semantic structures and traversal

policies for data attributes and specifying ordering

constraints among attributes. Furthermore, a simple rule

engine allows different attributes to be considered by the

query relaxer based on the context of the selection. For

example, the vector graphics editor contains a rule that

enables relaxation of typeface attributes when the initial

selection query only contains textbox items.

Query Reuse

One advantage of our framework is that it allows selections

to be applied across changes of visual encodings. As shown

in Figure 5, new query widgets can be generated as needed

to convey the query structure. However, some expressions
do not map from one view to another in a straightforward

fashion. Consider a pair of 2D range selections, such as two

latitude/longitude ranges. These selections result in a

selection clause of the form

(R1x AND R1y) OR (R2x AND R2y),

where R1x denotes the x component of the first selection,

R1y denotes the y component, and similarly for R2 and the
second selection. If we change visual encodings, we might

naïvely generate independent query histograms for these

ranges: one for x and one for y, as in Figure 12a. However,
jjjjjjjjj

Figure 12. (a) Left: 1D components may incorrectly communicate

multiple ranges. (b) Right: A scatter plot histogram for 2D ranges.

the default convention is to OR the clauses within a query

component and AND the clauses from separate components.

Thus, Figure 12a represents a different selection clause than

intended, as the range clause groupings have been changed:

(R1x OR R2x) AND (R1y OR R2y).

One solution to this problem is to use multivariate query

widgets when confronted with multiple 2D ranges. Figure

12b shows a scatter plot histogram that depicts multiple 2D

selection ranges and enables interactive refinement.

EVALUATION

To better understand the use of our selection techniques, we

conducted a user study of a data visualization application

supporting generalized selection. We asked subjects to

perform both interpretation and authoring tasks using our

selection framework. We were interested in how subjects

interpreted visual representations of selection queries and if
these interpretations changed in response to interactive use.

We were also interested in whether subjects would use only

direct clicking and dragging for selection or whether they

would also use query relaxation. Finally, we wanted to

investigate if the choice of selection mechanism had a

subsequent impact on selection accuracy.

Sixteen subjects (11 female, 5 male) aged 18-27 (M = 21.2,

SD = 2.43) participated in the study. All subjects were

students at our university, studying diverse subjects such as

biology, business, engineering, political science, and

statistics. Subjects were recruited through the X-Lab
(http://xlab.berkeley.edu), a research participation service.

Method

Subjects completed a set of tasks interpreting and authoring
selections in a scatter plot visualization of homicides in Los

Angeles (Figure 5b). The data set contained 627 data points

noting the incident date and victim‘s age, race, and cause of

death. The visualization showed a plot of date vs. age, with

race and cause encoded by shape and color, respectively.

The study consisted of three phases with 12 tasks each.

Subjects required 30-45 minutes to complete the study.

In phase 1, subjects were shown visual selection queries

and asked to describe, as completely as possible, the subset

of the data highlighted in the view.

In phase 2, subjects first completed an interactive tutorial
that provided descriptions of the selection operations and

asked subjects to practice each selection before proceeding.

For the study, relaxation was performed through repetition

mediation only. Subjects could repeatedly click to cycle

through relaxations of the cause, race, date, and age

attributes. Subjects were then given text descriptions of

subsets of the data and asked to make matching selections

in the visualization. The provided text descriptions include:

 Victims who were exactly 60 years old.

 Victims killed by Blunt Force between March 1 and April 1.

 Victims killed by the same causes that killed any victims over

80 years old.

While users could complete all tasks by directly specifying

the selection via clicking and dragging, they could also

complete a subset of these tasks using query relaxation.

Thus, subjects could apply relaxation as they saw fit. For

example, in the third description above, subjects might

either select the matching causes directly or select all
victims over 80 and perform query relaxation.

The task in phase 3 was the same as in phase 1; subjects

were again asked to interpret pre-defined selections, though

the selections were different from those shown in phase 1.

Afterwards, subjects completed a short survey.

In each phase, the selection cues were systematically varied

to thoroughly cover the query structures expressible with

our techniques, including 1D and 2D ranges, category

selections, disjunctions within variables, and conjunctions

across variables. In addition, multiple selections involved

generalizing from a subset of the data. We used the same

distribution of query structures in each phase of the study.

