
Authoring Multi-Stage Code Examples
with Editable Code Histories

Shiry Ginosar, Luis Fernando De Pombo, Maneesh Agrawala, Björn Hartmann
Computer Science Division, University of California, Berkeley

shiry@cs.berkeley.edu, lfdepombo@berkeley.edu, maneesh@cs.berkeley.edu, bjoern@cs.berkeley.edu

ABSTRACT
Multi-stage code examples present multiple versions of a pro-
gram where each stage increases the overall complexity of the
code. In order to acquire strategies of program construction
using a new language or API, programmers consult multi-
stage code examples in books, tutorials and online videos.
Authoring multi-stage code examples is currently a tedious
process, as it involves keeping several stages of code synchro-
nized in the face of edits and error corrections. We document
these difficulties with a formative study examining how pro-
grammers author multi-stage code examples. We then present
an IDE extension that helps authors create multi-stage code
examples by propagating changes (insertions, deletions and
modifications) to multiple saved versions of their code. Our
system adapts revision control algorithms to the specific task
of evolving example code. An informal evaluation finds that
taking snapshots of a program as it is being developed and
editing these snapshots in hindsight help users in creating
multi-stage code examples.

Author Keywords
Examples; tutorials; programming; editable histories

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Programmers can find technical material needed for specific
programming tasks by searching for community-generated
content online. While novice programmers may mostly look
for syntactic help, more advanced developers often need to
acquire strategies for combining smaller library functions and
APIs to create full programs. One way to learn such strategies
is through multi-stage code examples which present multiple
versions of a program where each stage increases the com-
plexity of the overall example [33].

Indeed, teaching materials often use multi-stage code exam-
ples such as the one presented in Figure 2 (on the next page).
This simplified example introduces elements of an interactive

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).
UIST’13, October 8–11, 2013, St. Andrews, United Kingdom.
ACM 978-1-4503-2268-3/13/10.
http://dx.doi.org/10.1145/2501988.2502053

Figure 1. We introduce an editor that facilitates the construction of
multi-stage code examples through a set of history editing operations
and the management of history stages.

drawing program one-by-one. The first stage shows how to
draw a single line. The second shows how to set drawing pa-
rameters such as canvas size and color. The third stage adds
interactivity by drawing lines to the cursor position. Finally,
the last stage clears the screen so only a single line is drawn
while the mouse is dragged.

Creating multi-stage code examples requires keeping track of
multiple versions of code and the edits between them. In a
formative study where we observed coders as they created
such examples, we found that authors have difficulty plan-
ning example stages from beginning to end. They often go
back and forth in stage history, making changes over multiple
versions. For example, if the lines in an example designed for
print are difficult to see because they are too thin (Figure 2),
the author would have to modify stages 2-4 to consistently
update the thickness parameter.

Revision control systems like git [13] or Subversion [36] pro-
vide tools for controlling multiple versions of code. However,
their user interface is insufficient to support the specific task
of authoring code examples. For instance, after committing
several revisions of a program, there is no easy way to add
a block of code to the existing sequence of revisions with-
out requiring the user to intervene and resolve conflicts. A
tool that assists users with such editing operations would ide-
ally be integrated into an Integrated Development Environ-
ment (IDE) to make for a seamless development and editing
experience (Figure 1). Our formative study suggests that this
type of editor should support an addition operation so that
authors can make changes to multiple versions of code. It
should also enable authors to remove or fix existing blocks of
code throughout the history of example stages. Ultimately,
for seamless authoring of multi-stage code examples, pro-



Figure 2. In multi-stage examples, each stage builds upon the existing code and adds new functionality (highlighted). Stage 0 shows how to draw a single
line. Stage 1 shows how to set drawing parameters such as canvas size and color. Stage 2 adds interactivity by drawing lines to the cursor position.
Finally, Stage 3 clears the screen so only a single line is drawn while the mouse is dragged. (Adapted from the Processing.org).

grammers need to be able to edit the history of their code,
propagating changes across stages.

We present an authoring tool that facilitates the creation of
multi-stage code examples (Figure 1). Our tool extends a
standard IDE, and captures a rich representation of code into
an underlying version control system. It introduces IDE in-
teraction techniques that enable example authors to edit the
example history by propagating edits across stages. The tech-
niques we use are based on differencing algorithms that iden-
tify the point in history where a change was introduced, and
the most likely location of code blocks in other stages of the
example program. Some of these algorithms are included in
revision control tools and others, like the ability to add code
to previous revisions, extend the functionality of these tools.

Authors can use our system to convert a set of code stages to
multi-stage code examples that can be directly consumed by
learners. We take inspiration from code examples in books,
tutorials and websites, and demonstrate the generation of one
output format as a proof of concept. In this HTML format we
highlight the differences in the lines of code between stages
and we include the running output of each stage as it is viewed
directly in the web page. Additionally, learners can easily
navigate between example stages.

We conducted an informal study of our tool with seven par-
ticipants and found that they frequently saved snapshots of
their code as stages while writing examples (up to 11 stages
per example). Additionally, they successfully edited across
stages to modify or fix their examples.

BACKGROUND
Several different types of learning materials use multi-stage
code examples to teach strategies of program construction.
For example, programming books and online tutorials often
start with a simple construct and develop a more complicated
example over several chapters. Many video tutorials begin
with an empty project and develop a working program. How-
ever, these often do not demonstrate discrete, working code
in separable stages [37]. In this section, we review people’s
programming learning strategies to motivate the importance
of supporting the authoring of multi-stage examples.

