City Forensics: Using Vi

sual Elements to Predict

Non-Visual City Attributes

Sean M. Arietta Alexei A. Efros

Predicted Attribute Ground Truth

Ravi Ramamoorthi Maneesh Agrawala

Discovered Visual Elements Panoramas from Test Set

SF Violent Crime (Tn_:Hl_gd,i

|
0 SE)S ALD

SF Violent Crime (Ground Truth) | |

Fig. 1: The violent crime rate in San Francisco is an example of a non-

appearance. Our method automatically computes a predictor that model:

L

visual city attribute that is likely to have a strong relationship to visual
s this relationship, allowing us to predict violent crime rates from street-

level images of the city. Across the city our predictor achieves 73% accuracy compared to ground truth. (columns 1 and 2, heatmaps run from

red indicating a high violent crime rate to blue indicating a low violent
visual elements (column 3), including fire escapes on fronts of building
and unique roof style, relate to increased violent crime rates. Our pred

crime rate). Specifically, our predictor models the relationship between
s, high-density apartment windows, dilapidated convenience store signs,
ictor also identifies street-level images from San Francisco that have an

unsafe visual appearance (column 4). Detections of visual elements are outlined in color.

Abstract— We present a method for automatically identifying and validating predictive relationships between the visual appearance

of a city and its non-visual attributes (e.g. crime statistics, housing
and (location, city-attribute-value) pairs of measurements, we first

prices, population density etc.). Given a set of street-level images
identify visual elements in the images that are discriminative of the

attribute. We then train a predictor by learning a set of weights over these elements using non-linear Support Vector Regression. To
perform these operations efficiently, we implement a scalable distributed processing framework that speeds up the main computational

bottleneck (extracting visual elements) by an order of magnitude.
across 6 different American cities. We find that indeed there is a

This speedup allows us to investigate a variety of city attributes
predictive relationship between visual elements and a number of

city attributes including violent crime rates, theft rates, housing prices, population density, tree presence, graffiti presence, and the
perception of danger. We also test human performance for predicting theft based on street-level images and show that our predictor
outperforms this baseline with 33% higher accuracy on average. Finally, we present three prototype applications that use our system to
(1) define the visual boundary of city neighborhoods, (2) generate walking directions that avoid or seek out exposure to city attributes,

and (3) validate user-specified visual elements for prediction.
Index Terms—Data mining, big data, computational geography, vi

sual processing

<+

1

A modern city is a massive and ceaseless information producer, con-
stantly generating thousands of disparate pieces of localized informa-
tion (e.g. housing prices, restaurant health inspection scores, crime
statistics, precipitation levels, building code violations, water usage,
etc.). Since each such city attribute is associated with a location (lati-
tude, longitude) we typically visualize them as attribute maps. While
such maps have long been used to analyze and understand cities, urban
planners have recently started applying big data analysis and mining
techniques to identify meaningful correlations between these mapped

INTRODUCTION

e Sean Arietta, Alexei Efros, and Maneesh Agrawala are with the EECS
Department at the University of California, Berkeley. E-Mail:
{sarietta,efros,maneesh} @eecs.berkeley.edu.

® Ravi Ramamoorthi is with the CSE Department at the University of
California, San Diego. E-Mail: ravir@cs.ucsd.edu.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014, date of
publication xx xxx 2014, date of current version xx xxx 2014.

For information on obtaining reprints of this article, please send
e-mail to: tveg@computer.org.

attributes (so called “correlation mining”) [16, 29, 46]. These corre-
lations can then be used to predict the value of one attribute given
another when that attribute is not readily available. For instance,
higher housing prices might predict higher health inspection scores
and thereby reduce the number of restaurants inspected in those areas.

However, there is one type of city data that has received far less
attention from the urban planning and data mining communities — vi-
sual appearance. That is, how does the visual appearance of a city
relate to its other, often non-visual, attributes? We might, for exam-
ple, speculate that more trees and greenery in a neighborhood imply
higher housing prices. Indeed, sociologists have proposed the Bro-
ken Windows Theory [42, 48], which suggests that visual evidence
of neighborhood decay (e.g broken glass, graffiti, trash, etc.) corre-
lates with increased levels of crime. With the widespread availability
of street-level imagery (Google StreetView, Bing Streetside, etc.) we
now have the data necessary to identify and validate such predictive
relationships. But manually analyzing all street-level images at the
scale of an entire city is impractical. Even today there has not been
any large, city-scale verification of the Broken Windows Theory.

In this paper, we take a first step towards automatically identifying
and validating predictive relationships between the visual appearance

Predicted Attribute Ground Truth

Northg:
Wave

Peraft

' (OAK Violent Crim%iﬁ‘éd in SF)

A
-

Fig. 2: Our predictor relating visual elements to violent crime rates in San
Francisco (Figure 1) generalizes to predict the violent crime rate in Oakland
with 64% accuracy. Our predictors can leverage this generalizability to predict
city attributes in places where they may not be readily available. Street-level
images (bottom row) are from Oakland, but show detections of visual elements
from San Francisco (Figure 1).

of a city and its location-specific attributes. Our approach builds on
the work of Doersch et al. [13] who recently introduced a method for
identifying the visual elements of a city that differentiate it from other
cities. However their work focuses on binary classification based only
on geographic location (e.g. Paris vs. not Paris). Moreover, their
method cannot directly compute the relationship between visual ele-
ments and real-valued non-visual city attributes.

Our insight is that given a non-visual city attribute and a training set
of street-level images, we can extract a set of visual elements that are
discriminative of the attribute. We then train a predictor that learns a
set of weights over the discriminative visual elements using non-linear
Support Vector Regression [43], a robust regression technique. Our
predictor can then take any street-level image as input and produce
an estimate of the attribute value as output. Applying the predictor
across the street-level images of an entire city allows us to analyze the
relationship between visual elements and non-visual city attributes, in
a process we call city forensics.

Although certain city attributes like the presence of trees and graf-
fiti have a natural connection to visual elements, more abstract, non-
visual attributes such as crime rates and housing prices relate to visual
appearance in a much more complicated, non-linear way. We show
our method is indeed able to discover relationships between visual el-
ements and some of these attributes and that this relationship is general
enough to predict these attributes in new cities. For example, our sys-
tem finds that for San Francisco, visual elements such as fire escapes
on fronts of buildings, high-density apartment windows, dilapidated
convenience store signs, and a unique roof style predict violent crime
rates with 73% accuracy (Figure 1). Moreover, the predictor trained
for San Francisco can also predict violent crime rates for Oakland with
64% accuracy (Figure 2). We obtain similar prediction results for a
variety of other attributes including: theft rates, housing prices, pop-
ulation density, tree presence, graffiti presence, and the perception of
danger.

