
AUDIO ANALOGIES: CREATING NEW MUSIC FROM AN EXISTING
PERFORMANCE BY CONCATENATIVE SYNTHESIS

Ian Simon
University of Washington

Sumit Basu
Microsoft Research

David Salesin
Microsoft Research

Maneesh Agrawala
Microsoft Research

ABSTRACT

This paper describes a method for creating new music by
concatenative synthesis. Given a MIDI score and an au-
dio recording of an example piece of monophonic music,
our method synthesizes audio to correspond with a new
MIDI score. The algorithm we use is based on concate-
native synthesis, commonly used for generating speech.
Two versions of our algorithm are explored, one in which
individual notes from the example piece are concatenated,
and one in which pairs of adjacent notes from the example
piece are concatenated. We examine the range of exam-
ple pieces and target scores for which each version of our
algorithm yields good results. Our underlying framework
remains general enough to be applicable to other prob-
lems, such as rendering a stylized version of the target
score, and other types of sound analogies.

1. INTRODUCTION

Techniques for synthesizing sound can be split into two
categories of approaches. Model-based synthesis uses a
recipe for creating sound from scratch, and generates new
waveforms with different qualities by modifying the pa-
rameters in the recipe. Concatenative synthesis instead
uses a database of existing sound, divided into units, and
generates new waveforms by placing these units in a new
sequence.

Our system, which we call Audio Analogies (Figure 1),
provides a convenient method for controlling the creation
of new sounds. Given an example pair (A, A′) specify-
ing the desired creation mechanism, we apply this mech-
anism to new input B to produce output B′. Although the
framework is general enough to handle a wide variety of
operations, we have currently only explored the case in
which A and B are MIDI scores, and A′ is a raw sound
clip. Here, A is a transcription of musical performance A′

(see Figure 2), and our goal is to create a new raw sound
clip B′ that is the realization of MIDI score B.

The above operation can be used for the following two
applications, of which we focus almost entirely on the first
one:

Figure 1. Our system takes MIDI scores A and B and
raw sound A′ as input, and produces a new raw sound
B′, such that the relationship between A and A′ is “the
same as” the relationship between B and B ′.

• improved music synthesis — Music synthesized by
analogy can have a more human feel than music cre-
ated by a standard MIDI synthesizer, as any nuances
of example sound A′ can be preserved in B′, with-
out the use of complicated sound models. Audio
analogies allow us to play the notes of MIDI score
B exactly, but with more natural instruments. We
focus on this application for this paper.

• music stylization — Instead of playing score B ex-
actly, we can attempt to preserve more of the musi-
cal structure of A by using note sequences that are
similar to those present in A. Rather than realizing
a MIDI score on a particular instrument, we can re-
alize a modification of that MIDI score that reflects
the phrasing of a certain musical style or performer.

In the next section, we describe the problem of computing
analogies between musical scores and waveforms. In Sec-
tion 3, we discuss related work, in the areas of both analo-
gies and audio synthesis. In Section 4, we give some intu-
ition behind our algorithm, and in Section 5, we present
two versions of the algorithm itself. In Section 6, we
provide some current results, which can be accessed at
http://www.cs.washington.edu/homes/
iansimon/audio analogies/. We discuss possi-
ble applications of our algorithm in Section 7, and future
expansions of our technique in Section 8.

2. PROBLEM

Our problem can be stated as follows:

Given musical score A, waveform A′, and
score B, create a new waveform B′ such that
A : A′ :: B : B′.

That is, the relationship between A and A′ should be “the
same as” the relationship between B and B ′. In order
to evaluate the degree to which this statement holds, we
need to decide what it means for the relationship between
A and A′ to be “the same as” the relationship between B

and B′. Such a high-level concept as this depends greatly
upon human perception, both in terms of the accuracy of
the transformation between B and B′, and the coherence
of B′ with respect to A′. Our approach borrows from con-
catenative speech synthesis, in which speech is generated
from text by concatenating phonemes from a large library
of examples.

