
Screenshot from id Software's Quake III: Arena showing the typical player and spectator experience in architectural
environment-based games. The view is limited to a single room of a particular level (here, the Temple of Retribution), so
understanding the overall environment and its uses is equally limited. Players and spectators alike find it difficult to know
how the various players are moving though the level, where the weapons and power-ups are located, how the floors are laid
out and linked, the quickest paths from place to place, the good places to hide, and the places to avoid.

COMMUNICATIONS OF THE ACM August 2004/Vol. 47, No. 8 55

R ecent advances in consumer graphics technology make it
possible to interactively explore extremely complex 3D
environments. Architects routinely build detailed 3D

computer-aided design (CAD) models of buildings to visualize
both their internal spaces and their external structures. The trend
toward greater complexity is evident in video games involving
increasingly detailed interactive 3D worlds. These environments
are comprised of many rooms, passageways, characters, and play-
ers, but also tend to be densely occluded.

Few applications are able to simultaneously display their interior
spaces and the external structures. Two related interfaces are ArcBall
[10], which allows rotation, scaling, and zooming of the environ-
ment, and walkthroughs, which allow viewers to move through
rooms within the environment. ArcBall interfaces are often used in
model-viewing applications and can be useful for understanding an

By Mike Houston, Chris Niederauer,
Maneesh Agrawala, and

Greg Humphreys

VISUALIZING DYNAMIC

How to expose the internal 3D structures
of multiplayer games and architectural

models by automatically generating
interactive exploded views.

ARCHITECTURAL
ENVIRONMENTS

[[

56 August 2004/Vol. 47, No. 8 COMMUNICATIONS OF THE ACM

environment’s external structure. Walkthrough inter-
faces, used in first-person shooter-style games, are use-
ful for understanding and navigating an
environment’s interior spaces. However, neither of
them allows viewers to understand the environment
as a whole, because the walls and floors hide most of
the structure. In dynamic 3D environments (such as
multiplayer games like Quake III [4]), the occlusions
make it impossible to see all the action at once.

Architects and technical illustrators often use tech-
niques like cutaways, transparency, and exploded
views to reduce or eliminate occlusion and expose the
overall structures of architectural environments.
Because exploded views are especially effective for
conveying structure, they are often used in illustra-
tions of mechanical assemblies [2, 11]. Designers
Stephen Biesty [1] and Edward Tufte [12] are well
known for using exploded views to reveal the struc-
ture of multistory buildings and machines. To form
an exploded view of an architectural model, designers
typically section the building into stories just below
the ceilings, then separate the stories from one
another (see Figure 1). These views expose both the
structure of the internal spaces within each story and
the vertical spatial relationships between adjacent sto-
ries. But producing an exploded view from a 3D
model of an architectural environment requires the
designer to annotate the location of each story, as well
as a viewing application that generates the appropri-
ate exploded view from the annotated model [5, 6, 9].

We have now developed an interactive system—
called ArchSplit—that provides automated support
for generating exploded views of any architectural
environment [8]. Requiring little semantic under-
standing of the environment, it assumes the environ-
ment is “architectural” and searches for geometric
primitives representing ceilings. Once the system
finds the ceilings, it automatically sections the envi-
ronment into stories, rendering each one separately in
exploded form. The system provides interactive con-
trol over the viewpoint and the separation distance in
terms of height between the stories. This control
makes it easy to understand both the structure of the
environment and the relationships among its
dynamic objects and characters.

We tested this visualization technique on several
OpenGL applications, implementing it noninva-
sively. Borrowing the approach proposed in [7], we
used Chromium, a stream-processing framework for
interactive rendering on clusters [3], to intercept and
manipulate sequences of OpenGL commands gener-
ated by the underlying application. Chromium’s
stream-processing units (SPUs) provide the flexibility
needed to modify, delete, replace, or augment any of

the graphics API calls made by the OpenGL applica-
tions while it is running. The SPUs are easily adapted
to affect semantic transformations on streams of
graphics commands. Thus, our architectural visual-
ization system can be applied to many OpenGL
applications, including Quake III, without modifica-
tion or recompilation.