To build predictors that can model the relationship between visual
appearance and city attributes at the scale of a city we have developed
a scalable distributed processing framework that can efficiently handle
several terabytes of street-level image data. Our framework speeds up
the main computational bottleneck (extracting visual elements) by an
order of magnitude and requires about 3.75 hours to build a predictor

for one attribute. The efficiency of our framework allows us to quickly
investigate a diverse set of city attributes.

In some cases our predictions do not agree exactly with ground
truth data. These discrepancies are often where we gain the most
interesting insights about the connection between non-visual city
attributes and visual appearance. We analyze several of these cases in
Section 5. Despite these differences we show that our method enables
several novel applications:

Neighborhood visual boundaries. We identify the visual boundary
of neighborhoods from a set of sparse user-provided labels of areas
inside and outside the neighborhood.

Attribute-sensitive wayfinding. We generate walking paths through
the city that either maximize or minimize a user’s exposure to a
particular attribute. For example, a user might generate a path that
passes through an area of high housing values.

Validating user-specified visual elements for prediction. We let users
specify meaningful visual elements and then check how well those
elements predict city attributes. For instance, users might test whether
a visual element representing bars on windows is predictive of high
crime areas.

2 RELATED WORK

Relationships between visual appearance and non-visual city attributes
have been studied in a number of fields including urban planning, so-
ciology and epidemiology. While Broken Windows Theory [42, 48],
which suggests that neighborhood decay correlates with higher crime
rates, is a well-known example, others have examined how city ap-
pearance relates to attributes like obesity rates [14], cases of depres-
sion [26], and sexually transmitted disease rates [10]. Although re-
searchers have shown that relationships between visual appearance
and city attributes exist, they have had to rely on manual inspection
either by the authors themselves or more recently via crowdsourc-
ing [38, 36]. In contrast, our method relies only on a set of measure-
ments of a city attribute and an associated set of street-level images.

Researchers have also analyzed the relationship between discrim-
inative visual elements and the unique visual appearance of cities.
For instance, Doersch et al. [13] find the distinctive visual aspects of
Paris compared to London. Fouhey et al. [17] use a similar approach
for computing visual elements for indoor scenes. Our approach also
builds on Doersch et al. [13], but relates the visual elements to non-
visual city attributes.

Several other works this year, all developed concurrently, consider
the relationship between the visual appearance of cities and city at-
tributes such as wealth, safety, beauty, quiet and proximity to specific
types of landmarks [35, 34, 1, 23], as well as the relationship between
city appearance and city identity [49, 3]. All these methods operate on
the scale of an entire street-level image (or panorama), whereas we aim
to model the visual appearance of a city at a finer, image patch scale.
This gives us the advantage of being able to visualize the specific parts
of the image that are most related to a given attribute.

Several techniques use image-based data sources other than street-
level panoramas to detect physical attributes of cities. Aerial and
street-level LIDAR has been used to detect trees [39], water and
ground coverage [7], roads [6], and buildings [37]. Video is com-
monly used to categorize traffic in cities [24, 44] as well as to track
crowds for the purposes of detecting flow patterns, anomalous behav-
ior, etc [21, 30]. Although these techniques often produce very accu-
rate results, the availability of these sources of image data is a limiting
factor in most cities. In contrast our method relies on street-level im-
ages, one of the most ubiquitous and rapidly growing sources of data
available today.

Our prediction algorithm uses non-linear Support Vector Regres-
sion [5, 43] which has been applied in a number of different fields in-
cluding graphics for 3D pose estimation [2] and image restoration [28].
It has also been used to learn how visual style changes over time [27].

Fig. 3: Our predictor finds that visual elements corresponding to hedges (top),
gable roofs (middle), and tropical plants (bottom) are related to high housing
prices in San Francisco.

3 METHOD

Our goal is to construct a predictor that can estimate the value of a
non-visual city attribute based on visual appearance. Given a set of
measured (location, attribute-value) pairs and a set of (location, street-
side panorama) pairs, we build predictors in three steps:

1. We spatially interpolate the input (location, attribute-value) data
to obtain attribute values over the entire city.

2. We modify the technique of Doersch et al. [13] to build a bank of
Support Vector Machines (SVMs) [5] that detect visual elements
in the panoramas that are discriminative of the attribute.

3. We build an attribute predictor from the resulting bank of SVMs
using Support Vector Regression (SVR) [43].

We consider each of these steps in turn.

3.1 Interpolating Non-Visual City Attribute Values

Although our input data consists of (location, attribute-value) pairs and
(location, panorama) pairs, the locations of the attribute values may
not coincide with the locations of the panoramas. But, in order to train
the visual element detector SVMs and then train the attribute predic-
tor we require a set of locations for which both the attribute-values
and panoramas are available. Thus, we use radial basis functions
(RBF) [31] to spatially interpolate the input set of (location, attribute-
value) data. Specifically we use the inverse multiquadric function

G —_—)
l—i—(Er)2

as the radial basis function, where r is the Euclidean distance between
locations and € is a parameter that controls falloff. We have found that
this basis function produces a smooth interpolation and is relatively
insensitive to € compared to other basis functions. We have found that
setting € = 2 works well in practice.

3.2 Constructing the Visual Element Detectors

In this work we model visual appearance using visual elements. We
define a visual element as a set of image patches that have a visually
consistent appearance. In Figure 3 for instance, the visual elements
predictive of the housing prices city attribute in San Francisco includes
rows of image patches containing hedges (top) gable roofs (middle)
and tropical plants (bottom).

Doersch et al. [13] recently presented a method for constructing a
bank of SVMs that can detect visual elements that are discriminative
of a binary positive/negative location-based attribute (e.g. in-Paris vs.
not-in-Paris) based on the method of Singh et al. [41]. To train the
SVMs they require a set of locations and their associated street-level
panoramas that are labeled as positives and another set labeled as neg-
atives. To apply their method on our continuous-valued city attribute
data we first threshold our attributes to form a positive set and a neg-
ative set based on the mean and standard deviation of the attribute
values. For instance, if our attribute is housing price we might de-
fine positive/negative sets as locations (and corresponding panoramas)

where the attribute value is greater/less than one standard deviation
above/below the mean housing price.

Doersch et al. have shown that a set of about 10,000 street-
level images with 2,000 positives and 8,000 negatives is sufficient to
train SVMs that can detect discriminative visual elements. The pos-
itive/negative imbalance is meant to ensure there are enough nega-
tive examples to cover the larger variation of visual appearance that
may occur in a negative set. To build the positive/negative sets for
our continuous-valued attributes we sample the (location, attribute-
value) pairs using the RBF interpolated attributes (Section 3.1) as
the sampling distribution. This sampling strategy ensures that posi-
tive samples are likely to be drawn from the locations where the at-
tribute is most positive and the same for the negative samples. We use
the inverse cumulative distribution sampling method [8] to generate
these samples. Finally, we associate the closest street-level panorama
with each (location, attribute-value) sample. However, if the near-
est panorama is more than 5 feet from the sample location we reject
the sample. The result of this process is a (location, attribute-value,
panorama) triplet for each sample in our training set.