In this approach, there is a fundamental tradeoff between
accuracy and coherence. The more faithful B ′ is to B, the
less likely it is that B′ is coherent with respect to A′. The
more coherent B′ is with respect to A′, the less likely it
is that B′ is an accurate transformation of B. We use a
value α, between 0 and 1, to express this tradeoff. Values
closer to 1 mean that B′ should match B more closely,
while values closer to 0 mean that B′ should incorporate
more of the style of A′. So, at the most general level, the
input to Audio Analogies is an example pair (A, A′), a
new score B, and parameter α, and the output is a new
waveform B′.

Though the analogy framework is general enough to han-
dle different types of sound objects, in this paper we will
deal exclusively with the case in which A and B are MIDI
scores, and A′ and B′ are raw sounds. This is the only
case we have explored, and though the Audio Analogies
system could be expanded to do much more, we feel this
case is the most interesting. We discuss some other cases
in Section 3. A MIDI score is usually thought of as simple
and mechanical, while a musical performance is more hu-
man and full of artistic expression. The process by which
a score is transformed into a musical performance is there-
fore intriguing, and providing an automated mechanism
for it is a desirable goal.

In addition, we limit ourselves to monophonic music for
both A and B.

3. RELATED WORK

Our work is inspired most directly by Image Analogies
[3]. However, when adapting their technique to audio,

Figure 2. An example pair (A, A′) consists of a MIDI
score and a waveform captured from a human perfor-
mance of the score.

we found it necessary to borrow ideas from the realm of
sound synthesis. The concatenative approach has been
quite successful in the realm of speech synthesis. In addi-
tion, Schwarz [8] used concatenative synthesis to generate
sound that was the realization of a musical score, played
using sounds from a large database. Our focus is on high-
quality synthesis with a single example instrument, often
with only a few minutes of example data. We also allow
for the modification of database units.

Zils and Pachet [9] developed a system called Musical
Mosaicing, which uses concatenative synthesis to auto-
matically sequence snippets of existing music from a large
database to match a target waveform. They focus on gen-
eration of music from the techno genre, and designed their
system as a composer’s tool.

Also, some model-based techniques have explored the no-
tion of musical style. The Saxex system [1] generates
expressive performances of melodies from a model de-
rived from examples of human performances. Derenyi
and Dannenberg [2] synthesize trumpet performances by
using both a performance model, which generates a se-
quence of amplitudes and frequencies from a score, and
an instrument model, which models the sound timbre.

Score alignment is an important component of concatena-
tive music synthesis, since MIDI score A must be as ac-
curate a transcription of performance A′ as possible. Orio
and Schwarz [5] use dynamic time warping to find the best
global alignment of a score and a waveform. Raphael [6]
uses a hidden Markov model to segment a waveform into
regions corresponding to the notes of a score.

4. OUR APPROACH

Given example pair (A, A′) and new score B, we need a
technique for creating a new waveform B′ that is a per-
formance of B, using sound from A′. Concatenative syn-
thesis has been widely used to solve the corresponding
problem in the realm of speech. In this approach, B ′ is
constructed by concatenating pieces of A′.

The analogy framework should be able to capture any lo-
cal transformation. That is, a frame of A′ (or B′) should
only depend on the corresponding frame in A (or B) and
its local neighborhood. A frame can be thought of as a
basic building block of sound. Our system uses either sin-
gle notes or pairs of adjacent notes as frames. We con-
struct B′ using a sequence of frames from A′. Each frame
in the sequence should match the corresponding frame in
B, and the sequence should be coherent with respect to
A′. Given cost functions for these two objectives, and the
value α, the optimal sequence is well-defined, and can be
computed with a dynamic programming algorithm.

Also, A and A′ need not be a single example pair, but
could be a database of many examples. This increases
the likelihood that each neighborhood in B will be simi-
lar to a neighborhood in A, which yields much better re-
sults. However, increasing the quantity of example data
also leads to an increase in running time. In our current
algorithm, the increase is quadratic. This is because we al-
low all frames in A′ to be possible matches for each frame
in B′. Our databases tend to be small, since we are often
trying to recreate the style of a single performance.

To better utilize the small amount of example data we
have, we allow B′ to use modified frames from A′. Using
SOLA (synchronized overlap-add) [7], we can indepen-
dently modify the time and pitch of an example waveform
to more closely match a target note in B.

