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Abstract

Route maps, which depict a path from one location to another, can be powerful

tools for visualizing and communicating directions. Although creating a route map

may seem to be a straightforward task, the underlying design of most route maps is

quite complex. Mapmakers choose which information is most essential for following

the route and they use a variety of cartographic generalization techniques including

distortion, simpli�cation, and abstraction to emphasize this essential information

Recently, route maps in the form of driving directions, have emerged as one of

the most popular applications on the Web. In contrast to hand-designed route maps,

these computer-generated route maps are more precise and contain more informa-

tion. Yet, in general, they are also more diÆcult and frustrating to use. The main

shortcoming of current route map rendering systems is that they do not distinguish

between essential and extraneous information. As a result, these systems cannot

apply the generalization techniques used in hand-designed maps to emphasize the

information needed to follow the route.

In this dissertation we present a new set of techniques and algorithms for au-

tomatically designing and rendering route maps that are far easier to follow than

standard computer-generated route maps. We begin by examining research in cogni-

tive psychology and cartography, on how people think about and communicate routes.

Based on this analysis we identify the essential information a route map must com-

municate to support navigation. We then examine a variety of hand-designed route

maps and enumerate a new set of cartographic generalization techniques speci�cally

designed to improve the usability of route maps by emphasizing the most essential

route information.
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Finally, we describe algorithmic implementations of these generalization tech-

niques within LineDrive, a real-time system for automatically designing and rendering

route maps. LineDrive designs routes maps to the constraints of the display device

and can produce clear, easy-to-read maps for a variety of display devices including

standard sized web pages, handheld personal digital assistants and WAP cell phones.

LineDrive is publicly accessible at www.mapblast.com and we present feedback from

over 2200 users of the LineDrive system. The feedback shows that just over 99 percent

of users believe LineDrive maps are preferable to using standard computer-generated

route maps alone. The response strongly suggests that LineDrive route maps support

navigation tasks much better than the standard computer-generated route maps.
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Chapter 1

Introduction

Route maps, which depict a path from one location to another, are one of the most

common forms of graphic communication. Various kinds of route maps have existed

for centuries [MB83]. Today, route maps are often created as quick drawings to direct

someone to a particular location. Such handcrafted maps are usually very easy to

understand and follow.

The recent availability of detailed driving directions via the Web has led to the

widespread use of computer-generated route maps. Online mapping services typically

provide directions as a set of maps complemented with text descriptions. While

the text descriptions work well, the accompanying maps are often very diÆcult and

frustrating to use. Although computer-generated route maps are often more precise

and contain more information than hand-designed route maps, we have found that

the computer-generated route maps are completely inadequate for navigating a route.

While it is usually possible to follow a route using a single hand-designed route maps,

it is usually impossible to follow a route using the computer-generated route maps

alone. We believe this is because current systems for automatically generating route

maps disregard many of the principles and techniques that guide human mapmakers.

Mapmakers make explicit decisions about which aspects of the route are most rel-

evant for a navigator to understand and follow the route. Based on these decisions,

mapmakers use a variety of cartographic generalization techniques, including distor-

tion, abstraction, and simpli�cation, to improve the clarity of the map and emphasize

1



CHAPTER 1. INTRODUCTION 2

only the most important information [Mac95, Mon91]1. Cartographic generalization,

performed either consciously or sub-consciously, is prevalent both in quickly sketched

maps and in professionally designed route maps that appear in print advertisements,

invitations, and subway schedules [Tuf90a, Hol91, Hol93].

The main shortcoming of automatic route map rendering systems is that they

do not distinguish between essential and extraneous information. As a result, these

systems cannot apply the generalization techniques used in hand-designed maps to

emphasize the information needed to follow the route.

1.1 A Motivating Example

Figure 1.1 shows a standard computer-generated map, while �gure 1.2 shows a hand-

drawn map for the same route. The lack of di�erentiation between necessary and

unnecessary information in the computer-generated map makes it impossible to follow

the route using the map alone. Many turning points are not visible and the route

itself is diÆcult to distinguish from other elements in the map. Thus, online mapping

services usually augment such a map with text directions describing the route in

detail.

The primary problem with standard computer-generated maps is that they main-

tain a constant scale factor. For many routes, the lengths of roads can vary over

several orders of magnitude, from tens of feet within a neighborhood to hundreds of

miles along a highway. When a constant scale factor is used for these routes, the

shorter roads shrink to a point and essentially vanish. This phenomenon is particu-

larly problematic near the origin and destination of routes where many quick turns are

often required to enter or exit a neighborhood. Although precisely scaled roads might

1While cartographers use the term generalization to refer the visual distortions, abstractions,

and simpli�cations that occur in maps, cognitive psychologists use the term schematization instead.

Linguist Leonard Talmy [Tal83] originally used the word schematization to refer to the process of

reducing and abstracting the detail of a physical scene to a sparse and sketch-like representation.

While Talmy was concerned with the process of schematization in language, cognitive psychologists

also use the term to refer to the similar process of abstraction and distortion that occurs within

hand-crafted sketches and diagrams. In this dissertation we follow the cartographic convention and

use generalization when referring to these techniques.
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Figure 1.1: Standard computer-generated route map. The map is diÆcult

to use because its large, constant scale factor causes short roads to vanish and it is

cluttered with extraneous detail such as cities, parks, and roads that are far away

from the main route.

in theory help navigators judge how far they must travel along a road, in practice it is

far more important that all roads and turning points are visible. Hand-drawn maps

make this distinction and exaggerate the lengths of shorter roads to ensure they are

visible.

Another problem with computer-generated maps is that they are often cluttered
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Figure 1.2: Hand-drawn route map. In contrast to the standard computer-

generated route map in �gure 1.1, this hand-drawn map exaggerates the lengths of

short roads to ensure they are visible and it maintains a simple, clean design that

emphasizes the most important information for following the route. Note that this

map was created without seeing the standard computer generated map, shown in

�gure 1.1, or the LineDrive map, shown in �gure 1.3.

with information irrelevant to navigation. This extraneous information, such as the

names and locations of cities, parks, and roads far away from the route, often hides

or masks information that is essential for following the route. The clutter makes
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the maps very diÆcult to read, especially while driving. Hand-drawn maps, which

usually include only the most essential information, are very simple and clean. In the

hand-drawn map of �gure 1.2, even the shape of the roads has been distorted and

simpli�ed to improve the readability of the map. Furthermore, distorting the lengths

of shorter roads and removing unnecessary information makes it possible to include

helpful navigational aids such as major cross-streets or landmarks.

1.2 Improving Route Map Usability

In this dissertation we present LineDrive, a fully automated system for designing

and rendering route maps that are much easier to use than the standard computer-

generated maps. LineDrive automatically generalizes maps, much like a human map-

maker, to highlight the information essential for following the route, while abstracting

or omitting less important details. As a result, LineDrive maps contain many of the

advantageous characteristics of hand-drawn maps.

Figure 1.3 shows the LineDrive map for the same route as in �gures 1.1 and 1.2.

The overall look and feel of the LineDrive map is similar to the hand-drawn map.

All turning points along the route are clearly visible and the graphic design is free of

extraneous clutter.

There are also several important di�erences between the LineDrive map and the

hand-drawn map. The LineDrive map provides the mileage of each road on the

route, with bullets to emphasize each turning point. The rendering style of the road

indicates whether it is a highway, a standard residential road along the route, or a

cross-street. The hand-drawn map incorrectly shows highway 110 connecting with 9th

Street The correct exit sequence requires passing through 8th Place and James Wood

Boulevard. as shown in the LineDrive map. Furthermore, the grid in downtown LA

and the highway 110 have been reoriented to run north-south in the hand-drawn map,

rather than northeast-southwest as they actually do. The LineDrive map correctly

maintains the orientation of these roads.



CHAPTER 1. INTRODUCTION 6

Figure 1.3: LineDrive map. As in the hand-drawn map in �gure 1.2, the lengths

of short roads are exaggerated and the overall design is simple and clean in this

LineDrive map. These attributes make the LineDrive map much easier to use than

the standard computer-generated map shown in �gure 1.1.

1.3 Producing Route Maps

Although creating a route map may seem to be a straightforward task, as we have

seen from the previous example, there are many complex design choices that can

a�ect the usability of the map. Several researchers [LHM99, Den97, DPCB99] have
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Spatial Knowledge
Activation

Route Choice

Route Depiction

Figure 1.4: Three-stage task model for producing route maps. Producing

a route map involves three main tasks as shown in the diagram. The model applies

both to human mapmakers and automated mapmaking systems.

modeled the task of creating a route map as a three stage process consisting of (1)

spatial knowledge activation, (2) route choice and (3) route depiction. This general

three-stage model shown in �gure 1.4, applies both to human mapmakers and to

automated mapmaking systems. In the remainder of this section we discuss our work

in the context of each of these stages.

1.3.1 Spatial Knowledge Activation

The �rst stage in the model, spatial knowledge activation, is the process of activating

a representation of the environment at the appropriate level of detail for the route.

While human mapmakers maintain this information in a mental map of the envi-

ronment, automated systems store this information in a geographic database. The

type of spatial knowledge and the appropriate level of detail are largely dependent on

the type of transportation used to follow the route. For example, driving directions

require knowledge of the road network in a region, while airline directions require

knowledge of 
ight paths and zones in a region. A road database meant for drivers
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must store waypoints at several hundred foot intervals to capture the curves in a road,

while a trail database meant for hikers must show waypoints at shorter intervals to

capture the appropriate detail. The level of detail stored in the database is also de-

pendent on the level of detail that will be required in the output route map. If the

route map depicts each path as a straight line between each pair of turning points the

database can store much less information. Our work is targeted at producing routes

maps for driving and we assume that a detailed database of the road network and

building-sized landmarks is available. Several companies including Navtech, GDT,

and Etak specialize in producing such databases.

1.3.2 Route Choice

The second step in producing a route map is choosing a speci�c route through the

environment. The choice usually requires considering a variety of criteria such as the

length of the route, the time required to traverse the route, the time of day at which

the route will be followed, the expected traÆc on the roads, and the complexity of the

route2. Mathematically, choosing the route is equivalent to performing a constrained

graph search. Each criterion adds a constraint to the search that should be optimized

in the �nal route.

Human mapmakers typically choose a route by combining a divide-and-conquer

strategy with a depth-�rst search. They initially scan their representation of the

environment for \important" roads and then perform a depth �rst search to connect

the origin and destination to the important roads [SV86, Gol99, EL82]. The initial

search for important roads breaks the problem into a set of intermediate goals. The

importance of a road is related to the optimization criteria for the route. For example,

when �nding the fastest route, highways are often considered most important.

In computer science, route �nding is called the shortest-path problem. The envi-

ronment can be represented as a graph with each road represented by an edge, each

road intersection represented by a node, and each optimization criterion represented

2Route complexity itself may be measured by several criteria including the number of turns in

the route, the number of highway segments vs. residential roads, the expected level of familiarity

with the environment of the navigator, as so on.
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by a cost on an edge or node. The task is to �nd a path through the graph that

minimizes the various cost functions. With this representation, classic shortest-path

algorithms such as Dijkstra's algorithm [CLR90] can be applied to �nd the optimal

route. Elliot and Lesk [EL82] have shown that depth-�rst search is fairly eÆcient be-

cause road network graphs are usually planar, and contain many nodes while edges are

relatively sparse. Hierarchical approaches similar to the combined divide-and-conquer

plus depth-�rst search approach taken by human mapmakers have been implemented

more recently [JHR98, Tel99]. These hierarchical methods are much faster than the

classic algorithms, but may not always �nd the optimal route.

Although automated route �nding algorithms often produce routes that are slightly

di�erent from the route an expert mapmaker would produce, the automated routes

are generally correct in that they reach the destination and optimize some basic cri-

teria such as distance or traversal time. Our work is not aimed at �nding better

routes, but rather at creating better visualizations of a given route. Therefore, we

assume that an automated route �nding engine is available and can generate a set of

roads to travel between any given pair of origin and destination addresses. While our

system uses the Telcontar [Tel99] route �nding engine, our visualization techniques

are independent of the route �nding service and can be applied to a route generated

by any route �nding algorithm or even a human route generator.

1.3.3 Route Depiction

Once the route has been chosen it must be translated into either an aural, haptic or

visual representation to facilitate communication of the route to navigators. While

aural and haptic route maps can be useful, it is diÆcult and expensive to produce

custom aural and haptic maps for each route. In contrast, many people currently

have the capability to print a visual depiction of the route, to take with them on the

trip. For these reasons our work focuses on improving the e�ectiveness and usability

of visual route maps. We begin this section with a brief discussion of aural and

haptic representations and then examine the range of possible visual representations

for route maps.
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1.3.3.1 Aural and Haptic Depictions

Streeter et al. [SVW85] have shown that aural route descriptions can be more e�ec-

tive than customized route maps, when used while driving. Although some in-car

navigation systems now provide aural driving directions, such systems are expensive

and since they are not connected to a central server each system must be updated

regularly in order to keep its road database up-to-date.

While haptic representations of a route would be diÆcult and cumbersome to use

for most people, they have been studied in the context of generating route maps for

visually impaired navigators. Several systems have been designed to convert visual

route maps into tactile route maps. [Mic98]. We believe it may be possible to use

the maps produced by LineDrive as input to a haptic route map rendering system.

However, because haptic perception and resolution is very di�erent from visual per-

ception and resolution, tactile route maps must be designed optimize a di�erent set of

characteristics than visual route maps. We leave the problem of adapting LineDrive

maps for haptic display as future work.

1.3.3.2 Visual Depictions

There are many ways to visually depict a route. At the top of �gure 1.5 we show

the range of possible visual route map depictions parameterized by the �delity of the

depiction in relation to the physical route it represents. Fidelity increases from left to

right, or equivalently abstraction decreases and more information is included in the

depiction.

A route can be thought of as a sequence of turns and the most abstract visual

representation of a route simply presents this sequence in text as a list. The other

end of the spectrum is described in Borges' short story On the Exactitude of Sci-

ence [Bor98]. Borges takes �delity to its logical but absurd extreme, describing the

perfect map as a 1:1 replica of the Empire that is the size of the Empire3.

Between these two endpoints we have a large range of visual representations.

Starting from the most abstract depiction, the textual turn list, we can decrease

3We are grateful to Barbara Tversky for bringing Borges' story to our attention.
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FidelityMore Abstract Less Abstract

Text sequence
of directions

Borges' 1:1 
replica

One-dimensional
route map

Standard
road map

Aerial photographs 

Physical 
models

Less Information More Information

Subway line map

Figure 1.5: Fidelity of route maps depictions. We parameterize the range of

possible route map depictions by �delity. On our �delity axis depictions on the left

are more abstract and contain less information than those on the right.

abstraction and increase �delity by depicting the route graphically. Maps of subway

lines often show the route as a single straight line with circular nodes representing

each stop. For passengers, the sequence of stops along the line is the most important

information and even the turns in the route are not shown. The subway driver,

however, would probably need a map explicitly showing turn information at each

turning point in order to make the turns or switch tracks properly.

The simplest route maps designed for navigators typically show only the roads on

the route. The route forms a one-dimensional curve in which each road is depicted as

a segment, linked at its endpoint to the following road. The turn direction, left-or-

right at each segment endpoint is shown implicitly in the map. To further increase

�delity, we can add more roads and landmarks surrounding the route and allow less


exibility in scale. As we increase the information and realism of the map we even-

tually create a standard road map of the region. Beyond the standard road maps

we can increase �delity in three ways; by creating more realistic imagery (e.g. using
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Figure 1.6: Fidelity vs. usability of route maps depictions. If we consider

�delity versus usability we assert that usability peaks near the abstract end of the

spectrum. In this dissertation we examine the usability of maps within a range

centered about this peak.

aerial photographs), by adding three-dimensional information (e.g. physical models

and virtual reality) and by increasing scale (e.g. moving closer to a 1:1 map). The

space of possible route map depictions between the simplest map showing only the

route and a complete roadmap of a region is large. In this dissertation we explore

this space to �nd the aspects of these depictions that are most relevant to navigators

who are using the map while en route.

As shown in the bottom of �gure 1.6, we can plot usability of the route depiction

against increasing �delity. We assert that for navigating routes usability peaks very

early and the most e�ective route depictions are near the abstract end of the range.

In this dissertation we will show that simple hand-drawn maps are near the peak
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of this usability function. We then describe LineDrive, a system for automatically

creating route maps that maintain the successful characteristics of hand-drawn maps.

1.4 Visualization

Our initial insight for the LineDrive system came from noticing that hand-drawn maps

are often far easier to follow than computer-generated maps and standard road maps.

However, like much of the recent work in cartographic visualization, our research

draws upon ideas from several di�erent intellectual disciplines including cognitive

psychology, cartography, graphic design, and computer science.

Two major branches of research in cognitive psychology are cognitive mapping,

the study of how people develop mental representations of routes and environments,

and way�nding, the study of how people follow routes. Much of our analysis of the ef-

fectiveness of the generalization techniques found in hand-drawn maps is based on this

research. Cartographers have long studied the idioms, distortions, abstractions and

symbols commonly used in maps. We exploit the shared understanding of common

mapping conventions to make our maps easier to understand and to reduce extrane-

ous explanatory information. For instance, people understand that a road shown in a

map may not depict all the curves the road actually takes. As a result, in LineDrive

we simplify most roads to straight lines. Graphic designers have developed a variety

of techniques to emphasize graphical information. We rely on such techniques to

highlight the most essential information in our route maps. As a simple example, we

place bullets at turning points to emphasize that a turn decision is required at that

point in the route.

Within computer science, we utilize techniques from several sub-�elds to automat-

ically design and render LineDrive route maps. Search algorithms have been broadly

studied and applied to all kinds of problems. In LineDrive we use eÆcient search

techniques to quickly search the high dimensional space of possible map designs in

order to �nd a near-optimal map layout for the roads, labels and context information

constituting our route maps. We also use many basic computational geometry al-

gorithms to compute geometric relationships such as intersection points and overlap
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areas between the elements of our route maps.