To build the SVMs we must first generate image features for each of
the panoramas in the training set. We extract the image features from
perspective projections of Google StreetView panoramas. However,
each such panorama provides a complete 360° field of view and pro-
jecting such a wide field-of view panorama into a rectangular image
will introduce huge distortions. Therefore we project each panorama
at 20° intervals across the entire azimuthal range from 0° to 360° and
from —10° to 30° in the elevation angle also in steps of 20°. In all of
our experiments we used a field of view of 30°. This gives us an over-
lap of 10° between successive projections maximizing the chance that
every object appears whole in at least one projection. We then scale
each projection to 400x400 and for each patch, over multiple scales,
we extract a single image feature using the HOG+color [11] descriptor
similar to Doersch et al. This produces images features of dimension
2112.

We briefly summarize the steps we perform to build the bank of
SVMs for detecting discriminative visual elements from the training
data (see Doersch et al. [13] for complete details).

1. Extract the set of image features in each panorama projection in
the positive and negative sets.

2. Randomly sample image features from the positive set and com-
pute their 100 nearest neighbors across both the positive and neg-
ative sets.

3. Compute an SVM for each nearest neighbor set that separates the
nearest neighbor set from all other image features in the positive
and negative sets.

4. Refine the SVMs using three iterations of the hard negative min-
ing technique of Felzenszwalb et al. [15].

‘We sort the resulting SVM visual element detectors based on how well
they can discriminate the positive set from the negative set and keep
the top K, where K = 100 in our implementation. Given an image fea-
ture extracted from a panorama, each SVM produces a continuously-
valued score for that feature. Positive scores indicate that the image
feature is similar to the visual element that SVM is designed to detect.
Note that the SVMs do not predict attribute values directly, they can
only determine whether a visual element is present in an image.

3.3 Computing the Predictor

City attributes are most likely represented by a combination of many
visual elements, not merely the presence or absence of a single visual
element, so a direct application of the method of Doersch et al. [13]
is not possible. Therefore we build our predictors by learning a set of
weights over the set of scores produced by our bank of visual element
SVM detectors. The simplest approach for learning these weights is to
build a linear regressor between the SVM scores and the correspond-
ing attribute values. But in practice we have found that the relationship
between SVM scores and attribute values is rarely linear. Instead, we

use the more flexible technique of non-linear Support Vector Regres-
sion (SVR) [43].

In SVR, the goal is to find a function that approximates a set of
training outputs y; given a set of training input vectors x;. In our case,
given a training set of (location, attribute-value, panorama projection)
triplets we treat the attribute-value as the output y; and we treat the
SVM detector scores as the input x;. Specifically for each triplet in the
training set we build a score vector for each panorama as follows:

1. We extract a set of 7,700 image features from each panorama
projection (every projection is the same size and thus produces
the same number of features).

2. We compute SVM scores for each of the resulting image features
using the bank of 100 SVMs we constructed in Section 3.2.

3. We retain the top 3 detection scores that each of the 100 SVMs
was able to achieve across all of the image features in the
panorama.

This procedure leaves us with a 300-element SVM score vector for
each panorama, which we treat as the input vector X;.

SVR parameterizes the functions that approximate the y;’s given the
xi’s as f(x;) = w- ¢ (x;) + b, where ¢ (x;) is a (possibly non-linear)
map on the x;’s, w is a set of weights and b is bias term. The goal of
SVR is to learn the parameters (w,b) that are as compact as possible
while minimizing the loss of a particular parameterization (w,b) in
predicting the training outputs y;. This loss is defined as:

Le (yi, (xi,b)) = max (|y; — f (x;) | — €,0))

where € controls the magnitude of error that we can tolerate in our
fitted model. Any y; that are within a distance € of the fitted model
are considered equally well approximated. We set € = 0.1 in all of
our experiments. A compact model is defined as having the fewest
number of degrees of freedom in the feature space as possible. Hence,
the objective in SVR is to minimize the L, norm of w subject to the
constraints imposed by the loss function.

An important detail in SVR is the selection of the map ¢, which
transforms the input points into a higher dimensional space enabling
non-linear regression. This map ¢, is usually defined with respect to a
kernel function K (x[,x j) that operates on pairs of training inputs. We
considered three different forms of K:

Linear: K (Xi,Xj> = XzTXj
d
Polynomial: K (x;,x;) = (YXiTXj+r)
Gaussian: K (x;,x;) = exp (—YHXz‘ - Xj||2)

All of our experiments use the Gaussian kernel with 7y equal to 1/D,
where D is the number of dimensions of the training vectors x;. In
our case D = 300 — the size of the SVM score vectors. The resulting
predictor is designed to take any street-level panoramic image as input,
compute its SVM score vector and then estimate the corresponding
attribute value.

We use 1ibsvm [9] with its default settings to apply the SVR and
to compute predictions for new images.

4 VISUAL PROCESSING FRAMEWORK

Computing the support vector machines (SVM) via the method de-
scribed in Section 3.2 requires performing a number of compute- and
data-intensive operations. In our experiments the input to the al-
gorithm is a set of 10,000 Google StreetView panorama projections
(2,000 positives, 8,000 negatives), each of which is 640x640 pixels.
Every image contributes 7,700 image features, each of which is com-
prised of 2112 floating-point numbers resulting in about 650GB of
image data that we must process. In addition, the hard negative min-
ing algorithm required to build the bank of SVMs performs several
computation iterations before converging, each of which can require
upwards of 26GB to be processed and produces around 2GB of new
data.

To compute predictions of city attributes in new cities we apply a
bank of 100 SVMs and compute detections for all of the associated vi-
sual elements in every street-level panorama projection in the city. The
number of panoramas in a single city varies from 30,000 to 170,000,
each of which has a resolution of 5324x2867, resulting in up to 2.5TB
worth of data that must be processed.

In order to efficiently train the bank of SVMs that detect visual
elements and compute predictions of city attributes across an entire
city efficiently, we developed a distributed visual processing frame-
work. We implemented our framework in C++ and we use the C
Message Passing Interface (MPI) library [19] as our communication
interface. This provides a considerable efficiency improvement
over the implementation of Doersch et al. [13] which uses MAT-
LAB and relies on a shared filesystem for communication. Our
framework assumes that all inputs and outputs are expressed as matri-
ces and that the rows/columns of an output matrix are updated only
once. These assumptions enable a number of implementation features:

Scheduling. Our restriction that all variables must be expressed as
matrices allows us to split inputs by columns or rows and iteratively
process them on different compute nodes in parallel. When the output
of a node is available, the system updates the output matrix accord-
ingly and requeues the node with a new set of input rows/columns. By
executing jobs iteratively in this manner, slower nodes receive fewer
rows/columns and inefficient or malfunctioning nodes can be removed
altogether. Thus, the total execution time of a job is not bound by the
slowest node.