5. AUDIO ANALOGIES

First, we define some terms that will be used in the rest
of the paper (Section 5.1). Then, we describe the data
structures needed (Section 5.2), followed by the algorithm
itself (Section 5.3). We first present the version of the al-
gorithm in which a frame is a single note, and later discuss
the alternate version in which a frame is a pair of adjacent
notes.

5.1. Definitions

The terms defined in this section represent structures and
values necessary for describing our algorithm.

(A, A′) is the input example pair. A is a MIDI score, and
A′ is the corresponding waveform.

B is the input target score.

B′ is the output waveform.

|A| is the number of frames that make up A.

ai is the ith frame of A. a′
i, bi, and b′i are defined similarly

for A′, B, and B′, respectively.

z
j
i is the jth candidate for matching frame bi. A candidate

is a frame from A′, possibly altered to better match
bi.

r(i, j) is the index of the frame in A′ that is used to con-
struct candidate z

j
i . That is, z

j
i is constructed from

a′
r(i,j).

κ is the number of candidates for each frame bi.

cmatch(i, j) is the cost of matching candidate z
j
i with frame

bi in B. This is the match cost of using z
j
i as the ith

frame of B′, independent of all other frames in B′.

ctransition(i, j, k) is the cost of placing candidate zk
i+1 di-

rectly after candidate z
j
i in B′. This is the transition

cost between these two frames.

α is the weight given to match costs as opposed to transi-
tion costs, between 0 and 1.

The match and transition cost functions have many com-
ponents, and will be discussed in Section 5.3.3.

5.2. Data Structures

In addition to the three inputs, A, A′, and B, we will need
a few intermediate structures in our computation:

• Mcost is a |B|-by-κ matrix of costs, used for dy-
namic programming. Mcost[i, j] represents the total
cost of the optimal sequence of frames 1 to i of B ′

in which b′i = z
j
i .

• Mindex is an n-by-κ matrix of indices, used for dy-
namic programming. Mindex[i, j] holds the index k

for which b′i−1 = zk
i−1 in the optimal sequence of

frames 1 to i of B′ in which b′i = z
j
i . That is, zk

i−1 is
the predecessor of z

j
i in such an optimal sequence.

These data structures are used by the dynamic program-
ming algorithm that computes the optimal frame sequence.

5.3. Algorithm

The algorithm can be broken up into six stages:

1. Segment A, A′, and B into frames (Section 5.3.1).

2. Choose candidates z
j
i for each frame bi (Section

5.3.2).

3. Compute cmatch and ctransition (Section 5.3.3). This
presumes the existence of a method for computing
match and transition costs between frames, which
we will discuss later.

4. Using a Viterbi algorithm, compute the two matri-
ces Mcost and Mindex (Section 5.3.4). From these
two matrices, compute the globally optimal sequence
S of frames from A′.

5. Construct the waveform for each frame of S (Sec-
tion 5.3.5).

6. Construct B′ by concatenating the waveforms (Sec-
tion 5.3.6).

All of these stages are important in terms of their effects
on the algorithm’s output, so we will discuss them in more
detail in the following sections.

5.3.1. Segmentation

Each sound must be broken into discrete frames. It is
important to distinguish between three different types of
frames:

• score frames — These are the original frames from
A and B. Each one is simply a vector of note prop-
erties (see Figure 3), most importantly the duration
and pitch.

• candidate frames — These are similar to score frames,
but are used as potential matches for the score frames
of B. Each candidate frame contains a vector of
note data, as well as a reference to a score frame in
A.

• wave frames — This is the type of frame we use
when actually constructing B′. It consists of a set
of raw sound samples.

In this version of the algorithm, a single frame corresponds
to a single note (or rest, which we treat no differently from
a note). This leaves us with the problem of making sure
that the notes of A align properly with the notes of A′. A
near-perfect alignment is necessary, since we will be using
the waveform corresponding to a single note of A when
constructing the waveform corresponding to a single note
of B. If sound data from other notes in A manages to seep
in, audible “grace note” artifacts will be heard in the out-
put waveform. (The second version of our algorithm uses
an alternate method of addressing this problem.)

Another problem that arises is that sometimes, even in the
case of monophonic music, a short amount of time exists
during which two adjacent notes can be heard simultane-
ously. This coarticulation can be caused by reverberation
in the recording environment, or even inside the instru-
ment. When this scenario occurs, a perfect alignment is
not possible.