How Programmers Use Code Examples
Programmers face different barriers when trying to write code
in a new environment [20]. Use barriers represent difficulties
in determining how to work with a programming interface.
Coordination barriers concern the rules for combining indi-
vidual building blocks to achieve complex behaviors. Both
barriers are well addressed by concrete code examples. Coor-
dination strategies in particular can be taught by introducing
many examples of programs as they are being developed [33].
By following these examples, a learner can observe how oth-
ers combine smaller structures to create a working program.

Users are not inclined to read lengthy training materials; their
particular goals and concerns often differ from the careful or-
dering of chapters in a training procedure [6]. This trend also
holds for programmers: when programmers find tutorials on-
line they often experiment with the included code samples
rather than take the time to read the accompanying explana-
tion. Moreover, programmers often begin adapting code be-
fore they completely understand it [4]. When a developer
feels that the information he already collected is sufficient
to complete a given task, the developer may drop out of the
comprehension process and switch to implementing a solu-
tion with found information [21]. In line with these obser-
vations, Minimalist Instruction Theory [6] calls for designing
materials as small, self-contained units representing real tasks
that can be read in any order. Multi-stage examples share
similarities with early Minimalist systems as they break the
experts’ program creation process into discrete chunks. Each
of these chunks has a well defined effect on the output of
the program enabling out-of-order access and exploration by
the learners. By exporting multi-stage examples to interactive
formats like HTML they allow for the presentation of out-
put formats similar to Carroll’s ViewMatcher that presented
example programs in an interactive tool together with their
output [7] and to Victor’s designs that make the state of the
program visible [40].

RELATED WORK
Our work builds on two primary areas of prior work; tools for
authoring and using code examples, and tools for visualizing
and editing operation histories.



Authoring and Using Code Examples
Like our work, JTutor [22] focuses on code changes over
time; it permits record-and-replay of code edits, but does not
offer the history editing we provide. The commercial Code-
player [37] records and replays coding sessions at the char-
acter level. Like single-take screencasts, such performances
require careful planning on the author’s part. Our history edit-
ing techniques enable example authors to make modifications
to different stages at any point.

Augmented examples provide additional information beyond
a static view of a piece of source code. JTourBus [28] lets de-
velopers record annotated “tours” through a project to high-
light important code locations to others. WebEx allows teach-
ers to produce example code with line-wise explanations [5].
HyperSource [17] and Codetrail [14] save relevant URLs
along with source code as a form of design rationale. Our
work instead focuses on capturing additional temporal infor-
mation on how code evolves.

Several researchers have investigated how to help learners
find, extract or synthesize code examples [3, 8, 24, 25, 34].
Other systems aim to make example code reuse easier [29,
30, 42]. In contrast, we focus on example authoring.

Researchers have investigated how to author examples and tu-
torials for other domains besides programming. Many studies
concentrate on image manipulation and 3D modeling appli-
cations because of the complexity of their interfaces. Several
systems generate tutorials for such interfaces from demon-
strations [1, 10, 15]. Given a structured representation of
a step-by-step procedure, such systems can also observe a
user’s actions and synchronize the display of instructions with
those actions [1, 2, 31]. Demonstrations in 3D Modeling
or photo manipulation can comprise hundreds of operations
and therefore call for intelligent techniques for aggregating
or navigating steps [11, 15, 16]. The dependence or inde-
pendence of different actions in an editing sequence can be
captured by revision control functions adapted to image ma-
nipulation [9]. Our system is unique with respect to these
prior works as none of these systems are designed to build
multi stage code examples.

Editable Histories
Editable code histories in our work are closely related to ed-
itable graphical histories, which provide authors with tools to
modify prior document states. Researchers built such systems
for vector graphics [23, 35], photo manipulation [9], informa-
tion visualization [18], and other domains. Common actions
supported by these tools, like ours, are navigation to prior
states and editing a prior state to propagate changes forward
in time. We also allow editing later states and propagating
changes back. More importantly, our work differs in that the
final product of our tool is not a single document but rather a
sequence of documents over time. In this sense, the collected
history is the final artifact.

The ability to edit multiple code stages is related to Linked
Editing, a technique to link duplicate code blocks in a pro-
gram and edit them simultaneously [38]. However, unlike

multi-stage code examples, the Linked Editing model does
not capture a sequential history of modifications.

The Git rebase command also enables programmers to apply
changes and additions of code to a chain of commits [13].
However, our system can better resolve conflicts when we
propagate the addition of code to past stages since (1) we
assume there is one author who is guided to only merge in
additive changes and (2) we let the user impose location con-
straints on both ends (start and end) of the propagation.

FORMATIVE STUDY
To better understand the challenges programmers face when
producing multi-stage code examples, we conducted a forma-
tive study with seven participants. We asked each participant
to produce a multi-stage code example that describes how to
program the classic Pong game in Processing, a Java vari-
ant [32]. We chose Processing as the language of our study
for several reasons. First, Processing is designed for cre-
ating images, animations and interactive graphical sketches.
Graphical programs have visual output and allow for at least
one straightforward way to define different stages of program
construction as points at which the visual output changes.
Second, simple programs can be expressed very concisely in
Processing, while complex projects remain possible.