Checkpointing. Output matrices that are partially completed are
periodically saved to disk and can be reloaded if a failed job is
restarted.

Caching. Variables that need to be repeatedly sent to processing
nodes within a single job and across jobs can be flagged to be cached
on the nodes’ local filesystems. For large data that remains the same
across jobs or across a single job (e.g. a list of all of the images being
processed with their associated metadata), the framework can instruct
the nodes to load the variables from their local cache rather than
re-transferring them.

Partial variables. The assumption that the rows/columns of an output
matrix are updated only once enables us to significantly reduce the
memory footprint of our jobs. We save partially completed blocks of
large output matrices to disk as they finish, which avoids having to
keep them in memory.

We have deployed our framework on a local heterogeneous 38 core
cluster, the Texas Advanced Computing Center supercomputers Lon-
estar and Stampede, and on Amazon’s Elastic Compute Cloud. With
our efficiency features, our framework can compute the SVMs via the
visual element extraction technique (Section 3.2) for a single city at-
tribute in about 3.75 hours on the Stampede supercomputer using 48
effective cores (181 CPU hours). This is a 9.9x speedup compared
Doersch et al. [13]. This speedup allows us to apply our city forensics
data-mining approach to analyze a diverse set of city attributes and
check for correlations with visual appearance. We can compute pre-
dictions over an entire city of 170,000 panoramas (the largest set we
have) in 272 CPU hours, or about 1.7 hours on the Stampede super-
computer using 160 effective cores. Our framework has been released
and is available online atht tp: //github.com/ucb-silicon/
cesium.

5 RESULTS

We analyzed the performance of our city attribute predictors in esti-
mating the value of the following city attributes in 6 American cities
where available:

SF Housing Prices CHI Housing Prices BOS Housing Prices SF Thefts CHI Thefts BOS Thefts
- ! 7:—/42
Vs Z
,,/
// ,/'/
05 / / 0s / //
4 "/'
/ 7 V7,
Y/ 4 F
2
0 0
0 0.5 1 [0.5 1
San Francisco Chicago Boston _ Seattle Philadelphia San Francisco Chicago M_ Seattle Philadelphia

San Francisco 0.712 0495 0493 0631 0615 0592 San Francisco 0.772 0639 0653 0.625 0616 0597

Chicago 0.584 0.647 0577 0571 0.545 0.650 Chicago 0.760 0.798 0.652 0.660 0.650 0599

Boston 0.599 0.542 0815 0472 0.444 0.722 Boston 0.694 0629 0.779 0.621 0.598 0575

Mech. Turk 0.264 0368 0383

Fig. 4: The ROC curves and the area under those curves for the housing price Normalized by Population
attribute show an interesting phenomenon. Although Boston and Philadelphia San Francisco 0892 0772 0658 0651 0628 0682
have a similar visual appearance related to housing prices, San Francisco does Chicago 0.760 0812 0635 0595 0642 0.658
not generalize well to these cities Boston 0.696 0671 0618 0.565 0.586 0620

e Violent crime rate. We used the past year’s worth of data from
CrimeMapping.com or CrimeReports.com (depending on avail-
ability) of occurrences of assault, homicide, or robbery. We also
consider the violent crime rate normalized by population den-

sity.

o Theft rate. We used the past year’s worth of data from
CrimeMapping.com and CrimeReports.com of occurrences of
theft (does not include robbery). We also consider the theft rate
normalized by population density.

e Housing prices. We used prices of homes sold in the past three
years according to the online real estate company Zillow.

e Population density. We used population estimates from the 2010
Census normalized by the area of the associated Census Block.

o Tree presence. We used locations where people noted trees
larger than 70 centimeters via the website UrbanForestMap.org,
which was only available for San Francisco.

e Graffiti presence. We used reports of graffiti submitted to the
311 websites of San Francisco, Chicago, and Boston.

e Perception of danger. We deployed a Mechanical Turk ex-
periment asking workers to examine a series of 15 Google
StreetView panoramas from San Francisco, Chicago, or Boston
and “decide based on the image alone whether [they] would feel
safe in the area or not at any time of day.” We tested a total of
about 500 panoramas per city. For each image we averaged the
responses of 10 workers to determine the attribute value.

Many of these sources do not provide real-valued attribute data.
Crime data, for example, is only available as individual occurrences
of theft, robbery, homicide, etc. To convert these discrete measure-
ments into continuous rates we use the interpolation scheme described
in Section 3.1. This step is necessary for violent crime, theft, tree
presence, and graffiti presence.

In all cases where data was available we trained predictors in San
Francisco, Chicago, and Boston and tested the predictors in San Fran-
cisco, Chicago, Boston, Oakland, Philadelphia, and Seattle.

5.1 Analysis of Prediction Accuracy

Figures 4-6 present quantitative accuracy results for our attribute pre-
dictors. Each entry in the tables represents the area under the receiver
operating characteristic (ROC) curve for a predictor trained in one city
(rows) and tested in another city (columns). Additional ROC curves
and their associated tables are available in the supplemental materials.
Note that when the training and test cities are the same we ensure that
the set of (location, attribute-value, panorama) triplets used for testing
are completely disjoint from the sets of triplets used to train the visual
element detectors (Section 3.2) as well as the sets of triplets used in
the SVR training (Section 3.3).

Fig. 5: For the theft rate attribute we compare the accuracy of our predictors to
human predictions obtained via Mechanical Turk. We showed workers panora-
mas of San Francisco, Chicago, and Boston and asked whether they “would feel
safe at all times of the day”. On average our theft rate predictors are about 33%
more accurate than humans. We also compare to population-normalized theft
rates, which perform 5%-10% better in most cases. The increase in accuracy
is a result of factoring out the correlation between theft rates and population
density.