Figure 3. Each score frame bi corresponds to a single
note. The data associated with the frame is the note on-
set time (in milliseconds), the note duration (in millisec-
onds), the pitch, and the velocity (a MIDI parameter rep-
resenting how hard the note is struck). A candidate note
z

j
i contains its duration, pitch, velocity, and a reference to

frame ar(i,j), whose corresponding waveform a′
r(i,j) will

be used to construct this candidate. Frame ar(i,j) may
have different note parameters from bi.

After the segmentation has been computed, we perform
one more preprocessing step in which B is modified to
make matches with A more likely. First, we attempt to
transpose B so that it is in the same key and pitch register
as A. This is as simple as trying all possible transpositions
of the notes of B, and keeping the one which has the most
pitch overlaps with A.

Second, we change the tempo of B uniformly so that the
median note duration of B and A is the same. This isn’t
necessarily optimal, in the sense that there are score dis-
tance metrics for which another uniform tempo change
would be better, but this technique seems to work well
on our test data.

5.3.2. Candidate Selection

After the input sounds have been segmented, we need to
choose the candidates z

j
i for each target frame bi. We con-

struct z
j
i from note a′

j for all j. That is, we use κ = |A|

candidates z
j
i for each bi, and r(i, j) = j. We also change

the pitch and duration of each candidate to match the pitch
and duration of bi.

As we get larger and larger examples (A, A′), using all
example frames as candidates becomes less feasible. For
examples that are several minutes long, as ours are, com-
puting the optimal sequence takes only a few minutes.
However, for example databases containing hours of mu-
sic, this approach no longer works in a reasonable amount
of time. In such cases, we can choose some predefined
value for κ and pick the best κ candidates for each frame,
with respect to cmatch.

5.3.3. Cost Computation

Once we’ve broken each sound into frames, we need to
compute the values of cmatch and ctransition. In order to
compute the entries in these matrices, we need a method
for evaluating the cost of using SOLA and resampling
to change the duration and pitch of a waveform, and a
method for evaluating the cost of placing two candidate
frames in succession.

Suppose we have defined functions dtransform(s1, s2), and
dtransition(s1, s2) (for score frames s1 and s2), represent-
ing the cost of transforming one frame to another (using
SOLA and resampling to change a note), and placing two
frames in succession, respectively. Then, we can compute
cmatch and ctransition as follows:

cmatch(i, j) = dtransform(ar(i,j), z
j
i)

ctransition(i, j, k) = dtransition(zj
i , z

k
i+1)

It remains to define dtransform and dtransition. Let

dtransform(ar(i,j) , z
j

i) = β|pitch(z
j

i) log(duration(z
j

i))

−pitch(ar(i,j)) log(duration(ar(i,j)))|

+γ|pitch(zj

i) − pitch(ar(i,j))|

The first term in the sum is the cost of changing the du-
ration of a note using SOLA and is proportional to the
logarithm of the ratio of the durations. (Note that pitch
terms are also included, since we change the pitch before
applying SOLA.) The second term is the cost of changing
the pitch of a note using resampling and is proportional to
the difference in pitch (or the logarithm of the ratio of the
frequencies). Again, the β and γ terms allow the user to
place relative weights on SOLA and resampling.

Let

dtransition(zj

i , z
k
i+1) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

0 if r(i + 1, k) = r(i, j) + 1

and pitch(ar(i,j)) − pitch(zj

i
)

= pitch(ar(i+1,k)) − pitch(zk
i+1)

λ if r(i + 1, k) = r(i, j) + 1

but pitch(ar(i,j)) − pitch(zj

i
)

6= pitch(ar(i+1,k)) − pitch(zk
i+1)

λ + µ if r(i + 1, k) 6= r(i, j) + 1

The transition cost is simple. If the two candidates do not
come from two consecutive frames of A, a cost µ + λ

is incurred. If the two candidates come from consecutive
frames but must be resampled at different rates to match
the target pitch, a cost λ is incurred. If the two candi-
dates come from consecutive frames and are transposed
by the same interval, no cost is incurred. This cost func-
tion causes the algorithm to prefer to choose a sequence
of frames with as few coarticulation artifacts as possible.