Geometric Analysis and Rendering
The system processes the graphics API stream from
any OpenGL application in two stages. The first—
geometric analysis—determines where to split the
architectural model into its stories by analyzing the
stream of polygons issued by the original applica-
tion. The analysis is performed once, whenever a
new architectural model is loaded into the original
application.

The second stage—rendering—draws the
exploded view by modifying the OpenGL graphics
stream of the original application. Based on the geo-
metric analysis, the system inserts clipping planes
between each story and performs multipass render-
ing, one pass per story, to produce the exploded view.
The renderer also replaces the viewpoint—the projec-
tion and modelview matrices—specified by the origi-
nal application with a new viewpoint that may be
specified interactively by the user. The rendering stage
modifies every frame of the original application on
the fly.

The most natural segmentation of any architec-
tural model is into stories. A story is usually defined
by a floor, a ceiling, and all the geometry in between.
For a visualization, the system does not include the
ceiling in each story because it occludes the very
structure we are trying to reveal. Therefore, the best
place to split the model is just below each ceiling. The
goal of the geometric analysis stage is to determine
which of the polygons in the environment represent
ceilings. The rendering stage then inserts a clipping
plane into the environment just below each discov-
ered ceiling to separate the environment into individ-
ual stories.

To find the ceiling polygons, the user specifies a
vector defining the up direction for the environment.
Ceiling polygons are oriented so their normals point
in the opposite direction of this vector. As the original
application submits geometry to OpenGL for render-
ing, Chromium intercepts the vertices of each poly-
gon. Assuming polygons are specified using
consistent counterclockwise ordering, as in many
OpenGL applications, the system computes the poly-
gon normal as the cross-product of two edges of the
polygon that share a common vertex. This is generally
a safe assumption, as most applications are careful

about their geometry’s winding order, which results
from OpenGL backface culling semantics.

While this approach finds all downward-facing
polygons, not all such polygons represent ceilings.
Downward-facing polygons may appear in other parts
of the environment (such as in portions of characters
or objects) or in smaller architectural elements (such
as in windowsills, ledges, stairs, and ornamental deco-
rations). To find the polygons most likely to represent
ceilings, the system computes the height of each
downward-facing polygon, then builds a table map-
ping each potential ceiling height to the total surface
area of all downward-facing polygons at that height.

The user interactively specifies NumSplits, or
the number of stories the environment should be split
into. Starting with an unsplit environment, the user
interactively increases or decreases NumSplits. Ini-
tially, the system finds the NumSplits largest sur-

face areas in the
height-to-surface area table as
candidate heights for splitting
the environment. However,
environments often contain
large ceiling areas that are
slightly offset from one another,
and splitting the model at each
of these offset heights would
generate extremely low ceilings
that would not be part of the
desired segmentation. To coun-
teract this effect, the system
applies an additional heuristic

that maintains a minimum distance, or height,
between neighboring splitting planes. In general, this
distance should be set to the height of a typical char-
acter, as measured with respect to the environment,
since no ceiling can be lower than this minimum
height. The user adjusts the height as necessary for a
particular model. In practice, it’s easy to find the right
minimum height parameter. For multiplayer games,
the minimum ceiling height is specified as the average
height of the player/character’s geometry. For a more
in-depth description of the algorithm, see [8]; a brief
video showing the system in action with various appli-
cations, including Quake III, is at graphics.stanford.
edu/papers/archsplit.

Axonometric View
After the system’s geometric analysis stage deter-
mines where to split the environment into stories, its
rendering stage modifies each frame of the original
application to produce an interactive exploded view.
The system uses Chromium to buffer the stream of
OpenGL calls corresponding to a frame, or all of the

COMMUNICATIONS OF THE ACM August 2004/Vol. 47, No. 8 57

Figure 1. Exploded view
of the Soda Hall model
generated by ArchSplit
from a model-viewer
application. Representing
a more traditional
example of how
to present static
architectural models
in exploded form, it is
similar to hand-drawn
techniques.

functions and their parameters
called between calls to
glSwapBuffers(). The
frame is then replayed, one per
story, with each playback pass
responsible for rendering one of
the stories in the exploded view.
Each playback stream modifies
the original OpenGL stream in
several ways:

• The original viewing projec-
tion is replaced by an exter-
nal axonometric view, or a projection in which
horizontal and vertical axes are drawn to scale but
in which diagonals and curves are distorted;

• Clipping planes are inserted into the stream to
ensure only a single story is drawn; and

• The geometry is translated along the up vector to
separate the current story from the previous story.