While traditional computer graphics provides the basic techniques for rendering

the lines, polygons and textures that make up our maps, recent research in non-

photorealistic rendering and visualization have also provided great inspiration for our

work. Although many distortion and abstraction techniques have been developed in

the context of non-photorealistic rendering, applying these techniques to visualiza-

tion requires �rst understanding how the techniques can improve the communica-

tive intent of an image. Earlier examples of this approach to visualization include

Mackinlay's [Mac86] investigation of methods for automating chart and graph design,

Seligmann and Feiner's [SF91] research on the automatic design of intent-based illus-

trations, and Interrante's [Int97] work on using illustration techniques to improve the

perception of 3D surface shape in volume data. In this dissertation we introduce this

approach to the automatic design of route maps.

1.5 Contributions

Over the last two decades there has been great interest in examining why good visu-

alizations are so e�ective. Tufte [Tuf90b, Tuf90a, Tuf97], Holmes [Hol91, Hol93], and

others have published collections of the best visualizations for a variety of di�erent

domains. One commonality among all the visualizations in these collections is that

they were painstakingly crafted by human designers. A basic goal of visualization

research is to develop completely automated systems that can design visualizations

that are as e�ective as those created by human designers.

Although this dissertation describes how to build an automated route map design

system, the high-level contribution of this dissertation is a general methodology for

building an automated visualization system for any given domain. Given a particular

data domain we propose the following two-step approach for creating an automated

visualization design system.

� Step 1: Identify cognitive design principles. We analyze which aspects

of the data are most important to communicate through the visualization. We

then consider the best examples of hand-crafted visualizations and enumerate
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the techniques the human designers used to emphasize the most important

aspects of the data.

� Step 2: Algorithmically encode the design principles. Once we under-

stand the cognitive design principles at a low enough level we develop automated

algorithms that embody the principles. Our general approach is to encode the

design principles as numerical measures of e�ectiveness of the visualization and

then algorithmically search for the most e�ective visualization according our

these measures.

The �rst step in our two-step approach is an analysis step aimed at identifying

why good hand-designed visualizations are so e�ective. Tversky et al. [TMB] have

shown that two general principles from cognitive psychology apply to the design of

e�ective visualizations:

Congruence Principle: The structure and content of the external representation

should correspond to the desired structure and content of the internal representation.

For example, since routes are conceived of as a series of turns, an e�ective external

visual representation of routes will be based on turns.

Apprehension Principle: The structure and content of the external representa-

tion should be readily and accurately perceived and comprehended. For example,

since people represent angles and lengths in gross categories, �ner distinctions in dia-

grams will not be accurately apprehended. In the case of routes, exact angles of turns

and lengths of roads are not important.

These basic principles suggest that diagram design can be enhanced by knowing

two things: how people comprehend the content that is presented in the diagram;

how people apprehend the features of the external representation. In the context

of developing and automated route map design system, we begin by examining how

people classify the importance of the types of information route map might convey to

support navigation. This classi�cation is in accordance with the congruence principle.
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We then develop a new set of cartographic generalization techniques designed to

improve the usability of route maps. The generalizations are designed in accordance

with the apprehension principle.

The second step of our methodology is a synthesis step aimed at creating a system

for automatically generating visualizations in the style of the best hand-designed

visualizations. We implement a fully automated system for synthesizing route maps

that is based on our analysis of hand-drawn route maps. As a result the maps

generated by our system are much easier to use than standard computer-generated

route maps.

1.5.1 Analysis: Classifying Importance of Route Information

We classify the importance of various types of information found in route maps based

on their usefulness to a navigator who is following the route. Our classi�cation is

based on cognitive psychology research on way�nding techniques which has shown

that an e�ective route map must clearly communicate all the all the turning points

on the route [Den97], and that precisely depicting the exact length, angle, and shape

of each road is much less important [TL99].

1.5.2 Analysis: Enumerating New Generalization Techniques

We enumerate a new set of generalization techniques speci�cally designed to improve

the usability of route maps by emphasizing the essential turning point information.

Our techniques are based on an analysis of the generalizations commonly found in

hand-drawn route maps, and an understanding how such generalizations can improve

the perception and cognition of the map image. In particular we investigate how to

distort road length, angle, shape while omitting unnecessary context information in

order to clearly present all the turning points along the route.
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1.5.3 Synthesis: Automated Map Design System

We describe algorithmic implementations of our generalization techniques within

LineDrive, a real-time system for automatically designing and rendering route maps.

LineDrive uses the 
exibility to distort road lengths, angles and shape to produce

maps that are far more usable than standard computer generated route maps. How-

ever, this 
exibility also creates a large space of possible map designs. We describe

how LineDrive performs a focused, randomized search over this space to quickly �nd

a near-optimal map layout.

While the early prototype versions of the LineDrive system produced usable route

maps, the system has been iteratively improved based on user feedback and our own

experiences using LineDrive maps. We describe some of our major design decisions

that were based on user feedback as well as user response to the current system. For

example, although our initial system did not support secondary context information

such as cross-streets and exit signs, user feedback indicated that this information is

extremely useful and it was subsequently added to the system. In the most recent

user survey, we have found that 99% of over 2200 respondents believe LineDrive maps

are preferable to using standard computer-generated maps alone.

1.6 Dissertation Roadmap

The remainder of this dissertation is organized as follows. In chapter 2 we consider

how people think about and follow routes. We then analyze several common examples

of route maps and the generalization techniques they contain. Based on this analysis

we conclude that the generalizations found in hand-drawn maps produce the most

usable route map designs. Much of this design analysis previously appeared in [AS00].

In chapter 3 we describe how our work on route map generalization and automated

route map design builds on previous computer science research on shape simpli�cation

and automated layout for 2D displays.

Chapter 4 presents an overview of our end-to-end route mapping system which

takes an origin-destination address pair as input and produces a web page including



CHAPTER 1. INTRODUCTION 18

the LineDrive map as output. LineDrive is the main component of the end-to-end

system and is itself composed of �ve stages. We describe each of these stages in

separate chapters beginning with shape simpli�cation in chapter 5. Chapter 6 presents

our algorithm for �nding a layout for the roads that allows all the roads to be visible.

Then in chapters 7 and 8 we describe how we add text labels, context information, and

decorations to the map. We originally presented in the LineDrive system in [AS01].

In chapter 9 we describe methods for both modifying and enhancing the basic

LineDrive maps based on the constraints imposed by the display device. These tech-

niques allow LineDrive maps to remain highly e�ective even on limited resolution,

small-screen devices such as personal digital assistants.

Finally, we present system performance and user feedback results in chapter 10.

We �nish with conclusions and a discussion of future work in chapter 11.



Chapter 2

Route Map Design

Understanding how people think about and communicate routes can provide great in-

sight into what information should be emphasized in a computer-generated route map.

In order to design a better route map, we begin with a brief summary of the history of

route maps. We then analyze the tasks involved in building a mental representation

of an environment and following a route { commonly referred to as way�nding. From

this analysis we identify the essential information a route map must communicate to

support way�nding. Next we analyze how several of the most common styles of route

mapping often fail to emphasize the essential route information. Finally we describe

how we use speci�c generalization techniques within LineDrive, including distortion

and abstraction, to present the essential route information in a clear, concise, and

convenient form.

2.1 A Brief History of Route Maps

The history of route maps begins with the earliest forms of human generated graphics.

In this section we present a brief overview of the variety of guises in which route maps

have appeared over their long history. Our overview is not a comprehensive review but

rather presents examples that have provided inspiration for our work. Bell's [Bel95]

study of strip maps is an excellent reference that provides a more complete history.

Archaeologists and cartographers studying the artifacts of ancient cultures have

19
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posited that one of the purposes of cave painting, clay markings, stone carvings and

stick assemblies was to communicate routes [MB83, Thr96]. Early examples of strip

maps, dating from about 2000 B.C., have been found in ancient Egyptian tombs.

The Egyptians painted a basic form of strip maps on the bottoms of coÆns depicting

routes for the dead to follow to the afterlife [Bel95, Thr72]. The Romans created

route itineraries that consisted of lists of stops along the route, such as villages,

towns and cities, and the distances between them. These later evolved into graphical

stripmaps [MJ87]. Today, subway routes are often depicted in the same fashion as

the Roman itineraries, as shown in the thumbnail image in �gure 1.5.

During the 17th and 18th centuries strip maps were used throughout Britain.

John Ogilby's famous road atlas, Britannia [Ogi89], published in 1675, took this

form. Bell [Bel95] argues that strip maps were popular at the time because there

were very few routes between destinations. Tufte [Tuf90a] presents examples of strip

maps created in London at the end of 18th century that are very similar to their

modern day equivalents, the American Automobile Association triptik. Tufte also

points out that while the Japanese strip maps from this era were similar to their

European counterparts, the Japanese maps use a single, long, thin, sheet of paper to

show the entire route, rather than splitting the map across multiple sheets.

In the early 20th century, with the widespread use of the automobile, AAA's

triptik gained mass popularity in the United States. The most important property of

these maps is that they are customized to emphasize the particular route chosen by

the navigator. The complexity of the overall road network is hidden, thereby making

the map easier to follow. An example of a triptik is shown in �gure 2.2.

In 1931 Harry Beck designed an extremely in
uential map for the London's sub-

way, the London Underground. His map used a variety generalization techniques to

emphasize the routes. Beck locally distorted the scale and shape of the subway routes

while preserving the overall topology of the route network. He color-coded the routes

and used intuitive icons to represent stations and crossover points. The resultant map

is simple, clean and easy-to-read. It has heavily in
uenced map design in general and

subway map design in particular. The design of almost all current subway maps can

be traced back to Beck's London Underground map.
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Route maps are commonly found in large-scale tourist destinations such as muse-

ums, amusement parks and monuments. Tufte [Tuf90a] presents a map from Japan's

Ise Shrine that extends the generalization techniques used by Beck in the London Un-

derground map to include multiple perspectives. The Ise Shrine map contains scale

distortions and employs two distinct perspective systems, an oblique bird's eye view

for the main part of the image showing the pedestrian route and an orthographic

view on the left side of the image showing train routes and how they connect with

the pedestrian routes.

Today, Web-based route mapping services are commonly used to obtain driving

directions. These services typically provide directions as an overview map comple-

mented with text directions. In some cases they also provide turn-by-turn focus maps.

An example of a Web-based overview map appears in �gure 1.1 and an overview/focus

map collection appears in �gure 2.3. While the text directions generally work well, it

is our experience that the accompanying maps are often diÆcult and frustrating to

use. Although such computer-generated route maps are largely negative examples,

they provided an initial impetus for the work presented in this dissertation. Our frus-

tration with these maps led to primary goal of this dissertation, which is to develop

an automated system for creating more usable route maps.

2.2 Mental Representations of Routes

Cognitive psychologists commonly refer to the mental representation of spatial infor-

mation as a cognitive map [Tol48], while the act of following a route is called way�nd-

ing [Gol99]. Building a cognitive map of an environment and way�nding within it are

tightly coupled processes that often occur concurrently. When navigators encounter

a new environment they either travel through it (e.g. way�nding) or view it from a

survey perspective (e.g. through a map or some high point in the environment) and

then integrate the information into a cognitive map. Once a cognitive map is built

navigators rely on it to �nd their way through the environment. In this section we

consider the relationship between cognitive map and way�nding.
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2.2.1 Cognitive Maps

Cognitive maps encode three basic categories of features: points, lines and areas1.

For navigators, the most important point features in an environment are landmarks,

the most important linear features are routes and the most important area features

are networks. A commonly accepted theory [Lyn60, Gol99, Cho99] is that cognitive

maps are continuously built up from these elementary features in three stages. Nav-

igators �rst learn individual landmarks as disconnected points in the environment.

Navigators then learn routes as a linked sequence of landmarks and �nally they learn

the network of routes covering a region.

Many studies have shown that cognitive maps are quantitatively inexact and con-

tain many distortions [Tve81, Tve92, But86, Gol99]. Even an expert, such as a cab

driver, who is extremely familiar with an environment will generally have trouble

estimating Euclidean distances between locations [Pai69, Cha83]. Yet, even though

cognitive maps lack quantitative accuracy, they maintain topological consistency and

can provide reliable information on topological relations such as inclusion, exclusion,

and connectedness. Chown [Cho99] argues that the topological information is enough

to properly navigate the environment and the distortions allow for a more compact

representation of the cognitive map.

2.2.2 Way�nding

Navigators travel through an environment for three reasons: to reach a familiar des-

tination, to explore the environment or to �nd a novel destination. Allen [All99]

describes several of the most common way�nding techniques that are used to ac-

complish these way�nding tasks. Table 2.1 shows each way�nding technique and the

way�nding tasks it supports. We summarize Allen's descriptions of the techniques.

Oriented search is the simplest way�nding technique, but is also the least eÆ-

cient. Starting at an origin the navigator visually (or aurally in the case of the visually

1These categories can be re�ned further. For example Golledge [Gol99] adds surfaces to this

list, while we group surfaces into the area category. Lynch [Lyn60] splits the points category into

landmarks and nodes, and the lines category into paths and edges. He also refers to areas as districts.
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Way�nding tasks

Way�nding Travel to Exploratory Travel to

techniques familiar destinations travel novel destinations

Oriented search X X X

Following a marked trail X X X

Habitual locomotion X

Path integration X X

Piloting between landmarks X X X

Table 2.1: Way�nding tasks and techniques. The set of way�nding tasks that

can be achieved with Allen's [All99] set of way�nding techniques. (After table 2.1 in

Allen [All99])

impaired) locates a destination and then searches for a path to the destination. Ori-

ented search is most useful for exploratory travel, especially when the navigator has

little prior knowledge of an environment.

Following a continuously marked trail is the most reliable way�nding tech-

nique and can be applied to all three way�nding tasks. While this technique reduces

cognitive demands on the navigator, continuously marked trails can be very expensive

to create and are therefore extremely rare.

Habitual locomotion occurs when the navigator becomes extremely familiar

with a route. The repetitive pattern of the route is imprinted on the navigator and

the movements required to complete the trip become somewhat automated. For most

commuters the daily route between home and work is habitual and they pay minimum

attention to the details of the trip.

Path integration requires navigators to self-monitor their velocity and acceler-

ation to compute the distance and direction to their destinations via dead reckoning.

Although humans are not well-equipped to precisely estimate velocity and acceler-

ation path integration can be used to travel to familiar destinations and for some

exploratory travel.

Piloting between landmarks requires the the navigator to follow a sequence of

landmarks to reach the destination. Each landmark is associated with a path leading

to the next landmark and therefore the route is completely de�ned by the sequence

of landmarks along it. Given the sequence of landmarks this way�nding technique
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can be used for all three way�nding tasks2.

Of these way�nding techniques only oriented search and piloting between land-

marks apply to all three way�nding tasks. While oriented search is useful in some

situations, piloting between landmarks is far more eÆcient and it is the most com-

monly used way�nding technique. Therefore we focus our work on this approach.

Piloting between landmarks requires the navigator to know the sequence of land-

marks from origin to destination. Each landmark is essentially a turning point on

the route and way�nding consists of two alternating activities: following a road until

reaching a turning point and then changing orientation to follow another road [Den97].

As described in the previous section the sequence of turning points (or landmarks) is

precisely the sequence that is built in the second stage of cognitive mapping. When

the sequence of turning points is not stored in the navigator's cognitive map some

form of a route description such as text directions or a map, is required in order to

determine the turning point sequence.

2.3 Information Conveyed by Route Maps

The research on cognitive mapping and way�nding has shown that routes are often

thought of as a sequence of turns [Tve92, Mac95, All99]. Furthermore, verbal route

directions are typically structured as a series of turns from one road to the next with

emphasis on communicating turn directions and the names of the roads [DPCB99].

Tversky and Lee [TL99] have shown that hand-drawn maps maintain a similar struc-

ture with emphasis on communicating the roads and turn direction at each turning

point.

It follows then that computer-generated route maps should also emphasize the

turning point information. Yet, even though it is possible to follow a route map that

only indicates the road names and turn direction at each turning point, additional

information can greatly facilitate navigation. The information that can be depicted

2Our de�nition of landmarks refers both to physical structures such as building as well as other

uniquely marked points along the route. For example intersections between roads are uniquely

marked by the names of the roads at the intersection.
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in route maps falls into three broad classes: turning point information, local context,

and overview context. We consider each of these in order of importance for the

navigator.

2.3.1 Turning Point Information

A turning point can be de�ned by a pair of roads (the road entering and the road

exiting the turning point) and the turn direction (left or right) between those two

roads. Route maps depict this information visually, so navigators can quickly scan

the map to �nd the road they are currently following and look ahead to determine

the name of the next road they will turn onto. Once the name of the next road is

known, the navigator can search for the corresponding road in the physical world.

The turn direction speci�es the action navigators must take at the turning point.

The turning point information is essential for a route map to be useful. It would be

nearly impossible to follow a route without it.

2.3.2 Local Context

Local context consists of information about the route itself as well as the environment

immediately surrounding the route. For example, if the map labels each road with

the distance to be traveled along that road, navigators can use their odometer to

determine how close they are to the next turn. Cross-streets and local landmarks

along the route, such as buildings, bridges, rivers, and railroad tracks, can also be

used for gauging progress. Navigators can also use this information to verify that they

are still following the route and did not miss a turn. The cross-street immediately

before a turn is especially useful because it can warn the navigator that the next turn

is approaching. Similarly, providing the �rst cross-street after each turning point can

cue navigators that they missed a turn. However, local context is not essential for

following the route and is usually included in the map only when it does not interfere

with the primary turning point information.
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2.3.3 Overview Context

Overview context consists of large scale area landmarks as well as global properties of

the route. Depicting large scale landmarks such as cities and bodies of water near the

route can make it easier to correlate the map with the physical world. Navigators can

use these landmarks to orient the route with respect to the local geography. Moreover,

such landmarks can help navigators quickly locate their position in the map. For

example, navigators who know they are in San Francisco can quickly narrow in on

the streets shown near the city. Similarly, maintaining the overall shape and heading

of the route (e.g. north-south vs. east-west) can also make it easier to place the route

in the larger geographic context. However, overview context is the least important of

the three classes of route map information. Like local context, it is not required for

traversing the route.