Participants in the formative study were students at our in-
stitution already familiar with Processing. We gave them a
program editor that we linked to a revision control system, so
that we could simulate a tool that makes it easy to snapshot
any stage of the development of a program by committing a
revision to the system. We provided participants with paper
printouts of the snapshots of their code so that they could view
their snapshots side by side and thereby simulate the ability
to switch between stages in the editor.

Our participants all made high-level plans to subdivide the
study task into meaningful example stages. In practice, they
created an average of 4.4 stages (σ = 1.9) as they developed
their program. However, they did not always follow their ini-
tial plans. At times the plans contained mistakes and they
had to re-plan the stages. In other cases they had to fix minor
code errors in earlier stages. All participants faced multiple
instances where they realized that earlier implementation de-
cisions had to be modified in order to proceed. On average,
participants indicated that they would have edited previous
revisions an average of 1.6 times (σ = 0.89) while program-
ming Pong.

Types of Modifications to Previous Revisions
We noted two types of modifications that users indicated that
they wanted to perform on earlier stages of the code.

Modifications for Pedagogical Reasons
The goal of some modifications was to construct a flow of
stages that learners could easily follow. For instance, one
participant defined the ball velocity in the first stage as a per-
second velocity. However, when developing later stages she
decided that it would be more instructive to refer to velocities
as per-frame velocities, as these require fewer unit conver-
sions when writing frame-based rendering routines. She then



wished to change the definition of the velocity variable and
add an extra frame rate variable to her first stage.

Modifications as a Result of an Error
Other modifications were the result of errors in the code that
programmers did not notice at first, but later wanted to fix.
For example, one participant noticed that she had accidentally
swapped the window width and height variables throughout
her program. She wished to modify all the earlier versions of
the code in which the variables were switched.

The Need for Editable Histories
Making such modifications using a regular IDE would require
propagating the change to all relevant stages manually. In
some cases, this process of change propagation was complex
enough that some participants remarked that they would have
preferred to jettison much of their work and restart from an
earlier point. In contrast to editing code for the purpose of
the final program, participants had to not only think about
refactoring the current state of the code, but also check that
the flow across stages remained consistent.

In essence, while participants were able to formulate high-
level plans, detailed decisions were made just-in-time based
on existing code. Producing multi-stage examples is thus fun-
damentally a non-linear process that requires making modifi-
cations to multiple stages of the code project.

Design Guidelines
Based on our formative study we devised the following design
guidelines to support multi-stage editing inside an IDE.

Enable Easy Addition of Stages
Programmers should be able to capture snapshots of the cur-
rent state of their code without interfering with their coding
workflow. When we provided participants with this ability,
they took full advantage of it and saved multiple snapshots.

Enable Easy Navigation and Execution of Stages
Programmers have to be able to access all stages in the edi-
tor with minimal effort. Participants frequently went back to
saved snapshots of their code in order to remind themselves
of how they got to the current state. A natural extension to
this guideline is to allow programmers to execute the code as
it exists in each stage in order to see the resulting output.

Enable Edits of Any Stage
Programmers must be able to modify any stage of their code.
We distinguish between three different types of edits that we
observed in the formative study:

• Propagate code fixes across stages: allowing errors such
as the switched height and width to be fixed.

• Add code across stages: allowing omissions such as vari-
able definitions to be included where they belong.

• Remove code across stages: allowing participants to
change their minds in hindsight about existing code such
as the introduction of the ball in the very first stage.

Enable the Removal of Stages
Based on the experience of at least one participant it seems
worthwhile to be able to remove a saved stage such that the

previous stage flows directly to the next without the interven-
ing one. This would have allowed participants to delete stages
they later determined had no educational value.

AUTHORING A MULTI-STAGE CODE EXAMPLE
To illustrate how these design guidelines may be expressed
in a tool for editing code histories consider the following ex-
ample. The task is to show the drawing primitives necessary
to build a program that rolls an object off the screen using
translation and rotation (Figure 3).

Adding a Stage to the History
A programmer begins by making a high level plan and break-
ing down the task she is working on into small testable units.
The programmer chooses to start by drawing a circle (Fig-
ure 3A). Once this code is tested the programmer saves a
snapshot of the current state of the code. A dialog box lets
the programmer specify the title for the stage (Figure 4A).

The programer adds a second stage where she translates the
circle to a new location and a third stage where she animates
the repeated translation of the circle (Figure 3B). We bor-
row Kurlander’s approach [23] and add a button in the history
panel for every new stage (Figure 4B). The programmer can
click this button to view a previous stage.

Modifying Code Across Stages
A programmer can modify code in any stage in two ways.
They can make changes to the latest stage and selectively
propagate them to past stages, or they can make changes to
a past stage and selectively propagate them to later ones.

Fixing Blocks of Code Across Stages
The programmer next wants to rotate the object as it rolls
off the screen. However, because of the circle’s rotational
symmetry she decides to change her object to a square (Fig-
ure 3C). She can either fix her choice of a shape in the stage
where the circle was introduced and propagate the fix to fu-
ture stages, or fix it in her current code and propagate the
fix to all previous stages. In this case, she chooses the latter.
She selects and highlights the line creating the circle and right
clicks on the Enter fix option (Figure 4C). She then edits the
code in place to change the shape to a square and propagates
the change back to all other stages using Propagate fix (Fig-
ure 4D). Finally, she adds code to rotate the square as it is
translated, to simulate rolling off the screen (Figure 3D).