Technical illustrators often use an axonometric
projection when producing exploded views of archi-
tectural environments to eliminate perspective distor-
tions. Our system generates an axonometric view by
replacing the original application’s projection matrix
with its own axonometric projection. The system
allows users to interactively adjust the viewpoint
using an ArcBall interface [10]. To allow such control,
the system locates the viewing transformations in the
transformation matrix stack of the original applica-
tion and replaces them with its own collection of
transformations. The system assumes the application
first sets up the viewing transformation for the envi-
ronment; subsequent changes to the modelview stack
represent relative motions of other graphical elements
(such as players, objects, and overlays). Thus, the sys-
tem can change the viewpoint by replacing the very
first matrix placed on the OpenGL modelview stack.

When nonenvironmental graphical elements (such as
players and objects) are drawn, it uses the inverse of
the environment’s original projection matrix to place
them correctly relative to the new axonometric view.

To ensure each playback stream draws only the
geometry associated with a single story, the system
inserts two OpenGL clipping planes into the graphics
stream just before the environment geometry. One is
placed immediately below the ceiling of the current
story so it clips all geometry above it. Similarly, the
other one is placed right below the previous ceiling so
it clips all geometry below it. The results of these
transformations are shown in Figure 2.

By interactively adjusting separation distance, users
quickly see how the stories fit together and connect
with one another in another form of interaction that
helps reveal the 3D structure of the architectural envi-
ronment.

Assumptions
Although retrofitting existing applications noninva-
sively is a strength of this approach, it is also a limi-
tation. In particular, it requires that the system
analyze the environment at a very low level while
making several assumptions about the semantics of
the OpenGL stream issued by the original applica-
tion. It also affects the performance of the applica-
tion. For example, for each story at which the system
splits, the system must resend all of the graphics prim-
itives to the graphics card. Also, as noted in [8], for
many applications, like Quake III, some of the ren-
dering optimizations traditionally used must first be
disabled. To maintain interactivity, the system makes
use of a cluster of machines with graphics boards,
with each machine rendering a single story. This
approach mitigates the performance decrease caused
by the extra rendering load.

When many players interact simultaneously in,
say, a large gaming environment, the action can be

58 August 2004/Vol. 47, No. 8 COMMUNICATIONS OF THE ACM

Figure 2. Exploded view
of Quake III (demo7)
noninvasively generated
by ArchSplit showing the
environment from an
external axonometric
viewpoint, first
unexploded, then
exploded with a zoom
into one of the floors.
While the unexploded
view shows external
structure, the exploded
view simultaneously
reveals both internal
and external structure.

difficult for them, as well as for any spectators, to fol-
low, even though everything is visible in the exploded
view. A combination of geometric and semantic sim-
plification would greatly increase the ability of players
and spectators alike to understand the environment.
For example, players appear quite small when the
entire map is shown; they could be simplified or even
“iconified” without sacrificing much semantic con-
tent. The movement of players could also be displayed
in the exploded view to give all viewers a sense of how
they are moving through and using different aspects
of the environment (such as power-ups and weapons
in games like Quake III), as shown in Figure 3.

Conclusion
Our aim is not simply to argue that noninvasive tech-
niques should be used when exploded views might be
useful, but to demonstrate a compelling new visual-
ization technique for architectural environments.
Application writers have access to higher-level seman-
tic knowledge about these environments, including
the locations of the ceilings and the viewing parame-
ters. Access to such information would make it much
easier to build our exploded-view visualization tech-
nique into the original application, as well as to use
level of detail, or geometric and texture simplifica-
tion, and provide semantic information to help users
understand the environment. We thus hope to
encourage designers of future systems to incorporate
such visualizations directly into their applications.