Figure 4. Each frame in B has a number of candidate
frames constructed from A′ that can map to it. For each
frame in B, we compute the lowest cost sequence ending
in each of its candidates. Then, starting with the frame
|B|, we compute the optimal sequence in reverse.

5.3.4. Sequence Computation

Given Cmatch, Ctransition, and the value α, we can com-
pute the optimal sequence S of frame indices from A′.
The optimal sequence minimizes the following quantity:

α

n∑

i=1

cmatch(i, Si) + (1 − α)
n−1∑

i=1

ctransition(i, Si, Si+1)

This type of minimization problem can be solved by a
Viterbi algorithm, in O(κ2|B|) time and O(κ|B|) space.
For each frame bi in B, we compute the cost of the op-
timal sequence of candidates to match b1 to bi for each
possible candidate z

j
i to end the sequence. This takes

O(κ) time per candidate, since the optimal sequence may
pass through any of the κ candidates for bi−1. Then, we
compute the optimal sequence to match b1 to bn in re-
verse. This is a dynamic programming algorithm that can
be thought of as finding the optimal path through the can-
didates, using one candidate per target frame (see Figure
4).

We use all frames from the example pair (A, A′) as candi-
dates for each frame bi, so the algorithm takes O(|A|2|B|)
time.

5.3.5. Waveform Construction

Given selected candidate z
j
i for frame bi, and example

frame a′
r(i,j) from which the sound data is to be taken,

we need to transform the sound data to match the pitch

Figure 5. To construct the waveform for candidate z
j
i , we

take the frame a′
r(i,j) corresponding to z

j
i , resample it to

the desired pitch, and modify its duration using SOLA.

and duration specified by the candidate. To transform the
pitch, we resample the waveform. To change the duration,
we use SOLA.

SOLA is a technique for changing the time of a signal
independent of the pitch. The signal is broken up into
overlapping chunks, which are then shifted relative to each
other and added back together. The desired signal length
determines the amount by which the chunks are shifted.
In addition, the chunks should be shifted so as to align
the signal optimally, which can be measured by cross-
correlation.

SOLA yields good results as long as the ratio of original
signal length to new signal length is not too large or small.
Generally, any ratio between 0.5 and 2 sounds good. With
a large enough (A, A′) pair, it should always be possible
to find a candidate whose original signal length is close
enough to the target signal length. In addition, SOLA re-
sults can be improved by stretching some portions of a
note while leaving others alone. The attack of a note, in
particular, should often be left alone, as it contains energy
at too many frequencies for good signal alignments to be
found after shifting.

5.3.6. Concatenation

When a database unit corresponds to a single note, we
construct the output waveform by simply concatenating
the waveforms for each candidate in the optimal sequence.

5.3.7. Using Adjacent Note Pairs

Our algorithm, as previously described, requires a near-
perfect (within about 5 ms) alignment of example score to
example audio. When the alignment is poor, displeasing
coarticulation artifacts can be heard. While the transition
cost function penalizes sequences likely to produce these
artifacts, there is often not enough example data to choose
a good sequence of notes.

We created a second version of our algorithm that ad-
dresses this problem. The key observation is that while
it is difficult or impossible to identify the transition point
between two notes within 5 ms, it’s easier to identify a
larger window in which the transition occurs. Then, after
the transition into a note, and before the transition out of
the note, we can guarantee that only a single note can be
heard.

Instead of concatenating single notes from the example,
we concatenate pairs of adjacent notes, and blend the sec-
ond note from the first pair into the first note from the sec-
ond pair. For many instruments, note blending creates less
noticeable artifacts than coarticulation. In some cases, an
interval in the target score is not present in the example
data, in which case we have no choice but to concatenate
single notes, possibly creating coarticulation artifacts.

The steps of the algorithm as listed in Section 5.3 remain
the same. However, the details of each step now reflect
the use of note pairs as units.

The segmentation step still requires aligning the example
score with the example audio. The alignment need not be
perfect, but we must be able to bound the regions in which
note transitions occur. When constructing the optimal se-
quence, we will try not to break up any of these regions.

The candidate selection step works almost exactly as be-
fore. For each pair of adjacent notes in the target score,
we consider as candidates each pair of adjacent notes in
the example. In addition, we continue to consider single
notes as candidates, which can be used when the target
interval between two adjacent notes is not present in the
example (or if it is present, but the pair of notes is other-
wise a poor match).