Violent Crime

San Francisco Chicago Boston _ Seattle Philadelphia
San Francisco 0.734 0.608 0.580 0.644 0.634 0519
Chicago 0.650 0.636 0.616 0.591 0.604 0.596
Boston 0.552 0.563 0.662 0.539 0.556 0.574
Violent Crime (Normalized by Population)
San Francisco Chicago Boston! Seattle Philadelphia
San Francisco 0.893 0.700 0.653 0.611 0.721 0.593
Chicago 0.722 0712 0.607 0.573 0.640 0.584
Boston 0.644 0.605 0.602 0.611 0.552 0.588
Population Density
San Francisco Chicago Boston _ Seattle Philadelphia
San Francisco 0.896 0.668 0.689 0.645 0.604 0.819
Chicago 0.644 0.767 0.600 0.584 0.586 0.658
Boston 0.684 0.607 0.762 0.602 0.567 0.745
Graffiti Perception of Danger
San Francisco Chicago Boston San Francisco Chicago Boston
San Francisco 0.682 0.553 0.615 0.748 0.526 0.589
Chicago 0.482 0.559 0.550 0.513 0.823 0.629
Boston 0.569 0.496 0.686 0.570 0.602 0.756

Fig. 6: Each table contains the area under the ROC curves for one of the city
attributes we considered. Cities used to train predictors are noted in the first
column and testing cities are noted in the first row. In most cases our predictors
are more accurate than random classification (0.5).

The ROC curve is defined as the relationship between the true pos-
itive rate (TPR) and the false positive rate (FPR) of a binary classifier.
A value of 0.5 indicates that the classifier is not discriminative at all
i.e. its accuracy is equivalent to that of a random classifier, regard-
less of the prior distribution on positives and negatives. Anything be-
tween 0.5 the maximum area of 1.0 is considered discriminative [20].
To compute the area under the ROC curves for our predictors we first
build ground truth estimates for each of the attributes the same way we
generate the positive and negative sets when we construct visual ele-
ment detectors (Section 3.2). We convert our real-valued attribute pre-
dictions into binary classifications and compare to ground truth while
varying a positive/negative cutoff threshold. To produce the curves we
varied this threshold from O to 1 and computed the TPR versus FPR
for each threshold value.

For most of the city attributes we tested, the area under the ROC
curves for the intra-city predictors (diagonals in tables) was above
63% with several of the predictors achieving above 77% accuracy. The

Imic

| C RIS
il I II- -

Fig. 7: The visual elements that are predictive of graffiti in Chicago do not
contain actual examples of graffiti. Since we train our predictor on reports of

graffiti, our predictors are modeling the relationship between visual appearance
and the likelihood that graffiti will be present, not graffiti itself.

best result was for housing prices in Boston, which was 82% accurate
(Figure 4). The only intra-city predictor to perform worse than 63%
was the graffiti predictor for Chicago which attained only 56% accu-
racy. Although there is a strong relationship between visual appear-
ance and actual graffiti, the training data we provided to the system
does not necessarily contain examples of actual graffiti —it only con-
tains locations where graffiti has been reported. Figure 7 shows the
visual elements for the graffiti predictor trained in Chicago. None of
these visual elements contain examples of graffiti. Rather the visual
elements capture the appearance of areas where graffiti is likely to
be observed (e.g. brick walls, window styles associated with specific
neighborhoods, and street lights). Instead we are learning a relation-
ship between visual appearance and locations where graffiti is likely
to be found, and we find that this relationship not very predictive. That
is, in Chicago graffiti occurs in many visually diverse places.

While the results of the cross-city predictions show a range of
performance, more than half of the predictors are more than 60%
accurate. Some notable results are the San Francisco population
density predictor in Philadelphia (82%), the Chicago theft predictor
in San Francisco (76%), and the Boston housing price predictor in
Philadelphia (72%). The last case (Figure 4) illustrates an interesting
phenomenon. Boston and Philadelphia are spatially close and share
a similar architectural history, so it is not surprising that a housing
prices predictor trained in Boston performs well in Philadelphia.
However, the accuracy of the San Francisco housing prices predictor
is relatively low in Boston and Philadelphia, having approximately
the same accuracy as a random predictor. This result also makes
sense considering the large differences in their respective histories
and architectural styles. In fact, brick buildings, which are indicative
of high housing prices in Philadelphia and Boston (Figure 8), are
no longer allowed to be built in San Francisco due to earthquake
concerns. Visual elements for all the attributes we analyzed are
available in the supplemental material.

Normalized versus Non-Normalized Crime Rate Predictors.
Normalized crime rate predictors relate visual appearance to the
likelihood that an individual will be a victim of crime. In contrast,
non-normalized crime rate predictors relate visual appearance to the
likelihood of a crime occurring. Thus, without normalization, the
resulting predictors are correlated with population density; there
are more crimes where more people live. When we factor out the
population density for violent crime rates and theft rates, we see a
5%-10% increase in the accuracy of our predictors in almost all cities
(Figures 5, 6).

Comparisons to Human Prediction Accuracy. We compare the accu-
racy of our theft rate predictors to human performance using the data
we collected using Mechanical Turk on the perception of danger. As
shown in Figure 5 we compare the human danger ratings to the ground
truth for theft rates to produce the yellow ROC curves. For San Fran-
cisco, Chicago, and Boston Mechanical Turk workers could predict
theft rates with 26%—-38% accuracy, whereas our predictors are 63%-
80% accurate in these cities. On average our predictors outperform
humans by 33%.

One potential reason for the low accuracies of some of our predic-
tors is that ground truth attribute data may be incorrect. For example
data collected about the presence of trees may be out of date. To assess
such inconsistencies, we evaluated the performance of our predictions
on the presence of trees in San Francisco with respect to our ground
truth data and to data generated by humans. We asked Mechanical
Turk workers and Facebook friends to decide whether a set of street-
level images contained “at least 50% of a single tree”. We tested 1000
images of San Francisco and an average of 10 people marked each
image. Our prediction accuracy compared to our ground truth was
75%, but increased to 81% when we considered the human-derived
ground truth. (See supplemental materials for a comparison of the
ROC curves.) Unfortunately determining ground truth for non-visual
city attributes is a difficult process as humans are often inaccurate at
predicting such attributes from visual appearance as we discovered in
the comparison of our theft predictor to human perception of danger
(Figure 5).

5.2 Prediction Maps

Figures 1, 2 and 8 show how we can use our predictors to generate
predicted attribute maps for an entire city. The first column shows our
interpolated predictions using a predictor trained in the city noted in
parentheses. The second column shows a map of the ground truth at-
tribute values for the test city. We show some of the visual elements
that are related to the attributes in column 3. The final column shows
some example panoramas from the testing cities corresponding to lo-
cations denoted in our prediction maps in column 1.

While our predicted attribute maps do not always agree with the in-
terpolated ground truth maps, there is significant overlap. Some of the
inconsistencies between the maps are a by-product of the assumption
that visual appearance is always related to non-visual attributes. For
instance, in the Philadelphia housing price maps (second row in Fig-
ure 8) there is a large section near the 2 marker that we have predicted
to have low housing prices, but ground truth indicates this is an area
of high housing prices. Indeed the corresponding panorama does not
have the visual appearance of a high housing price area. The discrep-
ancy between our predictions and ground truth likely occurs because
there is not a clear link between visual appearance and housing prices
in this case.