2.4 Ranking the Information Classes

Although route maps may be used before a trip for planning purposes, they are most

commonly used while actually traversing the route. Our ranking of the three classes

of route map information re
ects this fact. For a navigator, en route to a destination,

�nding the next turn on the route is often the most important task. In many cases,

navigators are also drivers and their attention is divided between many tasks. As a

result, they can only take quick glances at the map. Therefore, maps must convey

the turning point information in a clear, easy-to-read manner and must have a form-

factor that is convenient to carry and manipulate. Hand-drawn maps achieve all of

these requirements and emphasize the turning point information by omitting some

of the local and most of the overview context information. For these reasons we

treat turning point information as essential, while local context is less important and

overview context is least important.

Route maps created based on this ranking are not ideal in all situations. In

particular, if the navigator strays from the route, context information such as nearby

roads is far more important than the original turning point information for the route.
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Similarly, once navigators reach their destinations they often need context information

to �nd local parking areas. Hand-drawn route maps that emphasize turning point

information by omitting context may not be very useful in such situations. A general

purpose road map of the area, which emphasizes all regions of the map equally and

therefore contains the appropriate context information, would be much more helpful.

However, we are most interested in improving the usability of route maps designed

for navigators who are on the main route. The additional context information in a

standard road map map is distracting and makes it diÆcult to �nd the route being

traversed. Although it is can be useful to include some context information in a route

map, it should only be included when it does not reduce the clarity of the turning

point information.

2.5 Analysis of Current Route Mapping Styles

Most current styles of route maps fail to present the essential turning point infor-

mation of the route in a clear, easy-to-read manner within a convenient form-factor.

We analyze �ve of the most common route mapping styles and consider the design

choices made in each.

2.5.1 Route Highlight Maps

Route highlight maps simply highlight the route on a general road map of the region.

Since the purpose of a road map is to provide an understanding of the entire road

system in a region, they typically employ constant scale factors and display extraneous

context throughout the map.

An example of this route mapping style appears in �gure 2.1. The primary problem

with this style is the constant scale factor which makes it impossible to see short roads

and their associated turning points. Since general road maps are not optimized to

show any particular route, a route highlight map will often su�er from both a large

scale factor that hides important information and an inconvenient form-factor that is

too large to easily manipulate while driving.
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Figure 2.1: A route highlight map. Although the route is highlighted in orange,

the map shows the entire city of San Francisco and therefore turns at the beginning

and end of the route are barely visible. The extraneous context information and the

variety of colors can make it diÆcult to �nd the route with a quick glance. The

form-factor of the map is inconvenient because the route is on both sides of the map

and therefore the navigator must search both sides when looking for the route.

The only property di�erentiating the route from the other roads is the highlight-

ing. Therefore the clarity of the route depends on the highlighting technique. Usually

the route is distinctively colored, but because general road maps provide context in-

formation over the entire map and often make liberal use of color to encode properties

of this extraneous information, it can sometimes be diÆcult to distinguish the route

from the other elements of the map.

2.5.2 Strip maps

Strip maps, or triptiks, are similar to route highlight maps, but are speci�cally de-

signed to communicate a particular route. As shown in �gure 2.2, strip maps address
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Figure 2.2: A strip map. A strip map depicting the �rst part of a route, highlighted

in red, from Palo Alto to Los Angeles. The scale factor and orientation vary from page

to page in order to center the route making it diÆcult to form a general understanding

of the overall route.

the issue of varying scale by breaking the route up onto multiple pages. Each page is

oriented so that the route runs roughly down its center and although the scale factor

is �xed for each page, the scale factor can di�er across pages. The di�ering scale fac-

tors allow strip maps to depict more detailed turning point information where needed.

However, because the map stretches over many pages and the orientation and scale

factor varies from page to page, forming a general understanding of the overall route

can be diÆcult.

2.5.3 Overview/Focus Map Collections

Overview/Focus map collections consist of a set of maps rendered at di�erent scales

that present a single route. This the most common route mapping style avail-

able through the Web-based route mapping services and an example of such an

overview/focus map collection is shown in �gure 2.3. A constant scale factor is used

within each map, but the scale factor di�ers across the maps. One of the maps is
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Figure 2.3: An overview/focus map collection. A route from Stanford to

Berkeley depicted with an overview/focus map collection. The overview show the

entire route, but turning point information is not visible. The turn-by-turn focus

maps depict each turn individually, but the varying scale factors and orientations

make it diÆcult to understand how the maps correspond to one another.



CHAPTER 2. ROUTE MAP DESIGN 31

scaled so that it provides an overview of the entire route. This overview map is es-

sentially a route highlight map and su�ers many of the problems associated with that

route mapping style. Since the scale of the overview map often reduces the readability

of local turn information, focus maps showing turn-by-turn steps are also provided.

While this may seem like an e�ective combination, in practice the two sets of maps

can be extremely diÆcult to use. The overview map rarely presents more than the

overall direction, and placement of the route within the larger geographic context.

Although turn-by-turn maps provide detailed turning point information, the use of

distinct maps for each turn, often with di�ering orientation and scale, makes it diÆcult

to understand how the maps correspond to one another. No single map provides a

complete description of the route at the appropriate level of detail. Thus, just as with

strip maps, the navigator may have diÆculty forming an overall understanding of the

route, leading to frustration and confusion.

2.5.4 2D Nonlinear Distortion Maps

To ensure clear communication of the turning point information, di�erent regions of

the route often need to be depicted at di�erent levels of detail. Recently several re-

searchers [CCF95, Kea98] have attempted to use image warping techniques on general

road maps and subway route maps in order to emphasize turning point information

while showing all of the surrounding context. These methods allow users to choose

regions of the map they wish to focus on and then apply nonlinear distortions, such

as spherical magni�cation to enlarge these focus regions.

Such 2D distortion allows detailed information to be displayed only where relevant

and often produces route maps that can be conveniently displayed on a single page.

However, as shown in �gure 2.4, a major problem with 2D image distortion techniques

is that there are areas of extreme distortion at the edges of the focal points which

make the overall route diÆcult to understand and follow. The severe distortion of

the text labels makes the map particularly diÆcult to read. One way to improve

this image warping approach would be to apply the warp only to the underlying lines

representing the network of routes. The unwarped text labels could then be placed
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Figure 2.4: A 2D nonlinear distortion map. Spherical magni�cation is applied

to a subway map to emphasize the important stations on the route, but extreme

distortion at the edges of the spherical region makes it diÆcult to understand the

surrounding context. Moreover, the severe distortion of the text labels makes the

map very diÆcult to read.

appropriately in the warped image so that the text would remain readable. This

approach is common in graph layout systems such as Lamping and Rau's [LR94]

hyperbolic tree browser. They apply warps to the node-edge structure of the graph

and then overlay unwarped text labels. However, to our knowledge approach has not

been applied to visualizing routes.

2.5.5 Hand-drawn Route Maps

One existing route mapping style, the hand-drawn map, manages to display each

turning point along the route clearly and simultaneously maintain simplicity and

a convenient form factor, as exempli�ed in �gures 1.2 and 2.5. Instead of using a

constant scale factor hand-drawn maps only maintain the relative ordering of the

roads by length. Although each road is scaled by a di�erent factor, longer roads
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Figure 2.5: A hand-drawn route map. Roads lengths, angles and shape are

distorted in order to emphasize the turning point information. Some context infor-

mation such as distances and city names near the main route facilitate navigation

without reducing the clarity of the overall map. Note that the mapmaker created this

map from memory, without the aid of any reference maps.

appear longer than shorter roads.

Hand-drawn maps also omit most contextual information that does not lie directly
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along the route. This strategy reduces overall clutter and improves clarity. As shown

in �gure 2.5, at most a sparse set of local context information such as distances

along each road and nearby city names are depicted because they greatly facilitate

navigation with little impact on the overall readability of the map. The angles formed

by the roads are regularized and road shape is generalized. Roads are often depicted

as generically straight lines or simple curves. These distortions make the map simpler

and thereby help to emphasize the essential turning point information.

2.6 Generalizing Route Maps

The generalization techniques used in LineDrive are based on those found in hand-

drawn route maps. As we saw in the previous section, hand-drawn route maps use

four basic types of generalization techniques: (1) the lengths of roads are distorted,

(2) the angles at turning points are altered, (3) the shapes of the individual roads are

simpli�ed, and (4) extraneous context is reduced and the graphic representation of

the roads and turning points are carefully chosen to emphasize the turning points.

Length Generalization: Hand-drawn maps often exaggerate the lengths of

shorter roads on the route while shortening longer roads to ensure that all the roads

and the turning points between them are visible. Often the map designer does not

know the exact length of the roads [Tve92] and only knows their lengths relative to

one another. The 
exibility of relative scaling allows hand-drawn route maps con-

taining roads that vary over several orders of magnitude to �t within a conveniently

sized image (i.e. a single small sheet of paper)and remain readable. The distortion is

usually performed in a controlled manner so that shorter roads remain perceptually

shorter than longer roads, and the overall shape of the route is maintained as much

as possible.

Angle Generalization: Mapmakers often alter the angles of turns to improve

the clarity of the turning points. Very tight angles are opened up to provide more

space for growing shorter roads and labeling roads clearly. Roads are often aligned
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with the horizontal or vertical axes of the image viewport, to form a cleaner looking,

regularized map [Tve81, Byr82]. Such angular distortions are acceptable because

reorienting correctly requires knowing only the turn direction (left or right), not the

exact turning angle.

Shape Generalization: Since a navigator does not need to make active decisions

when following individual roads, knowing the exact shape of a road is usually not

important. Simplifying the road shape removes extraneous information and places

more emphasis on the turning points, where decisions need to be made. Roads with

simpli�ed shape are perceptually easier to di�erentiate as separate entities and are

also easier to label clearly.

Graphic Generalization: The main technique for emphasizing turning point

information in hand-drawn maps is to reduce extraneous context information by sim-

ply omitting it from the map. The route, depicted as a one-dimensional curve, is then

the primary graphical element in the map. The negative space surrounding the route

creates a simple, clean design that is clear and easy-to-read.

Some hand-drawn route maps use standard graphic design techniques to enhance

the turning point information. For example, roads may be color-coded or their draw-

ing style might change depending on the importance of the road. Highways might be

drawn as double lines while residential roads are drawn as a single thin line. Profes-

sionally designed route maps sometimes place bullets at each turning point in order

to emphasize that a decision is required at each of those points. Finally, the context

information that does appear in hand-drawn maps is often de-emphasized. For ex-

ample, cross-streets may be sketched in a lighter color to reduce interference with the

main route.

2.7 Errors Due to Excessive Generalization

While these generalization techniques can increase the usability of the route map,

they can also cause confusion and mislead the navigator if carried to an extreme.
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(a) false intersections

(b) missing intersections

(c) inconsistent turn direction

(d) overall route shape

original route length angle shape

N/A

N/A

Figure 2.6: Errors due to excessive generalization. Excessive generalization

can cause four types of errors in the topology and shape of the route. Each column

shows the route after generalizing road length, angle or shape. For comparison, the

undistorted route is shown in gray. While humans mapmakers are careful not to

over-generalize a map to the point of introducing such errors in the map, automated

mapmaking systems must explicitly check for these errors. (a) The original route

does not contain an intersection but generalization causes a false intersection. (b)

The original route contains an intersection but after generalization it is missing. (c)

Generalization changes the turn direction so that a right turn appears to be a left

turn or vice versa. Note that distorting road length cannot cause this error. (d) Gen-

eralization causes drastic changes in the overall shape of the route. Note that shape

generalization cannot generate this error because each road is simpli�ed individually

and road endpoints are never removed.
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By simplifying road shape and distorting road lengths and angles, it is possible to

drastically change the topology and overall shape of the route. We consider four types

of errors due to excessive generalization, as shown in �gure 2.6: false intersections,

missing intersections, inconsistent turn directions and incorrect overall route shape.

False Intersections: A false intersection occurs in a route map when two roads

are drawn as intersecting, even though they do not in fact intersect. All three forms of

road generalization can generate false intersections. False intersections are topological

errors that can deceive navigators into thinking that the route contains a loop or a

shortcut when no such shortcut really exists.

Missing Intersections: A missing intersection occurs when the original route

contains an intersection, but the intersection is missing in the generalized route map.

This usually occurs when one road passes over another road as is often the case at

highway interchanges. Although missing intersections, like false intersections, are

topological errors that can deceive navigators they are less misleading than false

intersections.

Inconsistent Turn Direction: Generalization can cause a right turn to appear

as a left turn or vice versa. Inconsistent turn direction is always generated by either

angle or shape generalization. Length generalization only a�ects the length of each

road and therefore cannot create an inconsistent turn direction. Because turn direc-

tion is a fundamental component of turning point information such errors can cause

severe problems for navigators.

Overall Route Shape: Generalization can also create drastic changes in the

overall shape of the route. For example, growing one road while maintaining all the

others at their original size via length generalization can alter the overall direction

between the origin and destination of the route. Similarly angle generalization could

cause an east-west route could become a north-south route. Shape generalization
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essentially requires simplifying road shape. The most extreme form of road simpli-

�cation replaces each road with a straight line connecting its endpoints. Since each

road is simpli�ed individually and the endpoints of each road are never removed,

extreme changes in overall route shape are not possible due to shape generalization.

Although errors in overall route shape can lead to a distorted cognitive map of the

route and make it diÆcult to estimate distances or orientation, such errors are the

least detrimental of the four errors we consider.

Human mapmakers rarely generalize routes to the extreme required to induce

these errors3. Generalization is performed almost subconsciously, with constant error-

checking to ensure that such misleading e�ects are not generated. Automated map-

making systems, however, must be explicitly perform such error-checking. The bulk

of LineDrive's road layout algorithm, as described in chapter 6, is designed to perform

these checks. Like human mapmakers, LineDrive carefully generalizes road length,

angle and shape, to dramatically improve the usability of the route maps.

3However, it is fairly common for human mapmakers to reorient sections of a route so that they

align with the cardinal directions. In �gure 1.2 the region in downtown LA has been reoriented

in this manner. Compare this map to the LineDrive map in �gure 1.3 in which the orientation of

downtown LA is closer to the true orientation.
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Related Work

Over the last two decades cartographers, graphic designers and computer scientists

have started to work together to create automated map generalization algorithms.

However, despite the fact that the distortion techniques used in hand-drawn route

maps improve usability, there has been surprisingly little work on developing au-

tomatic generalization techniques based on these distortions. Most of the existing

research has focused on developing simpli�cation and abstraction techniques for stan-

dard road, geographical and political maps [BM91, Mac95, Imh82, Mon91]. Unlike

route maps, these general purpose maps are designed to convey information about an

entire region without any particular focus area. Thus, these maps cannot include the

speci�c types of distortion that are used in route maps.

However, route maps can exploit some of the generalization techniques originally

designed for standard regional maps. In this chapter we present two threads of related

work on shape simpli�cation and automated layout techniques for 2D displays. We

consider how simpli�cation and automated layout techniques can be applied to the

problem of designing and rendering route maps.

3.1 Shape Simpli�cation

Techniques for curve smoothing, interpolation, and simpli�cation have been well-

studied in a variety of contexts including cartography [DP73, VW93, WM98, BLR00]

39
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Figure 3.1: Douglas-Peucker algorithm. Initially only the extreme shape points

p0 and p5 of the original piecewise linear curve (dotted) are retained forming a single

segment p0p5. The algorithm computes the o�set distance between every interior

shape point and the segment and then retains the point furthest from the segment,

in this case p3. The algorithm proceeds recursively on both subsegments (in this case

p0p3 and p3p5) until a given error threshold is achieved.

and computer graphics [Ram72, Far88, HS92, dBvKOS97]. Today, the most com-

mon simpli�cation technique used in geographic information systems (GIS) and au-

tomated mapmaking systems, is the Douglas-Peucker algorithm which was indepen-

dently developed in the early 1970's, �rst by Ramer [Ram72] and then by Douglas

and Peucker [DP73].
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Given a piecewise linear curve, speci�ed as a set of shape points connected with

line segments, the Douglas-Peucker algorithm begins by throwing away all but the

two extreme shape points of the curve and then iteratively attempts to add back only

the most important interior shape points. On each iteration the algorithm forms a

segment between the extreme shape points, computes the o�set distance from each

interior shape point to the segment and then adds back the shape point furthest

from the segment. The curve is now broken into two segments and the algorithm

performs the same test on each sub-segment recursively until an error threshold (e.g.

the maximum o�set distance is less than some pre-de�ned tolerance) is achieved. The

procedure is illustrated in �gure 3.1.

The o�set distance is essentially a relevance metric for each shape point, and

on each iteration the Douglas-Peucker algorithm retains on the most relevant shape

point based on this metric. This approach can be thought of as an additive algorithm

because it adds shape points back to the curve on each iteration. In contrast, a

subtractive simpli�cation algorithm begins with all the shape points and on each

iteration throws away the least relevant shape points. Both approaches are similar

and in fact the Douglas-Peucker algorithm can be easily framed as a subtractive

algorithm; start with all the shape points and on each iteration throw away the

interior shape point with the smallest o�set distance, as long as the o�set distance is

smaller than the error threshold.

This basic approach to simpli�cation has been applied with a variety of relevance

metrics to simplify all types of one-dimensional curves found in maps, including roads,

rivers and boundaries between regions such as state lines. One of the main directions

of current research in curve simpli�cation is designing relevance metrics that maintain

important perceptual characteristics of the curve. Visvalingam and Whyatt [VW93]

and Barkowsky et al. [BLR00] have shown that the e�ective area of a shape point,

de�ned as the area subtended by the point and its two neighbors, is a better metric

than o�set distance for capturing the overall shape of the curve. This metric tends

to eliminate the irrelevant small-scale bends in the curve, while preserving signi�cant

large-scale kinks. Wang and M�uller [WM98] have designed a metric that �nds and

evaluates the relevance of sets of adjacent shape points that form a signi�cant bend
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in the curve. Their elimination operator them removes all points within bends that

fall below a given threshold.

One drawback with this class of simpli�cation techniques is that they may in-

troduce false intersection in the simpli�ed curves. Several groups have proposed

simpli�cation algorithms that produce topologically consistent simpli�cations. How-

ever, these techniques tend to be complex and computationally expensive[dBvKS98,

JBW95]. Recently, Saalfeld [Saa99] described a simple modi�cation to the Douglas-

Peucker algorithm for maintaining topological consistency using eÆcient local tests.