Results

We were interested in three primary questions. First, how
did subjects interpret selections, and did interpretations

change with interactive use? Second, which selection

operations did subjects use to create selections, and what

effect did they have on subjects‘ accuracy? Third, what did

subjects think of the selection techniques?

Selection Interpretation

To analyze subjects‘ descriptions of observed selections in

phases 1 and 3, we coded each response into one of four

categories. Structure-correct responses accurately reported

the structure of the selection query, including basic clauses

and appropriate disjunctions and conjunctions. Result-set-

correct responses did not report the query structure

correctly, but specified criteria which resulted in the same

query result set. Note that all structure-correct responses
also produce correct results. We do not count the structure-

correct responses in the result-set-correct category. False-

conjunctions correctly identified each query sub-clause but

combined then inaccurately. False conjunctions were

prevalent when the stimulus involved a range generalization

(e.g., selecting all categories contained within a range, as in

Figure 8). Finally, we coded all other responses that failed

to describe the query structure and results as incorrect.

Table 1 shows the percentage of responses in each category.

Ideally, selections would be understood by users even if

they have not previously used the software. To test if
authoring selections changed how subjects interpreted

selections, we compared the distributions of coded results

from phase 1 (before interaction) and phase 3 (after

interaction) across all tasks. We found no significant

difference in the distribution of coded response types across

study phases (χ2(3, 362) = 2.26, p = 0.521).

However, both phases included two tasks in which the

selections were created by relaxing a range query along a

categorical attribute. These selections result in a potentially

confusing display: a range brush is visible but selected

items exist outside the range (see Figure 8). Unsurprisingly,

96% of all false-conjunctions occurred in these cases, in

which subjects identified both the range and category

criteria but did not understand the relation between the two.

To see if interpretation of such range relaxations was

affected by interactive use, we analyzed just the tasks

involving relaxation of a range selection and found a

significant difference across phases (χ2(3, 60) = 9.22, p =

0.027). The number of structure-correct and result-set-

correct responses increased in phase 3, with a corresponding

drop in false-conjunctions. However, ―correct‖ cases only

accounted for 39% of responses, suggesting that even with

exposure our subjects found relaxation of range selections

hard to interpret. We also note that this analysis involves a

relatively small amount of data, as each subject saw only

two such range relaxations per phase.

Selection Authoring

To analyze the selection queries authored in phase 2, we
similarly coded the responses into categories. In this case,

we used only three categories: structure-correct, result-set-

correct, and incorrect queries. Overall, subjects created

selections that matched the text descriptions: 62% structure-

correct, 20% result-set-correct, and 18% incorrect.

We were also interested in whether or not subjects would

use query relaxation. Eleven of 16 users (68%) used multi-

click relaxation to respond to a task, over a total of 28 tasks

(15%). We hypothesized that subjects would be more

accurate using query relaxation, and divided the responses

into those that used relaxation and those that did not. We
found a significant difference in the distribution of response

types between the groups (χ2(2, 192) = 11.45, p < 0.003),

with structure-correct responses comprising 89% of

relaxation-generated responses, compared to 57% of

responses made through other means.

We hypothesized that the difference might be due to

individual differences — users who apply relaxation may be

more advanced and perform better overall. To test this

possibility, we divided the responses according to whether

or not the subject used relaxation at any point. We found no

significant difference between the two groups (χ2(2, 192) =

4.15, p > 0.10), suggesting that the subjects who used query
relaxation were not significantly more accurate overall.

These results suggest that subjects may make more accurate

selections when using query relaxation in tasks amenable to

relaxation. However, we note that the nature of the task

likely plays a crucial role in shaping subject performance.

Subject Preferences

At the end of the experiment, subjects were asked to rate

the techniques presented within the experiment. Overall,

subjects found the selection techniques helpful (M = 3.75/5,

SD = 0.45) and did not find them confusing (M = 1.75/5,

SD = 0.77). We also asked subjects to rate query relaxation.