Another interesting example we found is for theft rates in Chicago
(top row). Although both of the panoramas from the marked areas
exhibit a relatively non-threatening appearance and are from shopping
districts in downtown Chicago, our San Francisco predictor indicates
the theft rate is high. While at first these panoramas do not seem to
have the visual appearance of high theft rate areas, the ground truth
data indicates that our predictions are correct.

5.3 Deep Convolutional Neural Network Features

Recent work has shown that classification and recognition algorithms
that use features extracted from a deep convolutional neural network
can outperform HOG features [40, 18]. We have conducted initial ex-
periments replacing the HOG+color features described in Section 3
with deep convolutional features generated using Caffe [22]. Specif-
ically, we used the fifth convolutional layer of the Caffe ImageNet
model as our features. Each such feature contains 2304 dimensions.
The rest of the algorithm — multi-scale sliding window feature extrac-
tion, SVM training, etc — was kept exactly the same.

Figure 9 shows that the Caffe features produce visual elements that
capture higher-level aspects of visual appearance, but are less visu-
ally consistent than those generated using HOG+color features. For
instance, the image patches for the first visual element (top row) for
San Francisco violent crime rate (normalized by population) are all
instances of signs but vary in color, orientation, and font. Likewise,
the patches for the second visual element (bottom row) for San Fran-
cisco housing prices contain white buildings with tall slender windows
in various orientations, but sometimes contain greenery. Finally, the
first visual element (top row) for reports of graffiti in San Francisco is
comprised of textured image patches some of which are examples of
graffiti (patches 4, 5, 7). As shown in Figures 1, 3, 7, 8, 10, 11, 12,

Predicted Attribute

Discovered Visual Elements

Panoramas from Test City

Fig. 8: Our predictors are general enough to predict the value of city attributes in test cities using predictors computed in training cities. Our method closely
matches the ground truth attribute values in the test cities in most cases. Our predictors detect a set of visual elements in each panorama in the test cities and
combine the detection scores of these elements into a single prediction of the attribute value. Errors can occur when the value of a city attribute is not directly
related to visual appearance as in the case of housing prices in Philadelphia (second row). In this case the panorama in Philadelphia at location 2 does not have
the visual appearance of a high housing price area, but the ground truth indicates that it is.

the visual elements generated using HOG+color features are more vi-
sually consistent, but capture less of the semantics of city appearance.

Quantitatively comparing the accuracy of the Caffe features to
HOG-+color features we obtain mixed results. For instance, while the
San Francisco housing prices predictor trained with Caffe features is
14% better (63.8% versus 49.5%) in Chicago, the graffiti predictor
with Caffe features predicts reports of graffiti in Chicago with 9.6%
less accuracy (47.4% versus 56.9%). In ongoing work we are explor-
ing techniques to combine the advantages of both types of features to
take advantage of the strengths of each one.

6 APPLICATIONS

‘We have implemented three applications that use our predictors to pro-
vide estimates of city attributes.

6.1 Defining Visual Boundaries of Neighborhoods

City neighborhoods often have a unique visual appearance. Although
city governments impose their own definitions of the boundaries of
neighborhoods, understanding the visual boundary of a neighborhood
is often useful for tourists, marketers, prospective home buyers, etc.
We developed a prototype application that can determine the visual
boundary of neighborhoods from a sparse set of user inputs.

We require a user to “paint” regions of a city defining areas that
are definitely part of a neighborhood and areas that are definitely not.
For instance, in Figure 10 a user has painted an area of San Fran-
cisco inside the Mission neighborhood (red) and an area outside the
Mission (blue). We use the paint strokes to define the positive and
negative sets that are used to train our predictors. To determine the
visual boundary of the neighborhood, we compute predictions on ev-
ery panorama between the two user-defined paint strokes (first column
in Figure 10). Note that the visual elements used by the predictor
(third column in Figure 10) capture the unique visual appearance of

the Mission including, Victorian homes with bayview-style windows,
metal gates and bars on the fronts of homes, dilapidated signs, and
bike lanes.

Our boundaries show better agreement with the actual appearance
of the Mission neighborhood than the “ground truth” boundary, which
we computed as the union of the boundaries defined by the San
Francisco local government, realtor association, and from the analysis
of Wahl and Wilde [47]. For instance, in the region marked 1 in
both maps, the corresponding panorama (top right) looks much more
industrial than the classic Victorian/Edwardian look of the Mission
(bottom right). Our prediction map correctly leaves the location
outside the boundary of the Mission, whereas the traditional ground
truth neighborhood map includes it.

Personalized Attribute Explorer. Although in this example we showed
a user specifying regions that define a neighborhood, this idea can be
generalized. Given a set of user-defined locations in a city, we can
generate a personalized attribute predictor that would enable the user
to find other locations with a similar visual appearance. We believe
a system like this would be useful for exploring new areas of cities
without forcing users to verbally define exactly what they find visually
interesting.

6.2 Attribute-Sensitive Wayfinding

Traditional navigation systems compute routes between two user-
specified locations in a city that minimize the total distance traveled.
But specific user groups such as tourists, urban hikers, and consumers
often may want to compute routes between locations in a city that
avoid or seek out certain city attributes, rather than finding the short-
est/fastest route. For instance, a tourist who is unfamiliar with the
downtown area of Chicago might want to avoid areas of high theft rates
while walking between two locations in the area even if that means

. . SF Violent Crime
SF Housmg Prices (Normalized by Population)

SF Graffiti

San Francisco Chicago Boston
SF Violent Crime 0.891 0.685 0.690
SF Housing Prices 0.695 0.638 0.573
SF Graffiti 0.608 0.474 0.622
Fig. 90 When we use deep convolutional network features instead of

HOG-+-color features the resulting visual elements are able to capture more of
the semantics of city appearance, but are less visually consistent. In addition,
although the new features provide a slight increase in accuracy in some cases
(e.g. housing prices in Boston), we also observe large decreases (e.g. violent
crime predictions in San Francisco).

walking for a slightly longer period of time.

Given a user-specified city attribute and a city to compute routes
in, we first model the city’s connectivity as a set of nodes in a graph,
where each node corresponds to a single street-level panorama in the
city and is connected to all other nodes that can be reached via the
actual road network. We treat each prediction of the city attribute as
a weight on the corresponding node and use Dijkstra’s shortest path
algorithm [12] to compute the attribute-sensitive route in realtime as
the user adjusts the importance of avoiding or seeking out the attribute.

In Figure 11 we show an example of our system being used to gen-
erate a walking route that avoids high theft rates in downtown Chicago.
A typical route (green) simply optimizes for the total travel distance,
but passes through an area where a large number of thefts have been re-
ported (red circles in second column). Our predictions correctly avoid
this path and instead route the user through a lower theft rate area. In
this case, we used a predictor of theft rates trained in San Francisco
to compute the predictions, highlighting the novelty of our predictors’
ability to generalize to cities not used during training.