Adding Blocks of Code Across Stages
Viewing the current output of her program, the programmer
realizes that the demonstration of rotation is not clear enough,
since the square also has a rotational symmetry. She decides
to transform the square into a more complex shape – in this
case a robot face. Thus she adds shapes representing the eyes
and mouth of the robot to all stages of the example.

Adding code to a different stage is a form of a copy-paste op-
eration where a block of text is copied from the present and
is pasted in a past stage, or vice versa. Once it is pasted, it is
also included in all intermediate stages. The programmer de-
cides to add the drawing of facial features in the current code.
She then selects and highlights the code she just added, right



Figure 3. A programmer takes different steps during the development of the example, reverting and adding to earlier decisions.

Figure 4. The Multi-stage example editor offers functions to manage code stages and functions to perform edits across multiple stages.

clicks and chooses the Copy from this stage option (Fig-
ure 4E). Navigating to the very first stage, the programmer
points to the end of the line after which she would like to
paste and chooses the Paste in this stage option (Figure 4F).
The copied code is pasted in the past stage and propagated to
all the stages in between. As a result the robot is drawn in all
stages. If the programmer attempts to paste in a location that
conflicts with the location of the code in the current stage the
operation fails and an error message is displayed. This could
occur, for instance, if the programmer were to copy code from
the bottom of the file at the current stage and paste it at the
very top of the file in a past stage.

Removing Blocks of Code from History
The programmer next decides that she would like to better
emphasize the result of each rotation operation for educa-
tional purposes. She therefore removes the line that clears the
window each time the drawing function is called. She selects
and highlights the line that clears the background, and selects
the Remove selected from history option (Figure 4G). The
deleted code is removed from the stage in which it was in-
troduced and onwards. Alternatively, the programmer could
have navigated to the stage where the code was introduced,
removed it from there and propagated the fix to later stages.

Presenting Negative Effects of Edits
As the number of stages in the example increases, the pro-
grammer is more likely to make mistakes when editing across
stages. For example, removing a declaration of a variable
from all stages may break a past stage that includes code to

increment that variable. Before performing any change that
affects multiple stages, our tool simulates the changes and
re-compiles each affected stage. If any compilation fails the
programmer is notified that her change would break the cor-
responding stage in history. The programmer can then decide
whether to approve or cancel the edit. While this check can
detect compile-time problems it cannot detect runtime errors.

Removing a Stage from the Code History
On a final read-through of her complete example, the pro-
grammer decides that the stage where she translated the shape
by a fixed amount is superfluous. She right-clicks on the
stage’s button and chooses the Delete this stage option (Fig-
ure 4H). This option deletes the snapshot of the state of her
code at that point of history. However the edits from the
deleted stage are still reflected in subsequent stages.

Publishing Examples
The purpose of writing multi-stage code examples is to pro-
duce materials that learners can easily consume. Important
design considerations for such materials are how to enable
navigation between the various stages, and how to present
changes between stages. In our implementation, when the
programmer is finished authoring a code example, she may
publish it as an interactive web page. Learners can then
navigate between stages using a draggable control. In or-
der to convey the differences between stages, we highlight
the changed lines between subsequent stages and include the
running output of the program at each stage (Figure 5).



Figure 5. The exported learning materials enable viewers to navigate stages and see changes in source as well as program output. The export format
was reformatted here for the sake of presentation.

The example format presented here is merely a proof of con-
cept. Given the rich representation of the program history
collected by our system we believe that many other output
formats may be possible. We leave the problem of finding the
optimal format for displaying multi-stage code examples as
future work.

IMPLEMENTATION
We wrote our authoring tool in Java as an extension of the
open source Processing IDE [32]. However, the principles
behind our algorithms are not tied to any particular language
or editor. In addition to the IDE’s representation of the pro-
gram, we maintain a separate representation of the code in
a git repository [13]. This allows us to use revision control
operations as the basis for our history editing algorithms.

Adding a Stage to the History
Example stages are snapshots of code in time. Saving such
snapshots are the bread and butter of revision control systems
and we therefore delegate snapshotting to git [13]. When the
programmer opens a new file to author a Processing program
(called a “sketch”), a repository is initialized in the sketch
folder to track a copy of the code in a text file. Each time the
programmer takes a new snapshot of her code for a stage, its
current state is committed to git as a new revision.

Modifying Code Across Stages
We support several types of edits across sequences of stages.

Fixing Blocks of Code Across Stages
In order to allow a programmer who is working on the cur-
rent stage to fix an existing block of code (Figure 6A, code
highlighted in orange) in all stages where it appears (Fig-
ure 6A, code highlighted in yellow), we must first locate
the stage where the author introduced it. This is the earli-
est place where we should propagate the fix. Similarly, when
a programmer directly edits a past stage and propagates code
fixes to later stages, we must locate the last stage where the
code appears. We look for exact copies of the code (ignoring
whitespace) because modified lines of code may have differ-
ent semantics. Propagating changes to stages where the au-
thor has modified the relevant block of code would require

Figure 6. Fixing existing code. A. When the fix is propagated to the past,
the revision where the code first appeared is located using git pickaxe.
B. The code is rolled back. C. A new brach is created where the fix is
applied, and the code is rolled forward to the current state.

additional user input to disambiguate how changes should be
propagated to different lines, as our tool cannot decide this
automatically for the users.