There are a few extra costs to factor into the cost compu-
tation step. Most importantly, we need to set dtransform

to ∞ for candidate intervals that do not match the target
interval. We also must modify dtransform to incur cost for
the amount of SOLA and resampling done to both notes
of the pair, instead of just a single note.

For dtransition, we add a constant value for each transition
between pairs of notes that are not adjacent in the exam-
ple, to account for the blending between the second note
of the first pair and the first note of the second pair. Transi-
tions between two single notes, as well as between a single
note and an interval, are computed as in the other version
of the algorithm.

The sequence computation step remains unchanged, and
still takes time O(|A|2|B|). The waveform construc-
tion step also remains unchanged, except that we perform
SOLA and resampling on both notes of a candidate pair.

The concatenation step is more difficult in this version

of the algorithm. We need to concatenate a sequence of
candidate pairs (possibly including single notes as well)
for which each two adjacent candidates share a note. To
create the shared note, we blend smoothly from the second
note of the first pair to the first note of the second pair.
Both of these have already been transformed by SOLA
and resampling, and have the correct pitch and duration.
We blend the two waveforms using the following two-step
procedure:

1. Line up the waveforms. Using cross-correlation, we
compute the optimal relative shift. This aligns the
periods of the waveforms.

2. Blend the waveforms. We perform a linear blend
between the two waveforms.

This simple procedure works moderately well. In the fu-
ture, we may use more advanced note morphing techniques.

6. RESULTS

A page of results and discussion can be accessed at
http://www.cs.washington.edu/homes/
iansimon/audio analogies/.

For our results, we used trumpet and guitar lesson record-
ings as the example data. This is useful test data, since
the pieces are monophonic, each piece is of manageable
length (less than one minute), and some of the pieces are
used to demonstrate a particular playing style.

Our algorithm needed approximately one minute to com-
pute each output waveform. SOLA is the computation
bottleneck, as even though the Viterbi algorithm runs in
O(|A|2|B|), it operates on the scale of notes, while SOLA
operates on the scale of individual samples. We used a
sampling rate of 16000 Hz for all examples. A score that
contains only 50 notes can correspond to a waveform of
over one million samples.

The result quality varies with several features of the ex-
ample data and target score, as well as which version of
our algorithm we used. This variation is summarized in
Table 1.

7. APPLICATIONS AND DISCUSSION

An obvious application of our algorithm is the synthesis
of music from MIDI scores. Current MIDI synthesizers
use model-based approaches, and their output can easily
be distinguished from music performed by a human. Our
system produces music that, while not yet free of artifacts,

sounds more like authentic human performances. A sim-
ple extension to our algorithm in which “incorrect” notes
are also considered as candidates allows us to play target
score B not exactly as written. This opens up the possi-
bility for some more interesting applications.

The Audio Analogies framework, when applied to the goal
of MIDI score realization, presents a nice balance between
playing “Paul Desmond’s saxophone”, and “playing Paul
Desmond’s saxophone like Paul Desmond”. This balance
can be thought of as controlling the amount of texture
transfer that takes place. In the image domain, texture
transfer refers to the problem of texturing a given image
with a sample texture. For music, a natural analogue is
to play one piece using the style and phrasing of another.
Audio Analogies allow us to control the extent to which
musical texture is transferred. At one extreme, the mu-
sical score is interpreted rigidly, and its notes are played
exactly. At the other, the musical score is completely ig-
nored, and the analogy reduces to texture synthesis. In the
image domain, texture synthesis refers to the problem of
generating more texture like a given sample patch. In the
realm of audio, texture synthesis can mean extending a
piece of music indefinitely.

One can imagine an electronic piano keyboard with an
“auto-stylization” dial. As a performer plays a piece of
music, he/she can adjust this dial to control the α value
of the sound coming from the keyboard. Perhaps the key-
board comes equipped with a variety of example styles
that can be imitated. Of course, the Audio Analogies al-
gorithm as we described it requires the entire score B in
order to begin computing B′, so the above scenario is not
immediately achievable. The idea of being able to im-
port musical styles from other performers or genres into
a new piece of music, though, is enjoyable, and can often
be done successfully using Audio Analogies.