Overall, subjects rated query relaxation favorably (M =

3.86/5, SD = 1.10). However, the rating distribution was bi-

modal, split between those who used query relaxation (M =

4.36/5, SD = 0.50, N = 11) and those who did not (M =

2.40/5, SD = 0.55, N = 5). The difference between groups
was significant (t(14) = 7.04, p < 0.001). Overall, subjects‘

comments were positive (―it‘s very useful to find matching

characteristics‖), but also suggested usability improvements

for the visualization application. For example, the fading

effect applied to unselected items made it difficult to

sequentially select (―shift-click‖) individual items.

DISCUSSION AND FUTURE WORK

Though the majority of subjects relaxed a range query to

successfully complete a task, many had difficulties

interpreting relaxed range queries when passively viewed.

While most subjects correctly interpreted individual query

components, they often did not recognize the generalization

relation. This result suggests that simplified selections may

be more appropriate for collaboration, as in the use of
selection queries to specify annotations. Accordingly, we

recommend ―collapsing‖ nested query structures when

using selections to communicate with a general audience,

by evaluating the nested relaxation query. This limitation

suggests future work in designing visual representations.

Are there intuitive ways to indicate nested query structures

without requiring an additional auxiliary interface?

Another avenue for future work is to further extend the

query relaxation mechanisms. Other application domains

might suggest new semantic models or traversal policies for

relaxation. New relaxation types may be best expressed
using additional input gestures, and expert users may want

to configure the relaxation engine at runtime.

Finally, a primary motivation for developing our selection

techniques is to support web-based collaboration around

visualizations (e.g., [13, 26]). We are particularly interested

in the use of selection queries for sharing interesting data

items and regions during collective data analysis. One

potential extension is to adapt our query visualizer and

input techniques to support alternate forms of presentation

and communicate more nuanced references. Another future

direction lies in exploiting selection queries for data
mining. Selection queries enable computational analysis of

both the items and structure of users‘ references to data.

Mining the various selections made by a collective might

help automatically identify data items, attributes, and

regions of interest to the community at large.

Response Type Phase 1 Phase 3 Average

structure-correct 73% 78% 75%

result-set-correct 3% 4% 4%

false-conjunctions 11% 7% 9%

incorrect 13% 11% 12%

Table 1. Responses in selection interpretation tasks.

CONCLUSION

In this paper, we presented a framework that models

selections of interface objects as declarative queries in a

SQL-like language, capturing both the structure and content

of a selection. Users create selection queries through direct

manipulation; our system visualizes the structure of the

query and highlights the results. Selection queries enable

evolving selections over dynamic objects and streaming

data. Selections can be reapplied across applications,
without loss of structure. Users generalize these selections

via interactive query relaxation, expanding their selections

according to one or more attributes of interest. Results from

our user study suggest that users successfully interpret and

author selections using our system and that query relaxation

may improve selection accuracy in amenable tasks.

ACKNOWLEDGMENTS

We would like to thank all the participants in our study. We

also thank Joe Hellerstein for leading us to related work on

query relaxation.

REFERENCES
1. Ahlberg, C. and Shneiderman, B. Visual Information Seeking:

Tight Coupling Of Dynamic Query Filters With Starfield
Displays. Proc. ACM CHI ‟94, pp. 313-317. 1994.

2. Becker, R.A. and Cleveland, W.S. Brushing Scatterplots.
Technometrics, 29(2):127-142. 1987.

3. Brennan, S.E. How conversation is shaped by visual and
spoken evidence. In Trueswell and Tanenhaus (eds.),
Approaches to studying world-situated language use: Bridging
the language-as-product and language-as-action traditions,
pp. 95-129. MIT Press, 2005.

4. Chen, H. Compound Brushing. Proc. IEEE InfoVis ‟03, pp.
181-189. Oct 2003.

5. Chu, W. W., Yang, H., Chiang, K., Minock, M., Chow, G.,
and Larson, C. CoBase: A Scalable and Extensible
Cooperative Information System. Journal of Intelligence
Information Systems, 6(2):223-259. 1996.

6. Chu, W. W. and Liu, S. CoXML: Cooperative XML Query
Answering. In B. Wah (ed.), The Encyclopedia of Computer
Science and Engineering. John Wiley & Sons Inc, 2007.