In our system we use the git pickaxe utility to identify the
stages where each line in a block of code that is to be fixed
across stages appears. Given each line to fix in the code,
the pickaxe utility returns all revisions that changed that line
(Figure 6A). If the fix is propagated to a past stage, the sys-
tem rolls back to the first revision where the line appeared
(Figure 6B). The system then creates a new branch where the
line is fixed and recommitted (Figure 6C). The fix is rolled
forward to the current revision by applying all subsequent
changes from the original branch. The operation is similar
when the fix is propagated to a later stage.

Removing code is just a special case of fixing as it can be
expressed as a fix where the new version is an empty line.



Adding Blocks of Code Across Stages
Adding a block of code across a sequence of stages requires
additional constraints from the user: the first and last stage
where the addition should occur, and the exact lines in these
stages where the code should be added. These constraints
are needed in operations such as taking a new line X that is
between lines A and B in the present and adding it at a past
stage before A or B were introduced. In this case, there may
be several possible locations of line X in the past stage and
we use the provided location to resolve the ambiguity.

We allow addition of new lines of code to a sequence of revi-
sions ranging from some past revision up to the present state.
This supports both the case where the user is copying from the
present and pasting to a past stage and the case where the user
is editing a past stage and propagating to the present. The dif-
ference lies only in the user interface. In order to implement
this forward propagation, we introduce a new algorithm for
adding blocks of code to code histories through a modified
three-way merge process.

Generally, three-way merge algorithms [12] reconcile inde-
pendent changes in two files under the assumption that they
share the third file as a common origin. If the changes are
compatible and would not conflict by altering the same lines,
then a new file will be produced. If not, then the algorithm
attempts to identify the cause of the failure. Users of revision
control systems, where two or more programmers may inde-
pendently change the current revision, commonly experience
such failures. In our tool, copying and pasting a chunk of
code from one stage to another can be thought of as a similar
situation. While the paste location is given by the user, we
must determine how this new change can be merged into the
existing flow of changes from stage to stage. For example, in
Figure 7 if we are pasting changes into Stage 1 (Figure 7A)
then the first two files to be merged would be Stage 1 after
pasting (“Stage 1P”) and “Stage 2”, and the common origin
would be “Stage 1” (Figure 7B).

Our implementation uses the three-way merge capability of
the UNIX diff3 tool [12]. When merging two sets of changes
into an original there is only a small set of cases where there
is no ambiguity concerning the ordering of lines and therefore
a guaranteed correct merge. General purpose tools like diff3
are conservative in what they will accept as a non-conflicting
merge and report a conflict whenever there is an ambiguity.
To shield developers from having to manually resolve such
conflicts, we can take advantage of user-provided position
constraints and the knowledge that all edits are additions.

We automatically resolve the conflicts that the three-way
merge identifies. Unlike the general three-way merge prob-
lem, we have an advantage when propagating pasted code
forward. Here the original stage with the paste applied may
only contain additional lines of code (Figure 8) as fixes and
deletions are covered by the previous techniques. Our merge
therefore resolves the conflict by accepting all changes to the
original code (stage 1 in Figure 8) introduced by the next
stage (e.g., the removal of line A in Figure 8, stage 2), and
only using pasted additions (line B in Figure 8, stage 1P) in
the resulting merge.

Figure 7. Adding a block of code to past stages using a copy-paste oper-
ation. A. The programmer wants to introduce a new block of code at an
earlier stage. She copies it from the current local changes and pastes it
in the past stage. B. The first step of propagating the paste to all stages
in between. At every step we perform a three-way merge between an
example stage (Stage 1), the stage with the pasted code (Stage 1P) and
the next stage in history (Stage 2). The result of the merge is a modifica-
tion of Stage 2 containing the pasted code (Stage 2P). C. In the next step
stages 2, 3 and the previous result 2P are merged.

Figure 8. We resolve conflicts by only looking at the original file with the
code pasted in it (stage 1P) for the location in which to paste the code.
All other changes from stage 1P (like adding line A) are discarded.

We can recursively apply this process until we reach the cur-
rent stage. In each step of the recursion, the result of the
previous merge (e.g. “Stage 2P” in Figure 7C) serves as one
of the three files to merge. To check if the propagation suc-
ceeded we compare the result of the final merge against the
correct state of the current stage. We consider all possible
places to paste the additional code in each stage and ulti-
mately select the sequence of placements that results in the
correct state of the code, if such a selection exists. It may
not always be feasible to find the right sequence of paste po-
sitions, for instance if the user copied the last line of a stage
and pasted it as the first line of the previous stage.

Presenting Negative Effects of Edits
In order to warn the user of potential negative effects of her
actions, we optimistically apply the edit and ensure that all
stages still compile. This background compilation test is per-
formed on a copy of the code file and using a clone of the git
repository. If all stages of the edited example compile suc-
cessfully, the edit is applied to the code. If the edit breaks
a stage, we inform the user of the failure and undo the edit.
Furthermore, the system directs the user to the first stage that
did not compile when attempting to apply the edit.



Removing a Stage from the Code History
At times, programmers take snapshots of key points in the
construction of the code that later no longer seem essential
for the sake of the example. When a previously saved stage is
removed we roll back all stages up to and including it. Next
we apply the changes from the stage to be removed and the
next one then commit these changes together. Lastly, we roll
forward to the current revision. The final artifact in this case
does not change, only the sequence of stages.