These tests compute which shape points to add to the simpli�ed curve in order to

guarantee that the simpli�ed curve will not contain false intersections. However this

approach relies on properties of the Douglas-Peucker algorithm's o�set distance rel-

evance metric and therefore cannot be applied to simpli�cation algorithms that use

other types of relevance metrics.

One similarity among all the algorithms we have considered so far is that they

only remove unnecessary shape points from the original curve. These algorithms never

change the position of a shape point or introduce new shape points. Although a variety

of smoothing and simpli�cation algorithms that remove these restrictions have been

developed [PBR98, LPL97, PAF96, ZB96, GHMS93, Far88], Guibas et al. [GHMS93]

have shown that maintaining topological consistency in this more general case is

NP-hard.

As we will describe in chapter 5, we use a relevance metric approach to simplifying

roads in LineDrive. Like the previous approaches we only remove shape points from

the original curve. However, we introduce several new constraints on the simpli�cation

process to avoid the topological and shape errors shown in �gure 2.6.

3.2 Automated Layout

We de�ne layout as the process of creating an arrangement for a set of visual elements.

From a geometric standpoint, we must choose a position, orientation and scale for

each element. Planning a layout is a common problem in a variety of domains that

involve visual communication, including the design of user interfaces, architecture,
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web pages, documents, newspapers, magazines, posters, billboards and maps.

Today, the majority of layouts are created by hand, often by an expert graphic

designer, and usually require many hours of experimentation to fully develop. At these

rates, it is impossible to hand-craft layouts for time-critical applications requiring

the communication of visual information. Moreover, novice users without a formal

background in graphic design may not know the necessary heuristics to create the

most e�ective layouts. Therefore, developing eÆcient tools for automatically creating

e�ective, high-quality layouts for graphical presentations has become a major area of

research.

In this section we consider previous approaches to automated layout that have

in
uenced the automated layout algorithms used in LineDrive. Our review focuses

on systems that design layouts meant to communicate information to human viewers.

In particular, we do not cover automated VSLI design techniques [Len90] because the

layouts created for VSLI chips are constrained by the peculiarities of a fabrication

process and are therefore usually not meant to communicate information to humans.

Similarly we do not present packing algorithms that are designed to generate mini-

mum area or volume layouts [MMD97, Hof95, MDL92]. While many of the systems

we describe are designed to solve layout problems in domains outside of cartography,

we only present systems that are most relevant to automated route map layout. Lok

and Feiner [LF01] as well as Hower and Graf [HG96] have compiled comprehensive

surveys of research on automated layout techniques for graphical presentations.

3.2.1 Formulating Layout as Constraint-Based Optimization

In almost any layout problem there are restrictions on how the information can be

laid out, and there are a set of criteria that can be used to evaluate the quality of the

layout. A standard restriction for example is that the �nal layout can not exceed the

dimensions of given display device. Evaluation criteria are often composed of domain

speci�c rules that assess the usability and aesthetics of the layout. In our case, they

include issues such as whether roads are large enough to be visible and the desirability

of a label's placement relative to the object it is labeling.
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Layout constraints can be used to encode both the restrictions on the layout and

the evaluation criteria for the layout. In general constraints provide a natural abstrac-

tion for specifying the spatial relationships between visual elements. It is usually much

simpler to specify a local constraint among a small subset of elements, such as ele-

ment A should appear above element B, than it is to specify a complete procedure for

creating a �nal layout for all the elements. Constraints allow a designer to describe

the layout locally at a high level of abstraction without having to specify exactly how

to achieve the �nal layout. Given a set of constraints, the goal of constraint-based

optimization is to �nd a layout that best meets all of the constraints.

Many general-purpose automated layout systems require the user to specify the

spatial constraints on the visual elements. In some cases the constraints are spec-

i�ed as text directives such as (element A ABOVE element B) [WW94]. Another

approach is to provide visual interfaces for specifying constraints. A number of sys-

tems provide graphical user interfaces that allow users to graphically specify the

relationships between elements [Gra92]. This approach is particularly common in

user interface design toolkits [Mic97, Ous94, MASC85]. The most prevalent example

of this form of constraint speci�cation is in page layout systems such as Microsoft

Word [RR99] that allow users to anchor images within documents.

While these approaches allow the users to specify a layout at a high level of ab-

straction, creating an e�ective layout requires some design knowledge. The user must

decide that element A should appear above element B. Recently some researchers have

applied machine learning techniques to automatically extract constraints for creating

e�ective layouts. Most of these systems learn by watching expert users interactively

specify constraints [Mas94, MMK93, BD86]. Zhou and Ma [ZM00, ZM01] have ex-

plored machine learning techniques for extracting these constraints directly from a

set of example layouts.

When the layout problem is restricted to a particular domain, expert graphic de-

signers can use domain knowledge to specify the spatial constraints as a pre-de�ned

set of rules. For example, expert cartographers such as Imhof [Imh75], have developed

a set of placement constraints for map labels. A common constraint is that labels
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should appear above the features they are labeling rather than below. Almost all au-

tomated map label placement systems [Zor97, ECMS97] de�ne this set of constraints

a priori so that novice end-users do not have to design the constraints themselves.

Such systems eliminate the layout design work an end user must perform. If the

computed layout is not optimal, interactive tools may be provided so the user can

guide the system or modify the �nal result [AAL+00, RMS97] For domain speci�c ap-

plications the fully automated method with prede�ned constraints produces excellent

results and this is the approach we take in LineDrive.

3.2.2 Resolving Constraints

The constraint satisfaction problem appears in a wide variety of forms and the general

problem has been well-studied in computer science [Mac92]. Although there are a wide

variety of techniques for resolving a system of constraints, automated layout systems

usually take one of four approaches; (1) grid-based geometry management, (2) linear

programming with constraint propagation, (3) dynamic simulation and (4) search.

We consider examples of each of these in turn.

3.2.2.1 Grid-Based Geometry Management

Axis-aligned grids are a common tool for organizing the layout of two-dimensional

presentations such as newspapers. Several automated layout systems simplify con-

straint resolution by only allowing the speci�cation of constraints that conform to an

underlying grid. Each visual element is treated as content for a grid cell and con-

straints are speci�ed relative to other grid cells. Positional constraints are used to

specify the position of one cell with respect to another, while hierarchical constraints

are used to specify that one cell should appear within another cell. Initially the entire

page forms a single cell at the base of the hierarchy and all the other cells are placed

within it.

Given a set of constraints speci�ed in this grid-based manner, a geometry manager

then expands the constraints from the top down to determine the absolute position

of each grid cell. Such systems often rely on the user to solve any inconsistencies
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among the constraints. Feiner's GRIDS [Fei88] system was one of the �rst to use this

approach to automating layout. Today this grid-based approach is especially popular

among user interface toolkits including Tk [Ous94], the X toolkit [MASC85], and

Microsoft's Foundation Classes [Mic97].

3.2.2.2 Linear Programming With Constraint Propagation

The widespread interest in the constraint satisfaction problem has led to the devel-

opment of general-purpose systems for resolving systems of linear constraints [BB98,

SMFBB93]. Each constraint must be speci�ed as either a linear equation or an in-

equality, and each constraint equation is given a priority so that higher priority con-

straints are resolved in favor of lower priority constraints if there is an inconsistency

in the constraint system. The solvers then apply linear programming in combination

with constraint propagation in order to �nd the best solution to the system.

In order to use a general-purpose constraint solver to design a graphical presen-

tation, higher-level constraints must be translated into a set of linear equations and

inequalities. Weitzman and Wittenburg [WW94] have developed a full relational

grammar for specifying the high-level constraints necessary to generate multimedia

presentations. Users enter a set of text rules using the grammar and their system

converts these into a set of low-level constraint equations which are fed into a back-

end constraint solver that generates the �nal layout. Graf's LayLab [Gra92] system

performs a similar transformation of high-level constraints into low-level constraint

equations. However, unlike Weitzman and Wittenburg's system, LayLab allows users

to visually specify the high-level constraints though a graphical user interface.

3.2.2.3 Dynamic Simulation

Another technique for resolving layout constraints is to treat the visual elements as

masses and specify the constraints as forces acting on the masses. Often the forces are

described using the standard physics model of spring in which the force is proportional

to the distance between the element center of mass and its desired position. Once

a mass-spring system has been de�ned in this manner, standard physically-based
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constrained dynamics simulators [WGW90] can be used to �nd the rest positions,

and hence the layout for the visual elements

This approach has been widely explored in the domain of graph drawing [BETT99,

FR91]. Its popularity may lie in the fact that it is very intuitive to think of each node

in the graph as a mass and each edge between nodes as a spring that links them. The

nodes are placed in an initial position and the system is relaxed until it converges to

an energy-minimizing state. One drawback of this approach is that minor tweaking

of layout parameters can result in major changes in the �nal layout.

In computer graphics, Gleicher and Witkin [GW94] have applied constrained dy-

namic simulation to two-dimensional drawing programs. Their system can simultane-

ously enforce layout constraints while allowing the user to drag, thereby allowing the

user to interactively explore the con�gurations of the model consistent with the layout

constraints. More recently, Harada et al. [HWB95] have used constrained dynamics

to provide an interactive user interface for an architectural layout system.

The text layout engine used in TeX [Knu99] builds a representation similar to

a mass-spring system. Each word within a paragraph represents a mass and the

spaces between them represent springs. The goal of the layout engine is to determine

the spacing between the words so that the line-breaks in the formatted text appear

aesthetically pleasing. Although the problem is set up to resemble a mass-spring

system, the TeX layout engine uses dynamic programming techniques rather than

physically-based dynamic simulation.

3.2.2.4 Search

Many layout problems can be posed as a search for an optimal layout over a space

of possible layouts. To frame the layout problem as a search we need to de�ne an

initial layout and two functions: a score function that assesses the quality of a layout

based on the evaluation criteria, and a perturb function that manipulates a given

layout to produce a new layout within the search space. Both the score and the

perturb functions are de�ned by the set of constraints on the layout. Given these two

functions the search can be performed using any search technique including A*, tabu

search, gradient descent and simulated annealing [MF00].
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In the graph drawing domain a variety of search techniques have been explored.

Kamada and Kawai [KK89] have used gradient descent while Davidson and Harel [DH96]

exploit simulated annealing. Brandenburg et al. [BHR95] and Tunkelang [Tun93] de-

scribe more complicated algorithms that combine several search techniques. In the

domain of cartography, search techniques are widely used to automatically label point

and line features in traditional geographic maps. Marks and Shieber [MS91] have

shown that �nding optimal label placements is NP-complete and several previous

systems have used randomized search to �nd near-optimal label placements [Zor97,

ECMS97]. Simulated annealing is the most commonly used randomized search al-

gorithm because it eÆciently covers the search space and is simple to implement.

For these reasons, we also use simulated annealing, not only for placing labels, but

also for laying out the roads and context information in LineDrive route maps. The

simulated annealing algorithm is described by the following pseudo-code:

procedure SimAnneal()

1 InitializeLayout()

2 E  ScoreLayout()

3 while(! termination condition)

4 PerturbLayout()

5 newE  ScoreLayout()

6 if ((newE > E) and (Random() < (1:0� e
��E=T )))

7 RevertLayout()

9 else

10 E  newE

11 Decrease(T )

Implementing the algorithm is straightforward and requires the speci�cation of

four functions. The InitializeLayout() function de�nes the initial placement for each

of the visual elements and thereby provides a starting point for the search. The

PerturbLayout() function provides a method for changing a given layout into a new

layout, while the RevertLayout() functions inverts the actions of PerturbLayout() to
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go from the new layout back to the previous layout. Finally the ScoreLayout() func-

tion computes how close to optimal the current layout is. By convention, scores are

de�ned to always be positive and the lower the score the better the layout. Therefore,

the goal of simulated annealing is to minimize the score.

As shown in the pseudo-code, the simulated annealing algorithm accepts all good

moves within the search space and, with a probability that is an exponential function

of a temperature T , accepts some bad moves as well. As the algorithm progresses,

T is annealed (or decreased), resulting in a decreasing probability of accepting bad

moves. Accepting bad moves in this manner allows the algorithm to escape local

minima in the score function.

We can divide our constraints into two sets; 1) hard constraints consist of charac-

teristics required of any acceptable layout and therefore bound the space of possible

layouts, while 2) soft constraints consist of characteristics desired in the �nal layout

but not required. In designing the constraints, it is important not to impose too

many hard constraints or the layout problem will be overconstrained making it im-

possible to �nd any acceptable layout. The hard constraints are typically imposed

through the perturb function which is designed to only generate layouts that meet

the hard constraints. The score function checks how well a given layout achieves the

soft constraints.

The diÆcult aspects of characterizing the layout problem as a search are designing

a numerical score function that eÆciently captures all of the desirable features of the

optimal layout and de�ning a perturb function that covers a signi�cant portion of

the search space. In the following chapters as we discuss the di�erent layout stages

of LineDrive, we will focus on explaining these aspects of our algorithm design.



Chapter 4

System Overview

Given a route, the goal of a route map design system is to produce an image that

visually emphasizes the most important information required to follow the route.

LineDrive is a fully automated, real-time, route map design system that achieves

these goals by exploiting the generalization techniques commonly found in hand-

drawn maps.

From a usability perspective, however, even the best route map design system

would be diÆcult to use without a front-end route �nding service that can take an

origin-destination address pair and compute a route between them. Such a route

�nding service requires direct access to a comprehensive geographic database of all

the roads within a region. Lacking such access we originally developed a prototype for

LineDrive as a stand-alone application, that took a human-readable text description

of the route as input as shown in this example:

1 Starting at 652 Folsom St, begin on FOLSOM ST heading northeast

2 Turn right on HAWTHORNE ST heading southeast for 0.1 miles

3 Turn right on HARRISON ST heading southwest for 0.8 miles

4 Turn right on 7TH ST heading northwest for 0.5 miles

5 Turn left on MARKET ST heading southwest to 2059 Market St

Each line described a turn direction, the name of the road being turned onto the

heading of the road (N, S, E, W, NE, NW, SE, SW) and the distance of the road in

50
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Figure 4.1: An early prototype LineDrive map. The initial prototype version of

LineDrive took a human readable text description of the route as input and produced

this type of route map containing many of the generalizations found in hand-drawn

maps. Note that this is the same route as depicted in �gure 2.5. While these maps

were much more e�ective than standard computer-generated route maps, the lack of

road shape information could cause serious topological errors.
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miles. The user could either hand-specify specify the route or use the text directions

produced by a standard Web-based driving direction service. A map produced by the

prototype LineDrive system is shown in �gure 4.1. Note that this is a map for the

same route depicted in �gure 2.5.

Even with such a simple input description of the route, the prototype LineDrive

system could produce maps that were much more e�ective than those created by pre-

vious automated mapping systems. We believe this is largely because these simpli�ed

instructions, which indicate only heading and distance along each road, capture the

topology of the route. As Byrne [Byr82] has shown, in many hand-drawn maps, roads

are simply drawn as straight lines in one of the eight cardinal directions.

However, the lack of shape information about roads caused two types of errors

with these early LineDrive maps. First, the turn direction would sometimes con
ict

with the road heading. Second, the lack of shape information along a road could

generate false or missing intersections that did not occur in the original route. Since

the prototype system did not have access to the original road shape it could not

alleviate such errors. Moreover, entering text directions into the LineDrive system

could be a tedious process. Users generally create maps for routes they are not

familiar with and even when they have some knowledge of the route they usually do

not know distances for each road segment.

For these reasons, the current version of LineDrive is embedded within a complete

end-to-end route mapping system as part of Vicinity Corporation's MapBlast! web-

site1. In this section we present the overall system architecture. We begin with an

overview description of the end-to-end system, followed by a more detailed description

of the computational stages in LineDrive.

4.1 End-To-End Route Mapping System

A block diagram of the end-to-end route mapping system is shown in �gure 4.2. All

of the geographic data is stored in the database in the standard latitude/longitude

geographical coordinate system. The system takes an origin-destination address pair

1Located at www.mapblast.com
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as input and the route �nding service computes the sequence of roads required to go

from the given origin to the given destination. Each road is represented as a piecewise

linear curve described by a sequence of latitude/longitude shape points.

Once the route is computed it is passed into a image size oracle which determines

the image size for the route map. The size is based on an estimate of the aspect

ratio of the route and the size of the output display device. While LineDrive can

design a route map to �t within any given image size2, the system can make better

use of the given space in the image if it conforms to the aspect ratio of the route.

For example, routes that are predominantly north-south might be given more vertical

space than horizontal space to accommodate the vertical orientation. However, the

image size oracle is not a central component of the route visualization system. It is

further described in chapter 9, after we present the core LineDrive system.

The route and image size are passed into LineDrive which generates a route map

image. The page designer takes this route map as well as several other elements

describing the route and constructs a �nal webpage that is delivered back to the user.

This �nal step is crucial to proving an e�ective solution. Users often want to see

several aspects of the route at once. In particular a multimodal description of the

route with text directions near the route map image can vastly improve usability. As

described in chapter 9, the page designer places the both the LineDrive route map and

the text directions well as a zoomed-out overview map and a zoomed-in destination

map in the �nal webpage. Examples of webpages created by our end-to-end system

appear in �gure 9.2.

4.2 LineDrive Map Design Stages

The space of all possible route map designs and layouts is extremely large and contains

many dimensions. LineDrive reduces the dimensionality of this space by performing

the map design in �ve independent stages as shown in the gray shaded LineDrive

portion of the block diagram in �gure 4.2. The layout stages implement many of the

generalization techniques found in hand-drawn maps. These stages were originally

2However, at small image sizes LineDrive may not produce a very legible map.
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developed as part of the prototype LineDrive system and evolved to exploit additional

geographic information in the current version.

The �rst stage of the LineDrive system is shape simpli�cation, which removes ex-

traneous shape detail from the roads. The next three stages, road layout, label layout,

and context layout, each deal with automating a layout problem. We use simulated

annealing, a randomized search, in all three stages to eÆciently �nd near-optimal

layouts. The basic simulated annealing algorithm is described in section 3.2.2.4 of

the previous chapter.

The road layout stage computes a length and orientation for each road, which

ensures that all the roads can be clearly labeled and that each turning point is visible

and well-emphasized. The label layout stage labels each road with its name so that

navigators can quickly identify each turn. The context layout stage then attempts

to add additional information, such as cross-streets and local landmarks, to the map.