In the last two columns of Figure 11 we see that the predictor is
avoiding the green path because it passes through an area with high-
density buildings and areas where people are likely to be passing
through quickly (parking meters indicate no long-term visits). In con-
trast, our theft-avoiding route passes through less dense areas of the
downtown area where there are parks and wide-open spaces; places
where successfully committing a theft is less practical.

It is possible to combine this approach with the Personalized At-
tribute Explorer discussed at the end of Section 6.1 to create a system
for finding routes that pass through visually interesting areas as de-
fined by a user. For instance, a user might paint strokes in areas that
he/she enjoys walking through, without having to specify directly what
about those areas is visually interesting. If there is a consistent visual
appearance in those areas, the resulting predictor could be used to find
other routes in the same city or routes in new cities that expose him/her

to the same visual appearance.

6.3 Validating Visual Elements for Prediction

Despite the numerous ways researchers have manually analyzed the
relationships between city attributes and visual appearance [10, 14,
26, 36, 38, 48], there is currently no automatic way to answer simple
questions like: “Does (blank) discriminate the city attribute (blank)?”.
For instance, the top row of Figure 8 indicates that things like high-
density windows, drab windows, and parking meters are predictive of
theft, but our initial intuition was that visual elements like “bars on
windows” would be more predictive.

In the top left column of Figure 12 we show 3 images containing ex-
amples of bars on windows and 3 images containing examples of high-
density windows that we hand-picked from Google StreetView images
of San Francisco. We modified our system to use patches from these
images as initial seeds for the visual elements rather than randomly
sampling patches from images of high theft-rate locations. Apart from
this modification, the predictor was trained with respect to the theft
rate attribute in San Francisco using the same method described in
Section 3.

To determine whether a user-defined visual element is discrimina-
tive of an attribute two conditions must be met: (1) the predictor must
converge on visual elements that detect patches which are visually
consistent with the seed set and (2) a high percentage of the detected
patches must come from the positive test set. Figure 12 (middle col-
umn) shows the top 3 resulting visual elements for both sets of seed
images. In both cases the visual elements satisfy condition (1); the
detections of the visual elements have a consistent visual appearance
with the seeds images. The plot on the far right of Figure 12 shows
the percentage of detections of each visual element that are from the
positive set (i.e. from panoramas where a theft occurred). Many of
the top detections of the “bars on windows” visual elements are from
the negative set, which violates condition (2). Since the plots for the
“high-density windows” visual elements show a consistently higher
percentage of detections from the positive set, they are more predic-
tive of theft rates than the “bars on windows” visual elements.

This allows us to interactively verify our intuitions about what is vi-
sually predictive of city attributes in a straightforward way. It also has
the potential to assist researchers in validating their work. Efforts like
the PlacePulse study [38] could use this system to validate whether hu-
man perception of safety is indeed visually predictive of actual safety
by providing examples to our application of perceived safe locations.

7 CONCLUSIONS AND FUTURE WORK

We present a method for automatically computing predictors of non-
visual city attributes based on visual appearance. We model visual
appearance using visual elements that are discriminative of the city
attributes. We show that there is indeed a predictive relationship be-
tween visual appearance and non-visual city attributes in a number of
cases. We also present three applications that use our predictors to
provide estimates of city attributes, demonstrating the applicability of
this work.

We imagine our predictors being used to perform what we call city
forensics. That is, we envision users investigating abstract non-visual
city attributes in more intuitive visual ways via the predictive rela-
tionships we are able to uncover. We also believe that our predictors
could be used to synthesize new content that has the visual appearance
of city attributes, which would be useful in areas like procedural city
generation [32, 33] and city simulation [4, 45].

ACKNOWLEDGMENTS

This work was supported in part by the Intel Science and Technol-
ogy Center for Visual Computing, NavTeQ, a Google Research Award,
and computing resources from XSEDE (via NSF grant 1011832), sup-
ported by NSF grant number ASC-130027. Additional equipment was
provided by Nokia and Samsung.

REFERENCES

[1] Aesthetic capital: What makes london look beautiful, quiet, and happy?
In Proceedings of CSCW 2014, 2014.

Predicted SF Mission Boundary Ground Truth Mission Boundary Discovered Visual Elements Panoramas from Test City

M Positive Strokes
|] Negative Strokes

Fig. 10: Given a user-specified set of regions that are definitely part of the Mission district of San Francisco (red strokes) and regions that are definitely not part
of if (blue strokes), our system automatically determines the visual boundary of the Mission. In addition, we can describe what the visual appearance of the
Mission is. For instance, we find that bayview windows, metal grates on doors and windows, dilapidated signs, and bike lanes are all visually discriminative of
the Mission. Our predicted boundary agrees more closely with the actual visual boundary of the Mission compared to the “ground truth” boundary.

Discovered Visual Elements

Predlcted Attribute

Ground Truth Panoramas from Test City
i —-— o

mugme. 1ottt

Fig. 11: Compared to a traditional wayfinding route (green path) our theft-avoiding route (purple path) avoids many of the occurrences of theft (red circles) present
in the downtown area of Chicago. To compute our route, we predicted the theft rate in Chicago using a predictor trained in San Francisco. The visual elements
being detected by the predictor are all associated with high-traffic pedestrian areas, which are likely targets for thieves. In contrast, the route that we compute
passes through more open areas with parks and lower foot traffic, which presents fewer opportunities to commit thefts.

Seed Images (Cropped) Visual Elements Distribution of Positives
y 7 100 T T T T

s | 4 ’ | 4 a
S 2
= / 4 =
2 y <
g 1S
g ' 4 :

l 2

c
©n Qo
5 £
s} 2
2 8t
% LU LT G
5 TTTHTT T : =3
[l ! ! 1 L
8 e ! 0 10 50
Number of Detections Considered

Fig. 12: Our system can be used to validate/invalidate whether bars on windows or high-density windows are predictive of theft. Given the user-provided set
of seed images (left) that contain examples of the visual elements, we train a predictor for city attribute “theft rate” in San Francisco using the seed images to
initialize the visual element extraction. We then compute the detections of the resulting visual elements for the predictor across the ground truth theft rate values.
The percentage of those elements from the positive set to the negative set indicate that bars on windows are significantly less predictive of theft than high-density
windows.

[2]

[3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A. Agarwal and B. Triggs. Recovering 3d human pose from monocular
images. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 28(1):44-58, 2006.

S. AlHalawani, Y.-L. Yang, P. Wonka, and N. J. Mitra. What makes
london work like london. Computer Graphics Forum (Proceedings of
SGP 2014), 33, 2014.