Publishing Examples
We chose to publish finished code examples in HTML as a
demonstration of one possible output format. The log ex-
tracted from git is parsed by a Python script and converted to
HTML using the Jinja2 templating library [19].

Since the published examples are designed to be consumed
by learners, we allow easy navigation between stages using
an extension of the Tangle kit [41], a Javascript library for
creating reactive documents that offers draggable controls to
show or hide objects from view on a web page [39].

We employ two strategies in order to help learners understand
what changed from stage to stage. First, we highlight the
changed lines between stages when moving from one to the
other using JQuery utilities. Second, we use Processing.js
to embed in the page the running interactive output of the
program at every stage, so that even without reading the code
itself the effect of each stage is immediately visible.

EVALUATION
To evaluate the effectiveness of our system for authoring
multi-stage code examples we conducted an informal use
study. We asked participants to use our tool to modify an
existing multi-stage example and to generate a code example
of their own.

Participants
We recruited seven participants, all graduate students at our
institution, with prior expertise in Processing. The six Com-
puter Scientists and one Mechanical Engineer, ages 22 to 28,
all rated themselves as expert programmers. Six were male;
one female. Two of the participants took part in our forma-
tive study. Only one participant self reported to be an expert
in tutorial writing; the rest had at most passing knowledge.

Methodology
Each two hour session in our lab consisted of a warm-up task,
two experimental tasks, and a post-study survey. In the warm-
up task, we first introduced participants to the features of our

Figure 9. The number of history editing operations used by the evalua-
tion study participants during the multi-stage example generation task.

system using step-by-step instructions for constructing a sim-
ple code example. The goal of this task was to acquaint par-
ticipants with the propagation features of our system. A pre-
liminary version of our system that only included one prop-
agation direction for each kind of operation was tested. This
initial version also did not include background compilation to
show potential problems of edits.

In the second task, we asked participants to make various
changes to a given multi-stage code example for the game
of Pong. The example exhibited several poor design and di-
dactic choices that we asked participants to improve, such as
the proportion of the sizes of the ball and paddle, the contrast
of colors, and the inclusion of superfluous example stages.
Participants edited the example such that the changes were
reflected throughout the history of its construction using the
operations of our system.

In the third task, we asked each participant to create their own
multi-stage code example using our system. This task was de-
signed to mimic real-world use of the system. To check that
our propagation tools are applicable in a variety of contexts,
we assigned a different programming assignment to each par-
ticipant. We asked some of the participants to write games,
such as Snake and a raindrop catching game. Others built
tools, such as a color picker. Others created motion simula-
tions of objects and particles.

Results
All participants successfully completed the warm-up task.
They all used all available features during the second mod-
ification task as participants successfully translated our edit
suggestions into appropriate history editing operations. Fol-
lowing our modification suggestions, participants used each
feature once, except for fixing code which they used 4 times.

When authoring their own code examples during the third
task, all participants structured their code in a modular, multi-
stage fashion, and saved between 3 and 11 stages (µ =
6.4, σ = 2.5). While programming, all participants fre-
quently navigated back to previous stages to remind them-
selves of the state of the code at that time, either by reading
or executing the code, and often by doing both. Given the
variety in the examples they authored and the individual dif-
ferences in the writing process between people, it was not
surprising that different participants used a different subset
of the modification features. Participants used an average of
3.86 history editing features during the generation task (Fig-
ure 9). In the third task users 3 and 7 did not use any features
of our tool because one implemented his example correctly
on the first trial, and the other was not able to construct a full
example in the allotted time.

In order to assess whether the user view of the available
operations matched the system view [26], participants rated
whether the effects of each operation matched their expecta-
tions and the average match rating was relatively high. De-
tailed results are presented in Figure 10.

Strengths
When asked which operation was the most useful to them in
authoring a multi-stage code example, participants’ answers



covered the whole range of available operations. This result
suggests that all the operations are necessary. All participants
attested that they would be very likely to use this tool for
authoring multi-stage examples.

The ability to save snapshots and navigate between them:
In our post-study survey, participants noted that the main ad-
vantage of using our tool for authoring multi-stage code ex-
amples was the ability to easily save snapshots of their code.
Participants also mentioned the value in being able to switch
rapidly between the stages and re-run the code at each stage.
One participant noted that being able to save snapshots helped
him remember to partition his task into concrete subtasks.

The ability to edit past stages: Participants liked the fact
that they didn’t have to make all design decisions from the
very start since they could make changes and reflect them in
previous versions on-the-fly. Thus, they could focus on the
main goal for each stage, rather than worry about each little
detail. One person noted that he felt he could almost write
the code as he would for his own purposes, while producing
a tutorial at the same time.

The ability to publish examples: An additional advantage
reported by participants is the ability to publish their exam-
ples directly into a format that is consumable by readers with-
out any post-processing other than possibly adding explana-
tory text. During the modification task participants used pub-
lication in a way that we did not anticipate. When trying to
understand the example given to them, participants exported
the example to HTML format in order to view the differences
between each stage and observe the running output. We inter-
pret this usage as a sign that our output format is valuable for
sharing examples between authors as well as with learners.

Shortcomings
Participants identified possible improvements of features.