7. Clark, H.H. and Brennan, S.E. Grounding in Communication.
In L. B. Resnick, R. M. Levine, and S. D. Teasley (eds.),
Perspectives on socially shared cognition, pp. 127-149.
American Psychological Association, 1991.

8. Clark, H. H. Pointing and placing. In S. Kita (ed.), Pointing.
Where language, culture, and cognition meet, pp. 243-268.
Erlbaum, 2003.

9. Derthick, M., Kolojejchick, J. A., and Roth, S. An Interactive
Visual Query Environment for Exploring Data. Proc. ACM
UIST '97, pp. 189-198. Oct 1997.

10. Fishkin, K., and M. Stone. Enhanced Dynamic Queries via
Movable Filters. Proc. ACM CHI ‟95, pp. 415-420. May 1995.

11. Gaasterland, T. Cooperative Answering through Controlled
Query Relaxation. IEEE Intelligent Systems, 12(5):48-59. Sep-
Oct 1997.

12. The Gapminder World 2006.
http://tools.google.com/gapminder

13. Heer, J., Viégas, F., Wattenberg, M. Voyagers and Voyeurs:
Supporting Asynchronous Collaborative Information
Visualization. Proc. ACM CHI ‟07, pp. 1029-1038. Apr 2007.

14. Hochheiser, H., Shneiderman, B. Dynamic query tools for
time-series data sets: Timebox widgets for interactive
exploration. Information Visualization, 3:1-18. 2004.

15. Huh, S.-Y., Moon, K.-H., Lee, H. A data abstraction approach
for query relaxation. Information and Software Technology,
42:407-418. 2000.

16. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka, H.
Interactive Beautification: A Technique for Rapid Geometric
Design. Proc. ACM UIST „97, pp. 105-114. 1997.

17. Khan, A., Matejka, J., Fitzmaurice, G., Kurtenbach, G.
Spotlight: directing users' attention on large displays. Proc.
ACM CHI ‟05, pp. 791-798. Apr 2005.

18. Los Angeles Times Homicide Map, 2007.
http://www.latimes.com/homicidemap/

19. Livny, M., R. Ramakrishnan, K. Beyer, G. Chen, D.
Donjerkovic, S. Lawande, J. Myllymaki, and K. Wenger.
DEVise: Integrated Querying and Visual Exploration of Large
Datasets. Proc. ACM SIGMOD „97, pp. 310-312. May 1997.

20. Mankoff, J., Hudson, S.E., and Abowd, G.D. Interaction
techniques for ambiguity resolution in recognition-based
interfaces. Proc. ACM UIST „00, pp. 11-20. 2000.

21. Martin, A. R., Ward M. O. High Dimensional Brushing for
Interactive Exploration of Multivariate Data. Proc. IEEE
Visualization '95, pp. 271-278. Nov 1995.

22. North, C., Shneiderman, B. Snap-Together Visualization: A
User Interface for Coordinating Visualizations via Relational
Schemata. Proc. Advanced Visual Interfaces ‟00, pp. 128-135.
May 2000.

23. Olston, C., Stonebraker, M., Aiken, A., Hellerstein, J. M.
VIQING: Visual Interactive Querying. Proc. IEEE Visual
Languages „98, pp. 162-169. Sep 1998.

24. Saund, E., Fleet, D., Larner, D., Mahoney, J. Perceptually-

supported image editing of text and graphics. Proc. ACM UIST
‟03, pp. 183-192. 2003.

25. Stolte, C., Tang, D., and Hanrahan, P. Polaris: A System for

Query, Analysis and Visualization of Multi-dimensional
Relational Databases. IEEE Trans. on Visualization and
Computer Graphics, 8(1):52-65. Jan 2002.

26. Viégas, F., Wattenberg, M., van Ham, F., Kriss, J., and
McKeon, M. Many-Eyes: A Site for Visualization at Internet-
Scale. Proc. IEEE InfoVis ‟07, pp. 1121-1128. Oct 2007.

27. Weaver, C. Building Highly-Coordinated Visualizations In
Improvise. Proc. IEEE InfoVis „04, pp.159-156. 2004.

28. World Bank World Development Indicators, 2007.
http://devdata.worldbank.org/data-query/