Since the roads and their labels constitute the essential information in route map,

the additional context information is only added sparingly around turning points in

order to avoid adding clutter to the map. The details of these three layout stages are

presented in chapters 6, 7 and the �rst half of chapter 8. The second half of chapter 8

presents the decoration stage, which adds elements such as road extensions and an

orientation arrow to the map to enhance its overall usability.

Figure 4.3 depicts a route rendered using the current version of LineDrive The

evolution of the system is evident in a number of graphical di�erences between this

map and the map rendered with the early version of LineDrive shown in �gure 4.1.

For example, the prototype map does not contain distance labels, cross-streets, road-

type indicators, bullets at turning points, or even an orientation arrow. Moreover,

access to the geographic database allows the system to depict more road shape and

truer turning angles. While the initial version of LineDrive produced usable route

maps and provided a good test-bed for trying various diagrammatic generalization

techniques, the current version vastly improves usability by providing an end-to-end

solution, depicting several secondary classes of context information and delivering

increased robustness to topological errors.
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Figure 4.2: Block diagram of end-to-end route mapping system. The user

requests driving directions by specifying an origin-destination pair of addresses and

the system produces a webpage containing four elements; (1) a LineDrive map, (2)

text directions, (3) a zoomed-out overview map and a (4) zoomed-in destination map.

Each box represents a computational stage in the system and each link represents data


ow through the system. The LineDrive route map designer is itself comprised of �ve

independent stages. In this dissertation we will describe the functionality of each

of the stages marked with thick red outlines. Examples of webpages created by the

complete system are shown in �gure 9.2.
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Figure 4.3: Current LineDrive map. The current version of LineDrive is em-

bedded within an end-to-end route mapping system. Access to a comprehensive

geographic database allows the system to depict more road shape and truer turn-

ing angle. Comparison with a map generated by the LineDrive prototype shown in

�gure 4.1 shows that the maps have graphically evolved in a number of ways.



Chapter 5

Shape Simpli�cation

Although each road on the route is initially speci�ed as a detailed, piecewise linear

curve, navigators rarely need to know the exact shape of a road in order to follow

it. LineDrive's shape simpli�cation stage reduces the number of segments in each

road to smooth out unnecessary wiggles, while leaving the overall shape of the route

intact. Shape simpli�cation not only yields a cleaner looking map but also increases

the speed and memory eÆciency of the subsequent layout stages of the LineDrive

system.

LineDrive employs a standard simpli�cation approach that ranks the relevance of

all the shape points of the curve and then removes all interior shape points that fall

below a given threshold. Figure 5.1 shows the same route before and after simpli�-

cation. The high-frequency curve detail in roads such as CA-17 is unnecessary for

following the route. Even relatively smooth, low-frequency curves such as the curve

along US-101 does not add essential information to the map. In fact, for this route

all the roads have been simpli�ed to straight lines. Figure 5.3 shows an example

of a route in which some shape information is retained after simpli�cation to better

capture the roughly 90.0 degree turn from Nita Avenue onto Betlo Avenue.

57
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Before Shape
Simplification

After Shape
Simplification

Figure 5.1: Before and after shape simpli�cation. A route rendered directly

from its input form, before simpli�cation and after simpli�cation. The simpli�cation

removes unnecessary shape detail and in this route all the roads become straight lines.

Simpli�cation also makes it easier to label roads so that the association between each

road and its label is visually clear. Note that both maps are rendered using a constant

scale factor, which causes relatively short roads at the beginning and end of the route

to e�ectively shrink to a point. The insets depict the route map immediately before

and after the shape simpli�cation stage of the LineDrive pipeline. To show how shape

simpli�cation a�ects labeling we have processed the route through the all the stages

of the LineDrive pipeline following road layout in the non-inset maps.

5.1 Preventing Errors

While simplifying road shape we also have the additional requirement that the algo-

rithm must not introduce the three types of undesirable e�ects shown in the rightmost
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column of �gure 2.6: false intersections, missing intersections and inconsistent turn

directions. We include three tests during simpli�cation to prevent these errors.

5.1.1 Missing Intersection Test

To ensure that the simpli�cation process does not introduce false or missing inter-

sections, we initially compute all the intersection points between each pair of roads.

Suppose roads r1 and r2 initially intersect at point p1. We add the intersection point

p1 to the set of shape points for both r1 and r2 and mark p1 as unremovable. Since

the simpli�cation algorithm cannot remove these unremovable intersection points, a

missing intersection cannot be generated.

5.1.2 False Intersection Test

We also create a separate list of the true intersection points between each pair of roads.

In the subsequent phases of simpli�cation we only accept the removal of a shape point

if its removal does not create a new intersection point between any pair of roads, thus

ensuring that the simpli�cation will not introduce any false intersections.

5.1.3 Inconsistent Turn Direction Test

Finally, we check for inconsistent turn direction at the turning points between each

road ri and the roads ri�1 and ri+1 adjacent to it. First, we check the turn direction

between the current road ri and the previous road ri�1. Our test detects inconsistent

turn direction with respect to the coordinate system oriented along the last segment

of ri�1. As shown in �gure 5.2, we loop through the set of shape points for ri from

start to end and determine whether or not to mark each one unremovable based on

the heading directions of two vectors; vector v1 running between the endpoint of ri�1

and the current shape point, and vector v2 running between the current shape point

and the endpoint of ri. If we let cri�1 be the vector oriented along the last segment

of ri�1 then we can test whether or not v1 and v2 are in the same half-plane with
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Figure 5.2: Inconsistent turn direction test. To check turn direction consistency

between roads ri and ri�1 we step through the shape points of ri, forming two vectors

v1, between the endpoint of ri�1 and the current shape point, and v2, between the

current shape point and the endpoint of ri. If v1 and v2 are not in the same half-plane

with respect to the coordinate system oriented along the last segment of the ri�1, we

mark the current shape point as unremovable. The test continues until a shape point

is not marked as unremovable.

respect to cri�1 by checking the following equality:

sign(cri�1 � v1) = sign(cri�1 � v2) (5.1)

Since all of our vectors lie in the xy-plane, the vector cross products will point along

either the positive or negative z-axis. If the two cross products have di�erent signs1

v1 and v2 are in di�erent half-planes with respect to cri�1 and therefore the current

shape point must be marked unremovable. The test continues until a shape point is

not marked as unremovable. While we have described the turn direction test for the

turning point between roads ri and ri�1, the test for the turning point between ri and

the next road ri+1 is similar.

Even if turn direction consistency is properly maintained the map can be confusing

if a sharp turning angle appears as if it is a shallow turning angle. An example of

1Our equation contains a slight abuse of notation. We are passing a vector to the sign() function

instead of a scalar. The function returns the sign of the z-component of the vector.
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No Shape 
Simplification

Simplification does not
properly preserve

turning angle

Simplification properly 
preserves turning angle

Figure 5.3: Preserving sharp turning angles. The turning angle at the intersec-

tion between Nita Avenue and Betlo Avenue is about 90.0 degrees in the unsimpli�ed

map. The inconsistent turn direction test described in �gure 5.2 performed at the

turning point between Nita and Betlo allows Nita to be simpli�ed to a straight line.

As shown in the map at the top right, the turn angle after simpli�cation is just about

0.0 degree even though the the turn direction is consistent. To avoid such drastic

changes in turn angle we extend the previous inconsistent turn direction test to mark

shape points as unremovable if the angle between v1 and v2 is larger than a given

threshold angle.

this problem appears in �gure 5.3. In the unsimpli�ed route the angle between Nita

Avenue and Betlo Avenue is roughly 90.0 degrees. If Nita is simpli�ed to a straight

line, the turn direction between Nita and Betlo remains consistent but the turn angle

reduces to just about 0.0 degrees. Instead of a turning onto Betlo it appears as if

Nita becomes Betlo. To avoid this problem we extend the inconsistent turn direction

test to mark shape points as unremovable if the angle between v1 and v2 is larger

than a given threshold angle. In practice we have found that a threshold angle of
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(a) Kink at shape point pi (b) Lengths of segments adjacent to pi 
increase. Turning angle same as in (a).

(c) Turning angle at pi increases. Lengths
of adjacent segments same as in (a).

(d)  Both turning angle and lengths of
adjacent segments increase.

pi

pi-1 pi+1

Figure 5.4: Shape point relevance. The goal of shape simpli�cation is to remove

irrelevant kinks in a road by removing shape points causing the kinks. Therefore,

the relevance of a shape point is dependent on the turning angle at the shape point

and the lengths of the segments adjacent to the shape point. Increasing the segment

lengths as in (b) or the turning angle as in (c) increases the relevance of the shape

point. The shape point in (d) is most signi�cant because both the turning angle and

the adjacent segment lengths increase. (After �gure 2 in Barkowsky et al.[BLR00])

65.0 degrees produces good results.

5.2 Relevance Metric

For most roads we are very aggressive about simpli�cation. Our relevance metric

allows the removal of all shape points that are not marked as unremovable by the

previous tests. As a result, most roads are simpli�ed to a single line segment. De-

picting roads as simple line segments helps to create the clean, easy-to-read look of

LineDrive maps.

For some roads, such as highway entrance and exit ramps, depicting more realistic

shape can be useful. Knowing whether a ramp curves around tightly to form a

cloverleaf or only bends slightly can make it easier to enter or exit the highway.

Thus, when simplifying ramps we use a more conservative simpli�cation relevance
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metric to retain more shape. Our relevance metric is based on a metric described by

Barkowsky et al. [BLR00]. As shown in �gure 5.4, the relevance of a shape point is

dependent on the turning angle at the shape point and the lengths of the segments

adjacent to the shape point. In general, sharp turning angles and long segments,

increase the importance of the shape point.

Mathematically we can de�ne the relevance metric as follows. Suppose v1 and v2

are vectors running from shape point pi to its neighboring shape points pi�1 and pi+1

respectively. Let �(pi) be the turning angle at pi between v1 and v2. The relevance

metric K is then computed as:

K(pi) =
�(pi)kv1kkv2k

kv1k+ kv2k
(5.2)

v1 = pi�1 � pi (5.3)

v2 = pi+1 � pi (5.4)

Higher values of K indicate more important shape points. To simplify a piecewise

linear curve using this metric we initially compute relevance for all interior shape

points. We then remove the least relevant point, update the relevance values for the

shape points adjacent to the removed point and iterate.

5.3 Dropping Roads from the Map

Highway ramps and traÆc circles are two classes of roads that are usually very short

in comparison to other roads on the route. Some long routes between distant cities

require traversing many highways and therefore the route will contain many entrance

and exit ramps. Similarly in Europe, a main thoroughfare may pass through many

traÆc circles. In fact, for some roads in Europe, passing through each major inter-

section requires traversing a traÆc circle.

When a route contains many such short roads it can be diÆcult to show all the

roads on the route at the appropriate level of detail. If a non-constant scale factor

is used to grow short roads, the ramps and traÆc circles grow much larger than the

other roads and all the roads end up about the same size. Moreover, depicting all the



CHAPTER 5. SHAPE SIMPLIFICATION 64

possible directions 
for ri+1 

 acceptable 

 not 
acceptable 

 acceptable 

 acceptable 

Q1

Q2

Q3

Q4
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ri

ri-1

Figure 5.5: Inconsistent turn direction test when dropping ramps. The

ramp ri can only be removed if the next road ri+1 does not head back towards the

previous road ri�1. Here, the ramp turns to the right of ri�i. The dotted lines

represent possible directions for the road ri+1 following the ramp. In this case we do

not drop the ramp if ri+1 lies in the third quadrant of the coordinate system oriented

along the last segment of ri�1.

short ramps and traÆc circles can clutter the map with unnecessary detail. In this

section we describe strategies for dropping such short roads from the map entirely.

Dropping these roads makes it easier to design the map layout, and adds to the overall

simplicity of the map thereby increasing usability as well.

5.3.1 Dropping Ramps

While highway entrance and exit ramps can help navigators understand how to enter

or exit the highway, it is usually possible to follow the map even if they are not

depicted. On long routes the ramps tend to clutter the map and therefore if the

route is longer than a given threshold we remove all ramps from the map that can be

removed without creating a false or missing intersection or inconsistent turn direction.

The threshold is based both on the total mileage of the route and the number of turns

in the route.

As shown in �gure 5.5, the test for checking turn angle consistency is slightly

di�erent when dropping ramps than when simplifying road shape. If the road ri+1
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immediately after a ramp ri, heads towards the road ri�1 preceding the ramp, the

ramp cannot be dropped from the map. In such cases dropping the ramp would cause

ri+1 to appear on the \wrong" side of ri�1.

To determine the length threshold for dropping ramps we generated a set of 25

routes with lengths varying from a couple of miles to several thousand miles. The

number of turns varied from two turns to 27 turns. We created two LineDrive maps

for each of the routes, one maintaining all the ramps and the other dropping as

many ramps as possible without generating topological errors or inconsistent turn

directions. We then asked a small group of users to look at corresponding pairs

of maps and tell us whether or not the ramps cluttered the maps containing them.

Through this informal experiment we found that it is usually best to drop ramps for

any route longer than 30.0 miles or contains more than 11 steps.

5.3.2 Dropping TraÆc Circles

Unlike highway ramps we always drop all traÆc circles from the route regardless of

the length of the route. We have found that traÆc circles have a consistent topology

in which a set of roads all meet at the circle itself, like the spokes on a wagon wheel.

Therefore dropping the circle from the route simply forces the roads before and after

the circle to meet at a point rather than going around the circle. Topological and

shape errors are unlikely. In fact we have yet to encounter a case in which dropping a

traÆc circle causes a false intersection, a missing intersection or an inconsistent turn

direction. Therefore we do not require these tests when dropping traÆc circles.

However, completely eliminating any representation of a traÆc circle from a map

can be misleading. To avoid such confusion we replace the original traÆc circle road

ri, with a �xed-size circle icon at the intersection between the roads ri�1 and ri+1. An

example of this simpli�cation is shown in �gure 5.6. We describe how such icons are

along the route in chapter 8 on context layout. In this way, even though the traÆc

circle is no longer a separate road and does not need to be laid out in the subsequent

road layout stage, a visual representation for the traÆc circle appears in the �nal

LineDrive map.
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Before Simplification

After Simplification

traffic circle icon

Figure 5.6: Dropping traÆc circles. This European route contains many traÆc

circles as shown in the unsimpli�ed map. After we drop all the traÆc circle road, and

then consolidate adjacent roads with the same name the map becomes much simpler.

We use traÆc circle icons to represent any remaining traÆc circles between roads

with di�erent names.

5.3.3 Consolidating Roads

Once we have dropped ramps and traÆc circles we check whether adjacent pairs of

roads have the same name and merge these into a single road. In such cases it is likely

that the route simply passed through a ramp or a traÆc circle while continuing on the

same road. For example, as shown in the unsimpli�ed map in �gure 5.6 a short section

of Dearne Valley Parkway, contains a traÆc circle at every major intersection. Taking
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Dearne Valley Parkway for a �ve mile requires passing through �ve di�erent traÆc

circles. While shape simpli�cation replaces each traÆc circle road with a circular

icon, without road consolidation each part of Dearne Valley Parkway would appear

as a separate segment with its own label. Consolidating adjacent roads with the same

name reduces clutter and ensures that road which people usually think of as a single

unit appear as a single segment in the LineDrive map.

If a traÆc circle icon appears between two roads that should be consolidated we

simply remove the icon from the map. Like many handcrafted route maps we only

show a traÆc circle icon when the navigator must turn from one road onto another

road after passing through the circle. If the navigator does not turn onto a new road

at the traÆc circle we do not show it. While this might seem misleading, we have

found that the reductions in clutter far outweigh the cognitive errors generated by

inaccurately depicting such traÆc circles.



Chapter 6

Road Layout

The goal of road layout stage of LineDrive is to determine a length and an orientation

for each road such that all roads are visible and the entire map image �ts within a

pre-speci�ed image size. Moreover, the layout must avoid the problems shown in the

second and third columns of �gure 2.6 and preserve the topology and overall shape

of the route. In particular, longer roads should appear longer than shorter roads and

the layout should not introduce false or missing intersections.

Our approach is to specify a set of constraints that de�ne the properties we would

like in the �nal road layout. We then use simulated annealing to �nd a layout for the

roads that best realizes our constraints. Figure 6.1 shows a route before and after the

road layout stage.

As described in section 3.2.2.4 to apply the simulated annealing search algorithm

we must specify an initial road layout, an invertible function for perturbing a layout

and a function for scoring a layout. We describe each of these components of the road

layout search in sections 6.1- 6.3. In section 6.4 we describe how we set the simu-

lated annealing search termination parameter and cooling function to achieve eÆcient

running times while �nding near-optimal road layouts. We conclude this chapter in

section 6.5, by describing the �nal phase of road layout which deterministically pro-

cesses each road to �ne-tune their orientations.

68
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Before 
Road Layout

After 
Road Layout

Figure 6.1: Before and after road layout. The road layout stage of LineDrive

is responsible for determining the length and orientation of each road such that all

the roads are visible and no topological or shape errors are introduced into the map.

Before road layout many roads and turning points especially near the origin and

destination of the route are diÆcult to see. After road layout this is no longer the

case and there is enough space to easily label each road as well as provide some context

information in the form of cross-streets. The insets depict the route map immediately

before and after the road layout stage of the LineDrive pipeline. To show how road

layout a�ects labeling and context layout we have processed the route through all the

stages of the LineDrive pipeline in the non-inset maps.

6.1 Initial Layout

To generate an initial layout for the search, we �rst build an axis-aligned bounding

box for the original route and compute a single factor to scale the entire route to �t
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within the given image viewport. Such a uniformly scaled route will usually contain

roads that are too small to see or label. While this uniformly scaled route layout

could be used as a starting point for the search, we have found that it is not ideal.

Like most search techniques, simulated annealing performs better the closer the initial

solution is to the optimal solution. A layout containing roads that are too small to

see is far from our optimal solution and therefore we modify the uniformly scaled

route to push our initial layout closer to the optimal layout.

Once we have constructed the uniformly scaled layout, we �nd all the roads that

are shorter than a prede�ned minimum pixel length, Lmin, and grow them to be Lmin

pixels long. Since we initially scaled all the roads to �t exactly within the bounds of

the image, growing the short roads may extend the map outside the viewport. We

�nish the initial layout phase by again scaling the entire route to �t within the image

viewport.