J. 1. Barredo, M. Kasanko, N. McCormick, and C. Lavalle. Modelling
dynamic spatial processes: simulation of urban future scenarios through
cellular automata. Landscape and urban planning, 64(3):145-160, 2003.
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, COLT ’92, pages 144-152, New York,
NY, USA, 1992. ACM.

A. Boyko and T. Funkhouser. Extracting roads from dense point clouds
in large scale urban environment. ISPRS Journal of Photogrammetry and
Remote Sensing, 66(6):S2-S12, 2011.

M. Carlberg, P. Gao, G. Chen, and A. Zakhor. Classifying urban land-
scape in aerial lidar using 3d shape analysis. In Proceedings of the
16th IEEE international conference on Image processing, ICIP’09, pages
1681-1684, Piscataway, NJ, USA, 2009. IEEE Press.

G. Casella and R. L. Berger. Statistical inference, volume 70. Duxbury
Press Belmont, CA, second edition, 1990.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1-27:27,2011.

D. Cohen, S. Spear, R. Scribner, P. Kissinger, K. Mason, and J. Wildgen.
“broken windows” and the risk of gonorrhea. American Journal of Public
Health, 90(2):230, 2000.

N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1, pages 886-893 vol. 1,
2005.

E. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269-271, 1959.

C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes
paris look like paris? ACM Transactions on Graphics (SIGGRAPH),
31(4), 2012.

A. Ellaway, S. Macintyre, and X. Bonnefoy. Graffiti, greenery, and obe-
sity in adults: secondary analysis of european cross sectional survey.
BMJ: British Medical Journal, 331(7517):611, 2005.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1 —8.
IEEE, june 2008.

A. Feuer. The Mayors Geek Squad. New York Times, March 23
2013. http://www.nytimes.com/2013/03/24/nyregion/
mayor-bloombergs—-geek-squad.html.

D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for
single image understanding. In /CCV, 2013.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard.
Parallel computing, 22(6):789-828, 1996.

J. A. Hanley and B. J. McNeil. The meaning and use of the area under
a receiver operating characteristic (roc) curve. Radiology, 143(1):29-36,
1982.

W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on visual surveillance
of object motion and behaviors. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, 34(3):334-352, 2004.
Y. Jia. Caffe: An open source convolutional architecture for fast feature
embedding. http://caffe.berkeleyvision.org/, 2013.

A. Khosla, B. An, J. J. Lim, and A. Torralba. Looking beyond the visible
scene. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Ohio, USA, June 2014.

D. Koller, J. Weber, and J. Malik. Robust multiple car tracking with
occlusion reasoning. In J.-O. Eklundh, editor, Computer Vision ECCV
"94, volume 800 of Lecture Notes in Computer Science, pages 189-196.
Springer Berlin Heidelberg, 1994.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25, pages 1106-1114, 2012.

[26]

[27]
(28]

(29]

(30]

(31]

(32]

[33]

[34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]
[47]
(48]

[49]

C. A. Latkin and A. D. Curry. Stressful neighborhoods and depression:
a prospective study of the impact of neighborhood disorder. Journal of
Health and Social Behavior, pages 34—44, 2003.

Y. J. Lee, A. A. Efros, and M. Hebert. Style-aware mid-level representa-
tion for discovering visual connections in space and time. ICCV, 2013.
J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image
restoration. Image Processing, IEEE Transactions on, 17(1):53-69, 2008.
V. Mayer-Schonberger and K. Cukier. Big Data: A Revolution that Will
Transform how We Live, Work, and Think. Eamon Dolan/Houghton Mif-
flin Harcourt, 2013.

S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler.
Tracking groups of people. Computer Vision and Image Understanding,
80(1):42 — 56, 2000.

C. A. Micchelli. Interpolation of scattered data: distance matrices and
conditionally positive definite functions. Springer, 1984.

P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural
modeling of buildings. ACM Trans. Graph., 25(3):614-623, July 2006.
P. Miiller, G. Zeng, P. Wonka, and L. Van Gool. Image-based procedural
modeling of facades. ACM Trans. Graph., 26(3):85, 2007.

N. Naik, J. Philipoom, R. Raskar, and C. Hidalgo. Streetscore-predicting
the perceived safety of one million streetscapes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, pages 779-785, 2014.

V. Ordonez and T. L. Berg. Learning high-level judgments of urban per-
ception. In Proceedings of 13th European Conference on Computer Vi-
sion, 2014.

D. Quercia, N. O’Hare, and H. Cramer. Aesthetic capital: What makes
london look beautiful, quiet, and happy? In The 17th ACM Conference
on Computer Supported Cooperative Work and Social Computing, Balti-
more, Maryland, USA, 2014. ACM.

F. Rottensteiner and C. Briese. A new method for building extraction
in urban areas from high-resolution lidar data. International Archives
of Photogrammetry Remote Sensing and Spatial Information Sciences,
34(3/A):295-301, 2002.

P. Salesses, K. Schechtner, and C. A. Hidalgo. The collaborative image
of the city: Mapping the inequality of urban perception. PLoS ONE,
8(7):e68400, 07 2013.

J. Secord and A. Zakhor. Tree detection in urban regions using aerial lidar
and image data. Geoscience and Remote Sensing Letters, IEEE, 4(2):196
—200, april 2007.

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
Overfeat: Integrated recognition, localization and detection using convo-
lutional networks. CoRR, abs/1312.6229, 2013.

S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level
discriminative patches. In Computer Vision—-ECCV 2012, pages 73-86.
Springer, 2012.

W. G. Skogan. Disorder and decline: Crime and the spiral of decay in
American neighbourhoods. University of California Pr, 1990.

A. Smola and B. Scholkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199-222, 2004.

S. Srinivasan, H. Latchman, J. Shea, T. Wong, and J. McNair. Airborne
traffic surveillance systems: video surveillance of highway traffic. In Pro-
ceedings of the ACM 2nd international workshop on Video surveillance
& sensor networks, pages 131-135. ACM, 2004.

P. M. Torrens and A. Nara. Modeling gentrification dynamics: A hybrid
approach. Computers, Environment and Urban Systems, 31(3):337-361,
2007.

A. M. Townsend. Smart cities: Big data, civic hackers, and the quest for
a new utopia. WW Norton & Company, 2013.

B. Wahl and E. Wilde. Mapping the world... one neighborhood at a time.
Directions Magazine, 2008.

J. Q. Wilson and G. L. Kelling. Broken windows. Atlantic monthly,
249(3):29-38, 1982.

B. Zhou, L. Liu, A. Oliva, and A. Torralba. Recognizing city identity via
attribute analysis of geo-tagged images. In Proceedings of 13th European
Conference on Computer Vision, 2014.