Support directly editing past stages: In the version of our
tool used in the evaluation, all our modification operations re-
quired the user to modify code in the present and then prop-
agate the changes back to the past. This metaphor worked
for some users, but not for others who would rather have the
ability to edit the code in past stages directly and propagate
the edits forward (Cognitive Science has established that dif-
ferent people prefer different metaphors for reasoning about
time [27]). During the study, these users found it more natural
to reason about modifications in a chronological order. They
tended to switch back through earlier stages each time they
propagated a modification, effectively checking that the sys-
tem behaved as expected. In fact, our underlying architecture
allows for edit propagation in any direction. Following the

Figure 10. Post-experiment questionnaire results. Error bars indicate 1
2

standard deviation in each direction.

study, we realized that we should enable edits to past stages -
adding it only required a simple change to the UI.

Need for improved interaction techniques for editing:
Two users would have preferred not to indicate when they
are about to enter code fixes. Instead, they wanted the sys-
tem to infer the fix from the local changes in the code. Other
users identified shortcomings in the usability of the current
features, specifically a lack of visual feedback. For instance,
one user suggested that all local unsaved changes in an exam-
ple stage be highlighted to make it easier to remember what
may be propagated back. Another user suggested highlight-
ing all allowable places in the past where a copied piece of
code could be pasted. Users also expressed interest in the
ability to rename a stage, the ability to add a new stage be-
tween two existing past stages, and the ability to split their
current local changes into two separate stages.

LIMITATIONS
Our approach has some inherent limitations that limit its gen-
erality; our prototype’s implementation places additional re-
strictions on users.

Our matching algorithm does not have any semantic under-
standing of the code – all operations are performed at the
character or line-level although the UI allows for aggregate
operations on blocks of code. As a result, our modification
algorithm will not attempt to propagate fixes to any lines that
do not match the original line being modified by the user.
Future work could investigate if comparisons at the abstract
syntax tree (AST) level could relax this restriction.

We assume that stages represent a linear progression of code
development. Alternatively, programmers may wish to de-
velop modular examples where viewers can enable or disable
different aspects of an example interactively. This investiga-
tion is left to future work.

CONCLUSION
We presented a set of interaction techniques and underly-
ing algorithms that permit programmers to propagate code
changes to multiple history stages. These techniques were
motivated by a formative study that found that programmers
needed to make such modifications to fix mistakes and adjust
didactic strategies when writing multi-stage examples. An
informal evaluation of our initial implementation for the Pro-
cessing IDE showed that programmers can successfully use
our techniques to author and modify code across stages. An
open empirical question for future work is how to best present
the resulting examples to different communities of learners
online. More generally, we are interested in pursuing addi-
tional work on creating tools that benefit both authors as well
as consumers of learning materials for programming.

ACKNOWLEDGMENTS
This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship un-
der Grant No. DGE 1106400 and NSF Award IIS-1149799.



REFERENCES
1. Bergman, L., Castelli, V., Lau, T., and Oblinger, D. Docwizards: a

system for authoring follow-me documentation wizards. In
Proceedings of UIST, ACM (2005), 191–200.

2. Berthouzoz, F., Li, W., Dontcheva, M., and Agrawala, M. A framework
for content-adaptive photo manipulation macros: Application to face,
landscape, and global manipulations. ACM Transactions on Graphics.
30, 5 (Oct. 2011), 120:1–120:14.

3. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S. R.
Example-centric programming: integrating web search into the
development environment. In Proceedings of CHI, ACM (2010),
513–522.

4. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and Klemmer,
S. R. Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code. In Proceedings of CHI, ACM
(2009), 1589–1598.

5. Brusilovsky, P. Webex: Learning from examples in a programming
course. In WebNet’01 (2001), 124–129.

6. Carroll, J. M. The Nurnberg funnel: designing minimalist instruction
for practical computer skill. MIT Press, 1990.

7. Carroll, J. M., Singer, J. A., Bellamy, R. K. E., and Alpert, S. R. A view
matcher for learning smalltalk. In Proceedings of CHI, ACM (1990),
431–437.

8. Chang, K. S.-P., and Myers, B. A. Webcrystal: understanding and
reusing examples in web authoring. In Proceedings of CHI, ACM
(2012), 3205–3214.

9. Chen, H.-T., Wei, L.-Y., and Chang, C.-F. Nonlinear revision control for
images. In ACM SIGGRAPH 2011 papers, ACM (2011), 105:1–105:10.

10. Chi, P.-Y., Ahn, S., Ren, A., Dontcheva, M., Li, W., and Hartmann, B.
Mixt: automatic generation of step-by-step mixed media tutorials. In
Proceedings of UIST, ACM (2012), 93–102.

11. Denning, J. D., Kerr, W. B., and Pellacini, F. Meshflow: interactive
visualization of mesh construction sequences. In ACM SIGGRAPH
2011 papers, ACM (2011), 66:1–66:8.

12. UNIX diff3. http://www.unix.com/man-page/FreeBSD/1/diff3/.
13. Git Distributed Version Control System. http://git-scm.com/.
14. Goldman, M., and Miller, R. C. Codetrail: Connecting source code and

web resources. Journal of Visual Languages and Computing 20, 4
(2009), 223–235.

15. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and Igarashi, T.
Generating photo manipulation tutorials by demonstration. ACM
Transactions on Graphics 28, 3 (July 2009), 66:1–66:9.

16. Grossman, T., Matejka, J., and Fitzmaurice, G. Chronicle: capture,
exploration, and playback of document workflow histories. In
Proceedings of UIST, ACM (2010), 143–152.