The initial layout created in this manner may contain topological errors. In most

cases the errors will be resolved during the road layout search. However, it may

be argued that since an optimal layout will not contain topological errors, an initial

layout containing topological errors is no closer to the optimal layout than a uniformly

scaled layout containing extremely short roads.

Based on this argument, we have experimented with an alternative approach for

generating an initial layout which attempts to both grow all short roads so they are

visible but also ensure that topological errors are not introduced. Given a subset

of roads on the route, we can maintain the topology between them by growing all

of them by the same factor. In particular if two roads ri and ri+m, intersect in the

original route, we consider the set of roads between them [ri; ri+1; :::; ri+m] as forming

an intersection interval. The idea behind our second approach is to partition the route

into subsets of such intersection intervals that must be grown together to maintain

the route topology. The details of this topological error-free initial layout algorithm

are presented in appendix A.

The main advantage of the topological error-free approach is that it may provide

a better starting point for the subsequent search phase of road layout. The simulated

annealing algorithm is more likely to converge to a solution that does not contain



CHAPTER 6. ROAD LAYOUT 71

topological errors if it starts from an error-free initial layout. However, the drawback

of this error-free approach is that it requires entire groups of roads to be scaled by

the same factor. Therefore, the initial layout may contain roads that are far too short

to be visible. This problem usually occurs if roads within an intersection interval

have vastly di�erent lengths. For example, a set of short residential roads may circle

around to pass under a long highway. Growing all of these roads by the same factor

while �tting them within the given viewport will ensure that the residential roads are

not initially visible. Instead of searching for a layout that resolves topological errors,

this approach often requires searching for a solution that will grow short roads. In

practice we have found that this approach performs marginally better than the simple

initial layout scheme which individually grows all short roads up to Lmin pixels.

6.2 Perturb

To perturb a road layout during the search, we randomly choose a road ri and either

scale its current length lcurr(ri) by a random factor between 0:8x and 1:2x, or change

its orientation by a random reorientation angle between �5 degrees. However, we

dynamically update the bounds on the reorientation angle of each road to ensure that

an inconsistent turn direction is not introduced. In particular, if the angle � formed

by the �rst(last) segment of road ri is within �5 degrees of the last(�rst) segment

of the previous(next) road we tighten the bounds on the reorientation angle so that

it will be less than �. After modifying a road, we rescale the route to �t within the

image viewport. By disallowing perturbations that cause inconsistent turn directions

and forcing the route to always �t the viewport, we limit our search space to maps

that meet our turn direction and image size constraints.

6.3 Score

All other constraints on road layout are enforced through the score function. Our score

function examines four main aspects of the road layout; road length, road orientation,

intersections between roads, and the shape of the overall route. The goal of each of
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these score categories can be described as follows:

� Length: ensure all roads visible and preserve ordering of roads by length.

� Orientation: preserve the original orientations of the roads.

� Intersections: ensure that topological errors are not introduced.

� Overall Shape: preserve original shape and orientation of entire route.

The scores represent soft constraints on the road layout. The simulated annealing

algorithm uses the scoring functions to �nd a layout that achieves as many of these

goals as possible. Unlike hard constraints which must be realized in the �nal layout,

it is possible that the �nal layout may not attain all the of soft constraints. The

constraints enforced in our perturb function, such as ensuring that the map �ts within

the given viewport, represent hard constraints on our road layout.

As shown in table 6.1 we further re�ne each of these score categories into a number

of component scores. The overall road layout score is calculated as the sum of each

of these component scores. We discuss the computation of the component scores in

the next three subsections. A summary of the formulations for each component score

appears in table 6.2. Once we have developed the scoring function we must balance

their e�ects on the �nal layout with respect to one another. We describe the balancing

process in section 6.3.4.

6.3.1 Road Length and Orientation

Each road ri is scored on two length-based criteria. First, we penalize any road that

is shorter than Lmin using the following formula:

score(ri) =

 
lcurr(ri)� Lmin

Lmin

!2

�Wsmall (6.1)

where Wsmall is a prede�ned constant used to control the weight of the score in

relation to the other scoring criteria1. The function is quadratic rather than linear,

1Each of our component scores uses a similar weighting constant
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Score Name Description Category

1. Small Ensure roads at least Lmin pixels long. Length

2. Shu�e Preserve ordering of roads by length. Length

3. Orientation Preserve original orientation of roads. Orientation

4. Missing Penalize missing intersections. Intersection

5. Misplaced Penalize misplaced intersections. Intersection

6. False Penalize false intersections. Intersection

7. Extended Penalize extended intersections. Intersection

8. Endpt Direction Preserve overall orientation of route. Overall Shape

9. Endpt Distance Preserve overall shape of route. Overall Shape

Table 6.1: Road layout component score descriptions. To score a road layout

we the nine component scores described in this table. Each component score evaluates

a particular aspect of the current road layout. The overall score for the road layout

is computed as the sum of these component scores.

so roads that are much shorter than Lmin are given a higher penalty than roads that

are just a little shorter than Lmin. Recall that simulated annealing decides whether

to accept the current layout based on the di�erence between the current score and

the previous score. By using a quadratic function, we increase the probability of

accepting perturbations which grow the shortest roads because such perturbations

yield the largest change in score per pixel length. If we used a linear function growing

any of the roads shorter than Lmin by a �xed amount x would yield the same change

in score with no preference for growing the shortest roads.

The second length-based scoring criteria considers the relative ordering of the

roads by length. During the initialization of the road layout search we build a list

of the roads sorted by their original lengths. After each perturb we build a current

version of this length-ordered list and we then add a constant penalty to the score for

each pair of roads whose length ordering has shu�ed between the original map and

the current layout. More precisely, if the current ordering by length between roads ri

and rj di�ers from the current ordering by length, then:

score(ri; rj) =Wshuffle (6.2)

The purpose of this score is to encourage layouts in which the longer roads appear
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longer than shorter roads in the �nal map. Therefore, we only consider roads as being

shu�ed when the di�erence in their lengths is greater than a prede�ned perceptual

threshold (usually 5-10 pixels).

We also penalize each road ri, by a score proportional to the di�erence between its

current orientation �curr(ri) and its original orientation �orig(ri) using the following

formula:

score(ri) = j�curr(ri)� �orig(ri)j �Worient (6.3)

Since this orientation score is minimized when the current orientation is closest to

its original orientation, we only introduce substantial changes to road orientation if

the change helps minimize some other road layout score. For example, a substantial

change in orientation may be introduced to resolve a false intersection.

6.3.2 Intersections

Both missing and false intersections can be extremely misleading, so we severely

penalize any proposed layout containing these problems. While the false and missing

intersections scores are essential for maintaining the overall topology of the route, they

do not consider the spacing between roads. It is possible for the perturb function to

generate road layouts in which non-intersecting roads pass so close to one another that

they incorrectly appear to touch. Therefore we also consider extended intersections

between the roads. We extend the endpoints of each road by a �xed pixel length and

penalize the layout if any of the resulting roads intersect.

The scoring function should guide the layout algorithm to the desired layout. One

approach is to add a �xed constant penalty when either of these conditions exists.

However, this type of scoring function does not provide adequate guidance because

the same penalty is always added to the score no matter how severe the false, missing

or extended intersection. Suppose our route contains a missing intersection. If we

perturb the layout and the missing intersection points end up closer to one another

but do not exactly match, the intersection score for this map will not change. The

algorithm will not know that moving the missing intersection points closer together

generates a better layout. In other words the annealing algorithm is less likely to
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converge.

In order to guide the layout algorithm to a desirable layout we construct a score

that re
ects the severity of the intersection problems in a manner that suggests how

they might be resolved. We begin by explaining how simple missing and false inter-

sections are resolved independently and then show how scoring must change when

a layout contains both missing and false intersections. We then develop a scoring

function for extended intersections and describe how the extended intersection score

may interact with the false intersection score.

6.3.2.1 Simple Missing Intersections

There are two forms of missing intersections. A true missing intersection occurs when

two roads should intersect but don't, while a misplaced intersection occurs when two

roads should intersect and do, but at the wrong point. As shown in �gure 6.2, in both

cases if roads ri and rj are supposed to intersect at points pi and pj, we compute a

score that is proportional to the Euclidean distance d(pi; pj) between these two points

using the following formulae:

score(ri; rj) = d(pi; pj) �Wmissing (6.4)

score(ri; rj) = d(pi; pj) �Wmisplaced (6.5)

The proper intersection points pi and pj along each road are computed from the

parametric value of the intersection in the original unscaled route. Since it is more

important for the proper pair of roads to intersect than it is for the point of intersection

to be placed exactly, we set the scoring weight for a misplaced intersection to be much

lower than for a missing intersection.

6.3.2.2 Simple False Intersections

False intersections occur when the path incorrectly folds back on itself, forming a

loop or knot. One way to remove an individual knot is to move the route endpoint

closest to the intersection (measured in pixels along the route) towards the intersection
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(a) Missing Intersection (b) Misplaced Intersection
score(ri,rj) = d(pi, pj) * Wmissing score(ri,rj) = d(pi, pj) * Wmisplaced

t * l(r )jj

t * l(r )i i

d(pi, pj)pj

pi pi

pj

d(pi, pj)

Figure 6.2: Scoring missing and misplaced intersections. In both cases the

score is proportional to d, the Euclidean distance between the two points pi and pj that

should intersect (marked in red). Initially for each pair of intersecting roads ri and

rj we compute the parametric values ti and tj of the intersection point. Multiplying

these parameters by the current lengths of the roads lcurr(ri) and lcurr(rj) gives us

the current position of pi and pj. For comparison, the original route is shown in gray.

point. Figure 6.3(a)-(c) illustrates several false intersection scenarios, showing for each

intersection point which direction the closest endpoint must move to remove the knot.

For each false intersection we compute a score proportional to the distance in

pixels along the route to the nearest endpoint, as shown in �gure 6.3(d). The closer

the false intersection is to the center of the route, the higher the score. This approach

is conceptually equivalent to building a scoring hill along the route that guides the

closest endpoint towards the intersection point, thereby unravelling the knot. There-

fore if roads ri and rj form a false intersection at point pint, we can compute the false

intersection score between them as follows:

score(ri; rj) = min(dRte(pint; porigin); dRte(pint; pdest)) �Wfalse (6.6)

where porigin and pdest are the point of origin and and destination for the route re-

spectively and dRte(pa; pb) is the distance between two points on the route pa and pb

in pixels along the route (i.e. the arc length between the two points).
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(d) 

score(ri,rj) = min(dRte(pint,porigin),dRte(pint,pdest)) * Wfalse

*

*

(a) 

false 
intersection

closest 
endpoint

*
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*
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dRte(pint,porigin)
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porigin

Figure 6.3: Scoring false intersections. (a),(b),(c) The direction the route end-

points should move to independently resolve each false intersection is indicated by

the large green arrows. (b) The two false intersections pull the endpoint in opposite

directions. This is addressed by counting only the innermost false intersection score.

(c) The innermost false intersection is scored for each endpoint independently, so in

this case both false intersections are included in the �nal score. (d) The score for a

simple false intersection at point pint is proportional to the distance from pint to the

closest endpoint of the route, either porigin or pdest, measured in pixels along the route.
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*false 
intersection

*
one missing 
intersection point 
within the loop 
formed by a false
intersection

both missing 
intersection points
within the loop 
formed by a false
intersection

Figure 6.4: Interactions between false and missing intersections. In both

these cases, the false and missing intersection scores push points on the route in

con
icting directions, as indicated by the arrows. To resolve the con
ict, we add a

constant penalty for the false intersection and allow the missing intersection score to

pull the intersection to the desired location.

When a route contains multiple false intersections, the false intersection scores

may con
ict and push the endpoint in opposite directions, as shown in �gure 6.3(b).

We address this problem by counting only the score for the innermost false intersec-

tion (working inwards from the endpoint to the center of the route). By penalizing

the layout for only the innermost false intersection, we guide the endpoint towards

the desired direction and eventually resolve both false intersections. Counting the in-

nermost intersection is done for each endpoint separately. In situations such as 6.3(c),

where there are two false intersections but each is closer to a di�erent endpoint, both

scores are counted.

6.3.2.3 False Intersections and Missing Intersections

In most cases when false and missing intersections occur in the same map, the scores

interact properly to resolve both problems. There is one exceptional situation that

occurs when the loop formed by a false intersection contains a missing intersection.

As shown in �gure 6.4, one score may push in one direction and the other score in the

other direction, resulting in a stalemate in which neither problem can be resolved.

In both of these cases there is supposed to be an intersection; it is just occurring

between the wrong roads. It is often the case that when a missing intersection occurs
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The roads do not 
 intersect

ri

r j

score(ri,rj) = min(d(pint, pri,extOrigin), d(pint, pri,extDest)) * Wext
score(rj,ri) = E * Wext

When extended the 
roads do intersect.

E

E
E pint

pri,extDestpri,extOrigin

Figure 6.5: Scoring extended intersections. If the extended intersection occurs

on the extended portion of the road as for ri, the score is proportional to the distance

between the intersection point and the nearest extended endpoint, either pri;extOrigin

or pri;extDest, of the road. If the extended intersection occurs within the main extent

of the road as for rj, the score is set to the largest possible penalty for intersection

with the extended portion of the road.

within the loop of a false intersection that the false intersection is simply the missing

intersection misplaced.

We resolve the situation with an additional rule: if either point of a missing

intersection is inside the loop formed by a false intersection, we add a constant penalty

for the false intersection, rather than a hill-based score. With the false intersection

score �xed, the missing intersection score can guide the intersection to the desired

location, since there is no longer a con
ict. Both of the cases shown in �gure 6.4 will

use a constant penalty for the false intersection, as both contain at least one point of

a missing intersection within the false intersection loop.
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Figure 6.6: Interactions between extended and false intersections. (a) The

extended intersection and false intersection scores con
ict and push the layout in

opposite directions. (b) All roads between an endpoint of the route and a false

intersection or between a pair of false intersections are considered to be in the same

false intersection interval. In this case, there are three intervals [r0], [r1; r2; r3; r4],

and [r5; r6; r7]. We resolve the con
icting scores by only counting extended scores

between roads in the same false intersection interval. Since r1 and r6 are in di�erent

intervals, their extended intersection score is not counted.

6.3.2.4 Extended Intersections

If two roads are not supposed to intersect, we would also like to avoid having them

pass close enough to each other that they appear to touch. We therefore compute

extended intersections between each pair of roads. We extend the endpoints of each

road by a �xed pixel length E and then check if the resulting roads intersect.

Extended intersections are scored as shown in �gure 6.5. If the extended intersec-

tion occurs on the extended portion of the road as for ri, the score is proportional to

the distance between the intersection point and the nearest extended endpoint, either
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pri;extOrigin or pri;extDest, of the road. In this case the score is computed as follows:

score(ri; rj) = min(d(pint; pri;extOrigin); d(pint; pri;extDest)) �Wext (6.7)

As the extended intersection point moves further from the main extent of the road,

the score decreases. If the extended intersection occurs within the main extent of the

road as for rj, the score is set to the largest possible penalty for intersection with the

extended portion of the road. Since the extension length E is known a priori, the

score in this case is simply:

score(rj; ri) = E �Wext (6.8)

As shown in �gure 6.6, it is possible for an extended intersection score to con-


ict with a false intersection score. To reduce such con
icts, we include extended

intersection scores only when the extended intersection occurs between two roads in

the same false intersection interval, as shown in �gure 6.6(b). All roads between an

endpoint of the map and a false intersection, or between a pair of false intersections,

are considered to be in the same false intersection interval. Since roads r1 and r6 are

in di�erent false intersection intervals we do not include the extended intersection

score between them.

When a false intersection is resolved, roads that were in two di�erent false inter-

section intervals are merged into the same false intersection interval. This can result

in a number of extended intersections being included in the road layout score that

were not being included before the false intersection was resolved. If the increase

in score due to additional extended intersections is larger than the decrease due to

resolving the false intersection, the search can get stuck in a local minimum in which

the false intersection is almost resolved and the two roads just touch. We eliminate

this problem by always adding the maximum possible extended intersection score to

each false intersection score. This guarantees that the resolution of a false intersection

will result in a decrease in score.
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Figure 6.7: Maintaining overall route shape. To maintain the overall shape of

the route we compute two scores based on the vector between the endpoints of the

route in the original unscaled route and the current route. This endpoint vector is

shown in red. The endpoint direction score penalizes maps which alter the direction of

this vector. This example would be severely penalized since the direction has changed

almost 180 degrees and the origin currently appears southeast of the destination rather

than to the northwest of it as in the original route. If the length of the endpoint vector

is less than half the original endpoint vector length we add the endpoint distance

penalty to the road layout score as well. This ensures that the endpoints do not get

too close to one another.

6.3.3 Overall Route Shape

The �nal road layout score considers the overall shape of the route. Although growing

short roads and altering road orientations may be essential for creating a usable route

map, such distortions can drastically alter the overall shape of the route. In some

cases, it is possible for a destination that should appear to the west of the origin to

end up appearing to the east of the origin. Non-uniformly scaling the roads can also

cause the origin to appear much closer to the destination than it actually is.