Currently, we deal only with the case of monophonic mu-
sic and focus predominantly on playing score B exactly.
Some of our examples illustrate the effects of using a poly-
phonic example pair (A, A′), as well as our limited ability
to modify score B in an attempt to capture more of the
musical style of A.

8. FUTURE WORK

There are several directions we would like to take in the
near future:

• Automatically align A and A′. This involves detect-
ing note boundaries in A′, and modifying the score
A to reflect these boundaries [5]. Aligning by hand
is too time-consuming for longer pieces of music,
and automatic alignment could possibly yield better
precision as well.

Input Data Version 1 (Single Notes) Results Version 2 (Note Pairs) Results
perfectly aligned example, most target
pitches and durations present in example

very few noticeable artifacts possible note blending artifacts

perfectly aligned example, many target
pitches and durations missing from ex-
ample

SOLA and resampling artifacts possible note blending artifacts, as well
as SOLA and resampling artifacts

imperfectly aligned example, all target
intervals present in example, most target
pitches and durations present in example

coarticulation artifacts possible note blending artifacts, SOLA
and resampling artifacts

imperfectly aligned example, all target
intervals present in example, many tar-
get pitches and durations missing from
example

coarticulation artifacts, SOLA and re-
sampling artifacts

possible note blending artifacts, SOLA
and resampling artifacts

imperfectly aligned example, some tar-
get intervals missing from example,
most target pitches and durations present
in example

coarticulation artifacts possible note blending artifacts, coartic-
ulation artifacts

imperfectly aligned example, some tar-
get intervals missing from example,
many target pitches and durations miss-
ing from example

coarticulation artifacts, SOLA and re-
sampling artifacts

possible note blending artifacts, coartic-
ulation artifacts, SOLA and resampling
artifacts

Table 1. Go to http://www.cs.washington.edu/homes/iansimon/audio analogies/ to hear the re-
sults. The quality of the output of both versions of our algorithm depends upon certain characteristics of the input.
Coarticulation artifacts can be heard when an example note contains undesired pieces of another note. SOLA and re-
sampling artifacts result from excessive changes to the pitch or duration of a note. Note blending artifacts result from the
blending between two notes of the same pitch and duration, but with differences not accounted for by our algorithm, such
as timbre and vibrato.

• Use note sequences of any length as units. When
trying to synthesize style, a major restriction is our
current method of playing one note in B′ for one
note in B. A stylistic performance of score B might
add or remove notes. We could move closer to this
goal by using techniques described (for images) by
Jojic [4].

• Extend our algorithm to polyphonic music. Syn-
thesizing polyphonic music necessitates changing
our algorithm considerably. Multiple sequences of
notes are evolving simultaneously, and we need a
way of representing this. In addition, it would be
useful to be able to extract a single note from a poly-
phonic waveform, though this is largely an unsolved
problem.

9. REFERENCES

[1] J. Arcos, R. de Mantaras, and X. Serra. Saxex: a case-
based reasoning system for generating expressive mu-
sical performances, 1997.

[2] Istvan Derenyi and Roger B. Dannenberg. Syn-
thesizing trumpet performances. In Proceedings of
the International Computer Music Conference, pages
490–496. International Computer Music Association,
1998.

[3] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver,
Brian Curless, and David H. Salesin. Image analogies.
In Eugene Fiume, editor, SIGGRAPH 2001, Com-
puter Graphics Proceedings, pages 327–340. ACM
Press / ACM SIGGRAPH, 2001.

[4] N. Jojic, B. Frey, and A. Kannan. Epitomic analysis
of appearance and shape. In Proceedings of the In-
ternational Conference on Computer Vision (ICCV),
2003.

[5] Nicola Orio and Diemo Schwarz. Alignment of
monophonic and polyphonic music to a score, 2001.

[6] Christopher Raphael. Automatic segmentation of
acoustic musical signals using hidden markov models.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(4):360–370, 1999.

[7] S. Roucos and A. Wilgus. High quality time-scale
modification for speech. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and
Signal Processing, pages 493–496. IEEE, 1985.

[8] D. Schwarz. A system for data-driven concatenative
sound synthesis, 2000.

[9] A. Zils and F. Pachet. Musical mosaicing. In Pro-
ceedings of DAFX 01, 2001.