17. Hartmann, B., Dhillon, M., and Chan, M. K. Hypersource: bridging the
gap between source and code-related web sites. In Proceedings of CHI,
ACM (2011), 2207–2210.

18. Heer, J., Mackinlay, J. D., Stolte, C., and Agrawala, M. Graphical
histories for visualization: Supporting analysis, communication, and
evaluation. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1189–1196.

19. Jinja2. http://jinja.pocoo.org/docs/.
20. Ko, A. J., Myers, B. A., and Aung, H. H. Six learning barriers in

end-user programming systems. In Proceedings of VLHCC, IEEE
(2004), 199–206.

21. Ko, A. J., Myers, B. A., Coblenz, M. J., and Aung, H. H. An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions on
Software Engineering 32, 12 (Dec. 2006), 971–987.

22. Kojouharov, C., Solodovnik, A., and Naumovich, G. Jtutor: an eclipse
plug-in suite for creation and replay of code-based tutorials. In
Proceedings of eclipse technology eXchange, ACM (2004), 27–31.

23. Kurlander, D., and Feiner, S. Editable graphical histories. In IEEE
Workshop on Visual Languages (oct 1988), 127 –134.

24. Mandelin, D., Xu, L., Bodı́k, R., and Kimelman, D. Jungloid mining:
helping to navigate the API jungle. In Proceedings of PLDI, ACM
(2005), 48–61.

25. Mooty, M., Faulring, A., Stylos, J., and Myers, B. A. Calcite:
Completing code completion for constructors using crowds. In
Proceedings of VLHCC, IEEE (2010), 15–22.

26. Norman, D. A., and Draper, S. W. User Centered System Design; New
Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., 1986.

27. Nunez, R. E., Motz, B. A., and Teuscher, U. Time after time: The
psychological reality of the ego- and time-reference-point distinction in
metaphorical construals of time. Metaphor and Symbol 21, 3 (2006),
133–146.

28. Oezbek, C., and Prechelt, L. Jtourbus: Simplifying program
understanding by documentation that provides tours through the source
code. In ICSM, IEEE (2007), 64–73.

29. Omar, C., Yoon, Y., LaToza, T. D., and Myers, B. A. Active code
completion. In Proceedings of ICSE, IEEE Press (2012), 859–869.

30. Oney, S., and Brandt, J. Codelets: linking interactive documentation
and example code in the editor. In Proceedings of CHI, ACM (2012),
2697–2706.

31. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J., Bourdev, L., Avidan,
S., and Cohen, M. F. Pause-and-play: automatically linking screencast
video tutorials with applications. In Proceedings of UIST (2011),
135–144.

32. Reas, C., and Fry, B. Processing: programming for the media arts. AI
Society 20, 4 (Aug. 2006), 526–538.

33. Robins, A., Rountree, J., and Rountree, N. Learning and teaching
programming: A review and discussion. Computer Science Education
13 (2003), 137–172.

34. Stylos, J., Faulring, A., Yang, Z., and Myers, B. A. Improving api
documentation using api usage information. In Proceedings of VLHCC,
IEEE (2009), 119–126.

35. Su, S. L., Paris, S., Aliaga, F., Scull, C., Johnson, S., and Durand, F.
Interactive visual histories for vector graphics. Tech. Rep.
MIT-CSAIL-TR-2009-031, Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory, June 2009.

36. Apache Software Foundation. Subversion.
http://subversion.apache.org//.

37. The code player. http://thecodeplayer.com/.

38. Toomim, M., Begel, A., and Graham, S. L. Managing duplicated code
with linked editing. In Proceedings of VLHCC, IEEE (2004), 173–180.

39. Victor, B. Explorable explanations.
http://worrydream.com/ExplorableExplanations/.

40. Victor, B. Learnable programming.
http://worrydream.com/LearnableProgramming/.

41. Victor, B. Tangle. http://worrydream.com/Tangle/.

42. Wightman, D., Ye, Z., Brandt, J., and Vertegaal, R. Snipmatch: using
source code context to enhance snippet retrieval and parameterization.
In Proceedings of UIST, ACM (2012), 219–228.


	Introduction
	Background
	How Programmers Use Code Examples

	Related Work
	Authoring and Using Code Examples
	Editable Histories

	Formative Study
	Types of Modifications to Previous Revisions
	Modifications for Pedagogical Reasons
	Modifications as a Result of an Error

	The Need for Editable Histories
	Design Guidelines
	Enable Easy Addition of Stages
	Enable Easy Navigation and Execution of Stages
	Enable Edits of Any Stage
	Enable the Removal of Stages


	Authoring a Multi-Stage Code Example
	Adding a Stage to the History
	Modifying Code Across Stages
	Fixing Blocks of Code Across Stages
	Adding Blocks of Code Across Stages
	Removing Blocks of Code from History

	Presenting Negative Effects of Edits
	Removing a Stage from the Code History
	Publishing Examples

	Implementation
	Adding a Stage to the History
	Modifying Code Across Stages
	Fixing Blocks of Code Across Stages
	Adding Blocks of Code Across Stages

	Presenting Negative Effects of Edits
	Removing a Stage from the Code History
	Publishing Examples

	Evaluation
	Participants
	Methodology
	Results
	Strengths
	Shortcomings


	Limitations
	Conclusion
	Acknowledgments
	REFERENCES 