We compute two road layout scores based on the vector between the origin, porigin

and destination pdest of the route. We compare the direction and distance of this

vector in the current route to its direction and distance in the original unscaled

route. The endpoint vector is illustrated in �gure 6.7. The endpoint direction score
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Score Name Formulation

1. Small if lcurr(ri) < Lmin

score(ri) =
�
lcurr(ri)�Lmin

Lmin

�2
�Wsmall

2. Shu�e if order(lorig(ri); lorig(rj)) 6= order(lcurr(ri); lcurr(rj))

score(ri; rj) =Wshuffle

3. Orientation score(ri) = j�curr(ri)� �orig(ri)j �Worient

4. Missing if missing intersection between ri and rj
score(ri; rj) = d(pi; pj) �Wmissing

5. Misplaced if misplaced intersection between ri and rj
score(ri; rj) = d(pi; pj) �Wmisplaced

6. False if false intersection between ri and rj
score(ri; rj) = min(dRte(pint; porigin); dRte(pint; pdest)) �Wfalse

7. Extended if extended intersection between ri and rj in same interval

if extended intersection on extension of ri
score(ri; rj) = min(d(pint; pri;extOrigin); d(pint; pri;extDest)) �Wext

if extended intersection on main extent of ri
score(ri; rj) = E �Wext

8. Endpt Direction score = j�curr(pdest � porigin)� �orig(pdest � porigin)j �WendptDir

9. Endpt Distance if dcurr(porigin; pdest) < K � dorig(porigin; pdest)

score = jdcurr(porigin; pdest)� dorig(porigin; pdest)j �WendptDist

Table 6.2: Road layout component score formations. Summary of the scoring

formulae for each component score. The functions and variables used in the formu-

lations are described in section 6.3. All functions are computed based on the current

layout unless otherwise speci�ed. We use the subscript orig to refer to functions based

on the original unscaled version of the route. Note that this table does not re
ect

any of the special cases for resolving con
icts between false, missing and extended

intersection scores.

penalizes layouts that alter the direction of this vector and is computed as follows:

score = j�curr(pdest � porigin)� �orig(pdest � porigin)j �WendptDir (6.9)

The �curr(pdest � porigin) and �orig(pdest � porigin) functions represent the current and

original orientations of the endpoint vector.

We also penalize the layout if the endpoints of the route get too close to one an-

other. If dorig(porigin; pdest) is the original distance between the endpoints we would like

to ensure that the endpoints are no closer than a factor K times the original endpoint
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distance. That is if the current distance between the endpoints dcurr(porigin; pdest) is

less than K � dorig(porigin; pdest) then we penalize the route layout as follows:

score = jdcurr(porigin; pdest)� dorig(porigin; pdest)j �WendptDist (6.10)

Usually K is set less than 1.0 and we have found that K = 1
2
works well in practice.

The distance function in this case is the standard Euclidean distance.

6.3.4 Balancing the Scoring Functions

The constraints embodied in our scoring functions are not equally important. For

example, ensuring that all the roads and turning points are visible is far more impor-

tant than maintaining the original end point direction vector for the route. If there is

a choice between growing a short road or maintaining the end point direction vector,

we would like our algorithm to grow the short road. Therefore we must balance the

e�ects of the scoring functions with respect to one another so that the more important

constraints are given higher priority. We use the weighting constants W to prioritize

the scoring functions.

We used an informal usability engineering process to determine the prioritized

order for our scoring functions. We chose a set of 5 routes and generated maps con-

taining each of the errors our scoring functions are designed to prevent. To generate

these maps we simply turned o� each scoring functions one at a time. We then asked

a small group of users to rate which maps were most confusing or misleading. Based

on these experiments we found the following prioritized ordering for the major classes

of constraints:

1. Prevent topological errors: false, missing, misplaced, extended

2. Ensure all roads visible: small

3. Maintain original orientation: orientation

4. Maintain ordering by length: shu�e
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5. Maintain overall route shape: endpt direction, endpt distance

Through this usability engineering process we found for example that all three

topological errors, false, missing and extended intersections are extremely confusing.

In fact, we were somewhat surprised to learn that topological errors are more confusing

than shu�es of road length or even extremely short roads. Nevertheless, based on

these tests we set preventing topological errors as our highest priority constraints.

The remainder of the prioritized list was determined in a similar manner.

The usability engineering process gave us general guidelines for setting the weight-

ing parameters. To determine the exact values for the weighting constants we per-

formed a manual search. We randomly chose weighting constants according to the

priorities, and then ran a test suite of 100 maps through the system. For each route

we counted the number of topological errors, short roads, shu�es etc. in the �nal

map layout. We then manually adjusted the weighting constants based on these er-

ror statistics and re-generated the maps. For example, if the maps contained lots of

shu�es we increased the weight of the shu�e score. We kept tweaking the weighting

constants in this manner until we generated all 100 maps without a single error.

6.4 Determining Simulated Annealing Parameters

Recall that the simulated annealing search algorithm, as described in section 3.2.2.4,

requires setting two parameters, a termination condition or maximum iteration count,

and a cooling function Decrease() that decreases the annealing temperature T . Often

the cooling function simply sets T = K � T where K is a cooling factor less than 1:0.

Both of these parameters, the maximum iteration count and the cooling factor, a�ect

the running time of the algorithm as well as the quality of the search results. If the

algorithm is given too few iterations or it is cooled too quickly it may get stuck in

local minima. However, if the algorithm is given too many iterations or cooled very

slowly its running time becomes much longer.

We use a standard approach for determining the maximum iteration count and

cooling factor. We begin by overestimating these factors, running the road layout
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search with a high iteration count and a very slow cooling rate. Although a single

route may take over a day to run with these settings they allow the algorithm to

consider an extremely large portion of the search space and escape local minima.

Therefore, the resulting road layout should be close to the optimal map layout and

this near-optimal road layout becomes our gold-standard. We then manually tune

the iteration count and cooling factor to �nd values which maintain reasonable run-

ning times (our goal is to generate most road layouts in about 0.25 seconds) while

generating layouts that are close to the near-optimal layout. We perform this manual

tuning process on a set of 10 randomly selected routes and took the maximum of

the resulting maximum iteration counts and cooling factors to set these parameters

for our road layout search. We used a similar approach to set these two parameters

for the label layout and context layout searches that are described in the next two

chapters.

6.5 Fine-Tuning Road Orientation

Once the search phase of road layout is complete, we snap each shallow angle road

in the �nal layout to the nearest horizontal or vertical axis. Roads that form shallow

angles (i.e. < 15 degrees) with the image plane horizontal or vertical axes tend to

increase the visual complexity of the map. Furthermore, such roads can be diÆcult

to antialias, especially on personal digital assistant (PDA) displays with limited color

support. However, we only reorient a road if doing so does not introduce an incon-

sistent turn direction or a false, missing or extended intersection. Such reorientation

helps regularize the map and produces a cleaner-looking image.



Chapter 7

Label Layout

For the route map to be usable, each road on the map must be labeled with its

name. Similarly, the origin and destination of the route should be labeled with their

addresses. While the road layout stage of LineDrive is responsible for ensuring that

all roads will be long enough to be visible, the label layout stage is responsible for

automatically placing the labels on the map so that each one is easy-to-read and

clearly associated with a particular object, such as a road or landmark, in the map.

As shown in �gure 7.1, without such labels a route map is simply an abstract series

of lines and is impossible to use for navigation.

Each label is added to the map to communicate a piece of information (i.e. a road's

name) through a combination of text and images. We refer to the the graphical

elements comprising the label, the arrangement of those elements relative to one

another and the constraints on the placement of the elements in the map as a labeling

style. The �nal placement of a label as well as its style help communicate which map

object (i.e. road, landmark, etc.) it is labeling. We refer to this object as the label

target.

Automated placement of labels on maps has been well-studied, and several systems

have been developed for real-time label placement on standard regional maps [Zor97,

ECMS97]. Finding \good" label placements has been shown, in general, to be an

NP-complete problem[MS91], and thus the common approach has been to use a ran-

domized search to �nd near-optimal label placements. Our approach is similar: we

87



CHAPTER 7. LABEL LAYOUT 88

Before 
Label Layout

After 
Label Layout

Figure 7.1: Before and after label layout. The label layout stage of LineDrive

is responsible for placing all the road labels and context labels in the map. Before

label layout the map is an abstract curve. Once the road labels have been placed the

image is usable as a route map. The map shown in the after label layout part of the

�gure contains only road labels. Although we use the label layout engine for placing

labels on context objects such as landmarks and cross-streets, the context labels are

not placed on the map until the context layout stage of the algorithm described in

the next chapter.

�rst de�ne the search space of possible labelings for a map and then we search the

space using simulated annealing to �nd a near-optimal label placement. However,

most existing systems only consider a discrete set of locations and a single style for
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any label. LineDrive extends the search-based approach to handle a continuous range

of locations, de�ned by bounded regions in the plane, and any number of potential

labeling styles for each label. Furthermore, new labeling styles are easily added to our

system by simply de�ning a construction function to perform the relative placement

of the necessary images and text, and a scoring function to evaluate placements for

that style.

Note that the label layout engine of the LineDrive system is called twice during the

route map design process. It is �rst called immediately after road layout in order to

place the labels for each road into the map. It is also called during the context layout

stage in order to place the labels for context information such as point landmarks,

and cross-streets.

7.1 Labeling Styles

There are many di�erent ways to label a given target object. A typical method

for labeling roads is to simply write the name directly above or below the road.

This approach uses proximity to associate the label with its target road. Another

style is to put the text near the road and then add an arrow pointing to the road

to form the association between the name and its target. The labeling style that

is best for a particular target usually depends on the geometry of target and the

surrounding information on the map. Figure 7.2 shows several styles that might be

used to label di�erent objects. As shown in �gure 7.3, a labeling style is comprised of

three components:

� Graphic Elements: A set of text and image elements. The primary graphic

element is usually a name, and secondary graphic elements can include distance

to travel, arrows, highway shields, etc.

� Arrangement: The arrangement of the secondary graphic elements relative to

the primary element. For example, the arrow-left-of-name labeling style puts

the arrow graphic to the left of the primary name graphic.
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El Camino Real
El Camino Real

10.5

along-road arrow-left-of-name highway-shield

El Camino Real

along-road-with-distance

El Camino Real

arrow-perp-word-wrap

704 Campus
Drive

point

El Camino 
Real

along-extension-word-wrap

82

Figure 7.2: Labeling styles. Several possible labeling styles that might be used to

label roads or landmarks along the route.

� Placement Constraints: Each constraint is a region in the map image de�n-

ing a set of valid positions and orientations for the center of the primary graphic.

The region is de�ned by either a bounding box or a piecewise-linear curve and

a set of orientation vectors.

To place a given label in the map, we must choose both a labeling style and a label

location from within one of the placement constraint regions for that style. Therefore,

our label layout search space is de�ned by the set of possible labeling styles and the

placement constraints for each style, for every label in the map.

7.2 Initial Layout

In the �rst step of label layout, we create a list of possible labeling styles for each

target object by considering factors such as the size, shape, and type of the target (i.e.

highway, residential road, or landmark) and the length of the label name (i.e. if the

name is long we might create a word-wrapping style). Each style is also given a rank
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(b) arrangement (c) placement constraint (a) graphic elements

El Camino 
Real 1.2

El Camino Real 1.2

curve defining 
valid positions

orientation

El Camino 
Real 1.2

primary element secondary 
elements

Figure 7.3: Components of a labeling style. The components of a labeling style

include (a) a set of graphic elements. (b) an arrangement of those graphic elements

relative to a primary graphic, and (c) a constraint specifying the valid positions and

orientations for the center of the primary graphic.

based on its desirability. For example, for roads, the along-road style is preferable to

to the arrow-left-of-name style.

We create an initial label layout by placing each label at the most central position

within its highest ranked labeling style. We then deterministically �x as many labels

as possible. We check if each label in its initial position could ever con
ict with the

placement of any other label by intersecting each label in its initial position with all

potential positions for every other label. The potential positions are determined from

the placement constraints de�ned for each labeling style. If no con
ict is possible,

then the label is �xed in its initial position and only those labels which are not �xed

in this �rst step are placed during the label layout search. By reducing the number

of labels that must be placed during the search we e�ectively reduce the size of the

label layout search space and thereby accelerate the label layout process. Figure 7.4

illustrates this deterministic placement calculation for a given label.

7.3 Perturb

Given the current label layout the perturb function must randomly choose three

aspects of the layout to change. First it randomly picks a label to alter. Next it

randomly selects a labeling style for that label from among the labeling styles de�ned
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El Camino Reallabel in 
optimal position

possible positions
for other road's labels

Figure 7.4: Deterministic label layout preprocess. The preprocessing step

attempts to deterministically place each label in the most central position within its

highest ranked labeling style. A label can only be placed in this initial step if it

guaranteed to never interfere with the placement of any other label. Here, El Camino

Real's label can be deterministically placed because it does not intersect any possible

position for any other label.

fro the label. Finally it randomly chooses a new location for the label from within

on the of the style's placement constraints. Before each perturb operation we store

the labeling style and placement of each label so that after the perturb it is always

possible to revert back the previous label layout if necessary.

Figure 7.5(a) is a visualization of the placement constraints for two road labels.

The along-road style is the optimal labeling style because it generates a clear visual

association between the label and its road, without introducing extra graphic elements

such as an arrow. Therefore, all road labels are given the along-road labeling style.

Only labels that are longer than their underlying roads are allowed to use other

labeling styles including those that contain arrows. Figure 7.5(b) depicts all the label

positions tested during the simulated annealing search for these two road labels. Each

of these label positions was generated by the perturb function.
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(a) Placement constraints for all labeling styles

(b) Positions tested during anneal

along-road

arrow-right-of-name

arrow-left-of-name

Figure 7.5: Label placement constraints and label positions tested. (a) The

set of placement constraints across all labeling styles for two labels. All labels are

given the along-road constraint because it generates the clearest association between

the label and its target road. Only when a label is longer than its road as is the case

for PA-670, we generate additional labeling styles and their associated placement

constraints for the label. For PA-670 the other labeling styles include arrow-left-of-

name and arrow-right-of-name. (b) The perturb function randomly selects a label

to perturb and then alters its labeling style and placement. Each red dot in this

visualization represents a label position tested during the anneal.

7.4 Score

The label layout scoring function evaluates each label on the following criteria: (1)

the proximity of the label to the center of its target, (2) the rank of the chosen label
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style, and (3) whether the label intersects or overlaps any other object in the map.

The score for the complete map labeling is computed as the sum of the scores for

each label.

The two main goals of label layout are to place labels on the map so that they are

clearly associated with their targets and are easy to read. The proximity score guides

the label layout search towards the �rst goal, by increasing the label layout penalty

as a label gets further away from its target. The labeling style rank score and the

intersection score guide the search towards the second goal. The labeling style rank

score penalizes layouts using complex graphic arrangements, while the intersection

score penalizes layouts in which labels intersect other map objects.

For simplicity we describe each of the component score computations, assuming

the target for the label is a road. Extending the computation to other target objects

such as landmarks is straightforward. We will describe the major di�erences in scoring

road labels versus cross-street and landmark labels as necessary. We conclude this

section by describing how we balance these three scoring criteria with respect to one

another and then present methods for accelerating the computation of the scoring

functions.

7.4.1 Proximity to Target

The proximity of the label to its target is computed as the Euclidean distance between

the center of primary graphic of label li and the center of its target road ri, as follows:

score(li) =
d(center(li); center(ri))

maxCenterDist(li; ri)
�Wproximity (7.1)

The normalizing factor maxCenterDist(li; ri) is the maximum possible distance be-

tween the center of the label and the center of the road. Since the placement con-

straints on the center of the label and the center of the road are known a priori, this

is factor can be precomputed for each label. The proximity score is minimized as the

label gets closer to the center of the road, and it therefore pulls the label towards

the center of the road. We believe that it is easier for users to form the association

between a label and its target road the closer the label is to the center of its road.
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Just as for the road layout scores we include a prede�ned constant parameter in each

of the label scores (in this case is it Wproximity) so that we can adjust the weight of

each component score in relation to the other component scores.

7.4.2 Rank of Labeling Style

As we described earlier, the rank of each labeling style is directly related to the

desirability of the labeling style. A simple labeling style such as along-road is prefer-

able to a more complex labeling style such as arrow-left-of-name because it contains

fewer graphic elements and its placement constraints usually allow the label to be

placed closer to the road. Since we search for the lowest scoring label layout during

the anneal, we set the rank of each labeling style to be inversely proportional to its

desirability. Then we can score label li based on the rank of its labeling style as

follows:

score(li) = labelStyleRank(li) �Wrank (7.2)

7.4.3 Intersections

A label that overlaps other objects in the map can be diÆcult if not impossible to

read. Therefore, the intersection score is designed to penalize label layouts in which

labels intersect other objects in the map. Our basic label intersection score considers

label intersections with two main types of map objects; roads and other labels. We

consider each of these in turn.

7.4.3.1 Intersecting Roads and Labels

If label li intersects road rj, we include a constant penalty in the score as follows:

score(li) = WroadIntersection (7.3)

This penalty is added for each road the label intersects. Note that the placement

constraints of each labeling style are created so that a label cannot intersect its own

road.
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In most cases when a label intersects another map object the readability of a label

is directly proportional to the amount of overlap between the objects. For example

the more the overlap between two labels, the more diÆcult it is to read either of them.

Yet, even though intersections between labels and roads can reduce readability, it is

almost always possible to read labels despite such intersections. The principally one-

dimensional nature of a road versus the two-dimensional nature of a label means that

it is unlikely that the road will overlap enough of the label to make it unreadable.

Therefore a constant penalty regardless of the amount of overlap between the label

and road performs well in practice.

For label-label intersections, on the other hand, we compute an intersection score

proportional to the area of overlap between the two labels. This approach guides the

label layout towards reducing overlap areas as much as possible even when two labels

intersect. We compute the label-label intersection score between labels li and lj as

follows:

score(li; lj) =
overlapArea(obb(li); obb(lj))

minArea(obb(li); obb(lj))
�WlabelIntersection (7.4)

where obb(li) and obb(lj) are the two-dimensional oriented bounding boxes around

labels li and lj respectively. Since the maximum area of overlap between these

two bounding boxes at most the area of the smallest of the two bounding boxes

minArea(obb(li); obb(lj)), we can normalize the score by this factor.

7.4.3.2 Accommodating Context Objects

As shown in �gure 4.2 LineDrive places road labels before laying out context objects

such as point landmarks and cross-streets. We chose to partition the layout problem

in this manner because road labels are essential for creating a usable route map.

While context information can improve usability it is secondary to roads and their

labels.

Based on this reasoning the initial version of LineDrive performed the road label

layout completely independently of the context object layout. The road label layouts

were scored without considering where the context information might be placed and

we left it up to the context layout search to �nd an appropriate layout for the context
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information. While this approach produced excellent road label layouts, it generally

did not �nd very good context object layouts. Moreover, in the majority of cases

slightly moving a road label would have created a much better space for the context

object.

Therefore, we have added another factor to the road label intersection score that

attempts push road labels away from the ideal space for context objects. Before per-

forming the road label layout, for each context object, whether it is a point landmark

or a cross-street, we pre-compute an oriented bounding box representing its optimal

location as described in the next chapter. This optimal location bounding box is es-

sentially a hint about areas of the map the road label layout should avoid if possible.