Observing multiplayer games from a third-person

perspective is far more satisfying than
observing them through the eyes of individ-
ual players, as it provides a more complete
understanding of the environment and the
dynamic character interactions taking place
within it.

References
1. Biesty, S. and Platt, R. Stephen Biesty’s Incredible Explo-

sions: Exploded Views of Astonishing Things. Scholastic,
Inc., New York, 1996.

2. Giesecke, F., Mitchell, A., and Spencer, H. Technical
Drawing, 3rd Ed. Macmillan, New York, 1949.

3. Humphreys, G., Houston, M., Ng, R., Ahern, S., Frank,
R., Kirchner, P., and Klosowski, J. Chromium: A stream
processing framework for interactive graphics on clusters
of workstations. ACM Transact. Graph. 21, 3 (July
2002), 693–702.

4. id Software. Quake III: Arena. Tech. Rep. id Software,
Inc., Mesquite, TX, 2002; www.idsoftware.
com/games/quake/quake3-arena/.

5. Kroll, E., Lenz, E., and Wolberg, J. Rule-based genera-
tion of exploded views and assembly sequences. Artificial
Intelligence for Engineering Design, Analysis, and Manu-
facturing 3, 3 (1989), 143–155.

6. Mohammad, R. and Kroll, E. Automatic generation of
exploded views by graph transformation. In Proceedings
of IEEE AI for Applications (1993), 368–374.

7. Mohr, A. and Gleicher, M. Noninvasive, interactive, stylized rendering.
In Proceedings of the ACM Symposium on Interactive 3D Graphics
(Chapel Hill, NC, Mar. 19–21). ACM Press, New York 2001,
175–178.

8. Niederauer, C., Houston, M., Agrawala, M., and Humphreys, G. Non-
invasive interactive visualization of dynamic architectural environ-
ments. In Proceedings of the 2003 Symposium on Interactive 3D Graphics
(Monterey, CA, Apr. 28–30). ACM Press, New York, 2003, 55–58.

9. Raab, A. and Rüger, M. 3D-ZOOM interactive visualization of struc-
tures and relations in complex graphics. In 3D Image Analysis and Syn-
thesis, G. Girod, H. Niemann, and H. Seidel, Eds. Verlag, Sankt
Augustin, Germany, 1996, 87–93.

10. Shoemake, K. ArcBall: A user interface for specifying three-dimensional
orientation using a mouse. In Proceedings of Graphics Interface ‘92 (Van-
couver, Canada). Morgan Kaufmann Publishers, Inc., 1992, 151–156.

11. Thomas, T. Technical Illustration, 3rd Ed. McGraw Hill, New York,
1978.

12. Tufte, E. Visual Explanations. Graphics Press, Cheshire, CT, 1997.

Mike Houston (mhouston@graphics.stanford.edu) is a Ph.D.
candidate in the Stanford University Computer Graphics Laboratory in
the Department of Computer Science at Stanford University in
Stanford, CA.
Christopher Niederauer (ccn@ccntech.com) is an OpenGL
software engineer in the Graphics and Imaging Group at Apple
Computer, Inc., in Cupertino, CA.
Maneesh Agrawala (maneesh@graphics.stanford.edu) is a
researcher in the Microsoft Research Document Processing and
Understanding Group in Redmond, WA.
Greg Humphreys (humper@cs.virginia.edu) is an assistant
professor in the Department of Computer Science at the University of
Virginia in Charlottesville.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/0800 $5.00

c

COMMUNICATIONS OF THE ACM August 2004/Vol. 47, No. 8 59

Figure 3. Mock-up of zoomed-in view of a single floor from Quake
III (demo7) showing a game in progress. Using Photoshop, we
added semantic information to the center split image generated by
ArchSplit in Figure 2 to show the name and location of each
player, number of kills (frags) for each team, and the paths each
player has taken through the environment.