If a road label li intersects a hint we add a small constant penalty to the overall label

layout score as follows.

score(li) = Whint (7.5)

Since intersecting a hint increases the overall layout score, road labels are pushed

away from the hint bounding boxes when possible. Hinting the road label layout in

this manner allows us to generate much better context layouts.

7.4.3.3 Intersection Score for Context Object Labels

The basic label layout engine is also used to place the labels of context objects, such as

names of landmarks and cross-streets. However, since the context objects are placed

at the same time as their labels we can intersect the labels with the current bounding

box of each context object rather than with the hints as described in the previous

section. Just as when intersecting a road or hint we add a constant penalty to the

context label layout score for intersecting a cross-street or landmark as follows:

score(li) = Wcross�street (7.6)

score(li) =Wlandmark (7.7)

The penalty for intersecting a cross-street is less for intersecting a landmark, because

like the main roads, cross-streets are essentially one-dimensional objects that do not
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reduce legibility as much as two-dimensional landmarks.

We also slightly modify label-label intersection score for context labels. If a context

label intersects another context label we score it just as described in equation 7.4.

However, context labels intersecting with road labels can make it extremely diÆcult

to read both labels. Since the context label is less important than the road label we

add an extremely large penalty to the context label layout score in such cases.

score(li) =WroadLabelIntersction (7.8)

By setting WroadLabelIntersection to be much larger than the maximum score for the

standard overlap based label-label intersection score WlabelIntersection, we force the

context label layout stage to avoid such intersecting layouts.

7.4.4 Balancing the Scoring Functions

Once we have developed the scoring functions we need to balance their e�ects with

respect to one another. Just as for road layout we use the weighting constants W to

prioritize the scoring functions. Using the same informal usability engineering process

described in section 6.3.4 we found the following prioritized ordering for the road label

layout scoring functions:

1. Prevent label-label intersections.

2. Ensure proximity of label to target road.

3. Prevent label-road intersections.

4. Choose desirable labeling style.

5. Prevent label-hint intersections.

The ordering of the context label layout constraints are similar:

1. Prevent label-label intersections.

2. Prevent label-landmark intersections.
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3. Ensure proximity of label to target context element.

4. Prevent contextLabel-street/road intersections.

5. Choose desirable labeling style.

In both cases preventing intersections with labels is the top priority because such

intersections can make it diÆcult to read either label. Similarly preventing label-

road or label-street intersections is far less important because it is still possible to

read labels even if such intersections occur. In general the label layout algorithm must

�rst try to prevent intersections that would reduce readability, then it must place the

label near its target and �nally it must choose the highest ranking, or most desirable

labeling style for each label.

7.4.5 Accelerations

We use two simple optimization techniques to accelerate the score computations for

each label layout. The �rst technique relies on the fact that on each iteration of the

simulated annealing search we perturb exactly one label. Therefore, the component

scores for most of the labels remain unchanged. In fact, if label li is perturbed, then

at most only the component score for li and the label-label intersection scores for

the other labels can change. Based on this observation, we have implemented an

incremental score update algorithm. After generating the initial layout we compute

all the component scores for every label. Thereafter, we recompute only the subset

of layout component scores a�ected by a perturb or revert operation. Intersection

calculations are the most expensive part of the label layout search. This incremental

approach can greatly reduces the number of label-road intersections we must perform

on each iteration of the label layout search.

Our second acceleration technique is also aimed at reducing the number of inter-

section calculations we must perform. We initially build a regular two-dimensional

spatial subdivision grid in the map image plane and place all the map objects within

this grid. Then, to compute the intersections between label li and the other map

objects we �rst check if the grid cells containing li contain any other objects. The
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objects in the same cells as li are a conservative superset of the objects that actually

intersect li and therefore those are passed into an exact intersection function which

computes whether or not the objects actually intersect l � i. This is a standard ap-

proach in computer graphics for accelerating intersection computations by eliminating

large regions of space that cannot possible contain an intersection [AK89, Sam90].

7.5 Two-Phase Simulated Annealing

In practice we usually specify four to �ve labeling styles and a large set of placement

constraints for each road label. Therefore the space of road label layouts can be

extremely large. While the basic simulated annealing algorithm does a good job of

sampling this space, we have found that in many cases the labeling style for the labels

may be well chosen, but the position of the label within the placement constraint for

that style may not be optimal. In particular the layout could have been slightly

improved by sliding a label to a slightly better position within its constraint. This

problem is largely due to the fact the the high dimensionality of the search space does

not allow for adequate sampling within a particular labeling style.

We have found that we can improve the quality of our layouts by performing

the anneal in two phases. The �rst phase is performed as described above. Both

the labeling style and the position of a label are perturbed on each iteration. After

the �rst phase is complete we compute the score for each label and for those labels

whose score is greater than a pre-de�ned tolerance we apply a second annealing phase.

However, in the second phase we assume that the labeling styles chosen in the �rst

phase were good and therefore we only perturb label positions. This approach reduces

the dimensionality of the label layout space for the second phase and thereby allows

us to sample a much greater number of positions for each label.



Chapter 8

Context Layout and Decoration

Although a route map is functional once the road labels have been placed, additional

context features and decorative enhancements can greatly improve the usability of

the map. Yet, context features and decorative enhancements are secondary informa-

tion, not necessary for communicating the basic structure of the route, and therefore

must be added carefully so as not to clutter the map with excessive detail. In this

chapter we describe the two �nal stages of the LineDrive system, context layout and

decoration, which are responsible for placing context features and rendering the map

with decorative enhancements. Figures 8.1 and 8.4 show how the map evolves as it

passes through each of these two stages.

The layout algorithm for placing context features such as cross-streets and point

landmarks, is similar to the algorithm used for placing labels. For each context feature

we de�ne a set of possible layout positions and an score function which evaluates the

�tness of a given position. The main objective of context layout is to �nd a place

for all the context features such that the context features do not interfere with the

primary route information which consists of the main roads and their labels. Given

the score function we then apply simulated annealing to search for a context feature

layout which minimizes the context layout score.

Several aspects of the style in which a route map is rendered can subtly communi-

cate information about the route. For example, placing bullets at each turning point

indicates that the navigator must make a decision about which road to follow at that

101
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Figure 8.1: Before and after context layout. The context layout stage of

LineDrive is responsible for placing cross-streets and point landmarks such as highway

entrance and exit signs, in the map. Since the context information is secondary to the

main turning point information, the context objects are carefully placed so as not to

clutter the map with excessive detail. Only the most important of the context objects

are placed and they are rendered in light, desaturated colors to reduce interference

with primary map information.

point in the route. Similarly it is possible to indicate the type of a road (i.e. highway,

residential or ramp) by using a di�erent line style for each road type. The decoration

stage of the LineDrive algorithm adds several such stylistic elements to the map in

order to improve map usability.
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8.1 Context Layout

LineDrive attempts to place two forms of context within a route map: (1) linear

features that intersect the main route, such as cross-streets, and (2) point landmarks

along the route such as buildings and signage. Since the roads and their labels

constitute the essential information in a route map, the additional context information

is only added sparingly around turning points in order to avoid adding clutter to the

map. We use the same basic approach for placing both cross-street and local point

landmarks. We �rst present the context layout algorithm in terms of placing cross-

streets, and then describe how the layout algorithm must be modi�ed for placing

point landmarks.

8.1.1 Preparing the Cross-Street Data

We begin the cross-street layout stage by querying the geographic database for all

cross-streets intersecting the main route. The query algorithm searches along each

road of the route, for intersecting cross-streets and returns each intersecting street as

a separate entity. Thus, if the same cross-street intersects the route more than once,

the query algorithm reports multiple versions of the cross-street, one per intersection.

To prepare the cross-street data for the search we �rst simplify the data and then

compute an initial cross-street layout.

8.1.1.1 Simpli�cation

For each cross-street the context layout receives a piecewise linear curve of lati-

tude/longitude shape points located in a small neighborhood centered about the

intersection point with the route, the name of the cross street, the name of the main

road the cross-street intersects and an importance value for the cross-street. If the

importance value is not pre-speci�ed we place highest importance on the last major

cross-street just before each turning point. We have found that these streets are help-

ful as a warning that the turn is approaching. Since navigators are less likely to be

familiar with the region around the destination, we also set the cross-streets near the

route destination to be slightly more important than those near the route origin.
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Cross-streets can either form T-intersections or X-intersections with their main

roads. We initially compute the original intersection point between every cross-street

and the main route as well as the type of intersection T or X, formed by the cross-

street and the main road. We then simplify each cross-street into either one or two

segments. If the cross-street forms a T-intersection we form a single segment running

from the furthest cross-street shape point to the intersection point. If the cross-street

forms an X-intersection we create two segments running from the furthest cross-street

shape points on either side of the main road to the intersection point. We also store

the orientation angle of each segment with respect to the main road. For some X-

intersection cross-streets, the name of the cross-street changes across the intersection.

Although the geographic database returns two separate cross-streets in these cases,

we unify them into a single a two-segment cross-street and give it two separate names,

one for either segment on opposite sides of the main road.

At this point we may have several cross-streets for each main road. Yet, for most

roads it is unlikely that more than one cross-street will be helpful for navigation. Each

cross-street breaks a main road into intervals and navigators must usually be aware

which interval they are currently located in. Extra cross-streets can make it more

diÆcult for navigators to match their real-world location to a map location since they

have more intervals to keep track of. With a single cross-street navigators need only

know if they are currently located before or after the cross-street. Extra cross-streets

tend to clutter the map. Therefore, as the �nal step of cross-street simpli�cation we

reduce the set of cross-streets along each main road to the single cross-street of highest

importance, which is usually the cross-street just before the turning point. Note that

this reduction must be performed after cross-street uni�cation so that cross-streets

forming X-intersections that change names at their intersection point are not turned

into single segment T-intersection cross-streets.

8.1.1.2 Initial Layout

The ideal location for each cross-street is its original intersection point with the main

road. Therefore, we initially place each cross-street at this original intersection point.

However, if the cross-street interferes with other map objects it may not be acceptable
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Figure 8.2: Placement constraints for cross-streets. The cross-street layout

search considers placing Castro street within the constraint region as close to the

original intersection point as possible. Once the cross-street and its label are placed,

the cross street is extended to a minimum pixel length on either side of its base road,

and if necessary, it is further extended to pass under its label.

to leave the cross-street at this initial position. For this reason, we also create a

constraint region around the original intersection point which speci�es the acceptable

range of positions for the intersection point, as shown in �gure 8.2. The constraint

region is de�ned in terms of a parameter t along the main road. If the original

intersection point lies in the �rst half of the main road then the constraint region

extends over the parametric range [0:05; 0:5]. Similarly, if the original intersection

point lies in the second half of the main road the region extends over the range

[0:5; 0:95]1. Note that the constraint regions are designed to include positions that

are at least a minimum parametric distance of 0:05 � t from route turning points.

By maintaining this gap we ensure that cross-streets will not clutter or obscure the

important turning points in the �nal map. Finally, cross-street labels are created just

like main road labels and initially placed using the same rules, as described in the

previous chapter.

1If we allowed more than one cross-street to be placed along a main road we would modify these

constraint intervals so that the ordering of cross-streets along the main road could not be altered.

Each cross-street would be given a disjoint interval in the order the streets initially intersected the

main road.
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8.1.2 Perturb

The perturb function for context layout randomly selects a cross-street and then

randomly changes either the position of the intersection point between the cross-street

and the main road, the position of the cross-street label, or whether the cross-street

is hidden. Once the street is perturbed, we set the length of the cross-street to a

prede�ned minimum extension length. Then, if the label has been placed directly

above or below the cross-street, we extend the street to pass completely over or under

its label.

Unlike the perturb functions for road layout and label layout we allow the context

layout perturb function the option of hiding context features. In some cases two or

more cross-streets may be located so that no matter where they are placed within

their constraint regions they will interfere with one another and all of these cross-

streets will end up with poor layout scores. With the option of hiding cross-streets it

becomes possible to �nd a layout in which some cross-streets are hidden in order to

make space for the other cross-streets. Hiding context features is acceptable because

such features provide secondary information that is not essential for navigating the

route.

It is possible that in some cases the cross-street constraint region along the main

road will contain a signi�cant curve. In such situations we have two choices for

orienting the cross-street as the position of the intersection point is perturbed within

the constraint region. We can either maintain the original orientation of the cross-

street even as the underlying main road curves, or we can reorient the cross-street

so that the angle between the cross-street and the main road is preserved. We have

found that even though the latter option may signi�cantly alter the orientation of the

cross-street from its true orientation, it is more important to maintain the turning

angle at the intersection rather than the overall direction of the cross-street. Since

navigators do not travel down a cross-street and only see the intersection with the

cross-street maintaining the true direction of the cross-street is less important than

maintaining the turning angle at the intersection.
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8.1.3 Score

We score each cross-street based on four criteria: (1) the distance between the current

position of the cross-street intersection point and the true intersection position, (2) the

number of other objects the cross-street intersects, (3) whether or not the cross-street

is hidden, and (4) the layout score of the cross-street label. The fourth component

score based on the placement of the cross-street label is described in the previous

chapter. Here we consider each of the �rst three component scores in detail. We then

describe the prioritized ordering of these scoring criteria.

8.1.3.1 Maintaining the Intersection Point Position

Ideally we would like the cross-streets to be placed as close to their original intersection

points as possible. Therefore, if iP torig(ci) and iP tcurr(ci) are the original and current

intersection points for cross-street ci we compute a position-based score for ci as

follows:

score(ci) = dRte(iP tcurr(ci); iP torig(ci)) �WstreetPosition (8.1)

The dRte() function computes distance along the main road between the current and

original intersection points. Thus, the further the current intersection point is from

the original intersection point the higher the score.

Usually the main road runs straight between the two intersection points and dRte()

reduces to the standard Euclidean distance. However, if there is a curve in the main

road calculating dRte() requires computing the arc length of the main road between

the two intersection points. In practice, we simply store the intersection points as

parameter values with respect to the main road. Suppose ti;orig and ti;curr are the

parameters along the main road ri of the original and current cross-street intersection

points. Since the current length of the main road lcurr(ri), is known after road layout

we can compute the distance between the intersection points as follows:

dRte(iP tcurr(ci); iP torig(ci)) = kti;orig � ti;currk � lcurr(ri) (8.2)
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8.1.3.2 Intersections

Just as in label layout we add a constant penalty to the cross-street layout score for

each map object, other than its own main road, the cross-street intersects. The basic

form of the intersection score is:

score(ci) =W (8.3)

where W is dependent on the type of map object the cross-street intersects. We

consider intersections with four types of objects, roads, labels and cross-streets and

landmarks, each with its own weight factor Wroad, Wlabel, Wcross�street, and Wlandmark

respectively.

Our geographic database only provides local information about each cross-street,

near its intersection with the main road. In particular we do not have any information

about whether or not the cross-street intersects other roads or cross-streets. It could

be extremely misleading to show intersection between streets and roads that do not

actually intersect. Since we do not have enough information to determine whether

a cross-street intersects any other roads or streets, we severely penalize cross-street

layouts which contain any such intersections, by setting Wroad and Wcross�street to be

very large. While intersections between cross-streets and label or landmark increase

clutter and make the map more diÆcult to read, such intersections, unlike intersec-

tions with other roads or street, cannot give navigators false impressions about the

topology of the local road network. Therefore, set Wlabel and Wlandmark to be much

smaller than Wroad and Wcross�street.

8.1.3.3 Hiding

If a cross-street is hidden we add a penalty proportional to the importance of the

cross-street as follows:

score(ci) = importance(ci) �Wimportance (8.4)
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We would like to place as many cross-streets as possible. By penalizing hidden cross-

streets in this manner we only hide the streets when hiding is necessary to alleviate

intersections between cross-streets. If there is a choice between hiding two cross-

streets we would like to hide the least important of the two. Thus, we set the hiding

penalty proportional to cross-street importance in order to guide the cross-street

layout search to hide the least important streets in favor of hiding more important

streets.

8.1.3.4 Balancing the Scoring Functions

For cross-street layout we again created maps containing the errors that these scoring

functions are designed to prevent and then asked a small group of users to informally

rate which errors were most confusing or misleading. The usability engineering process

revealed the following prioritized ordering for the constraints:

1. Prevent intersections with other map elements.

2. Maintain original intersection point with main road.

3. Cross-street label layout score.

4. Prevent hiding cross-street.

8.1.4 Cleanup

Once the search phase of cross-street layout is complete, we clean up the layout. If the

label of a cross-street overlaps any other object on the map, we remove the cross-street

from the map. Label-object overlap can make the label diÆcult to read and obscure

important route information. Since cross-streets are secondary features, removing

them from the map is preferable to allowing such overlap. We do, however, allow the

cross-streets to intersect other map objects. This is acceptable because cross-streets

are thin, 1D objects, and are drawn underneath the other map objects in a light

gray color so that they do not interfere with the legibility of the other objects. The

clean up is performed in order from least important to most important cross-street.
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Therefore if the labels of two cross-streets overlap, only the least important cross-

street is removed from the map. Finally, we clip each cross-street to every other road

and cross-street in the route. This �nal step ensures that we do not introduce any

false cross-street intersections in the maps.

8.1.5 Placing Local Point Landmarks

Like cross-streets, point landmarks such as buildings and signage along the route can

provide valuable context information and con�rmation that the navigator is correctly

following the route. While our search-based approach to placing point landmarks is

similar to our approach for placing cross-streets, there are also a few fundamental

di�erences. These di�erences are largely due to the fact that there are many di�erent

types of point landmarks, including stop signs, the gas station on the corner, highway

entrance and exit signs, and the local McDonald's. In our maps these point landmarks

also include the icons at the start and end of the route as well as traÆc circles located

along the route. In this section we consider how the type of landmark a�ects three

aspects of the landmark layout search; (1) the importance value of the landmark, (2)

the constraint region for the landmark and (3) the position-based score for evaluating

the placement of a landmark.

8.1.5.1 Point Landmark Importance

Rules for determining the importance of landmarks are not well-understood. A land-

mark that is important to one person may be insigni�cant to another person. Yet,

because point landmarks are secondary information we would like to place them on

the map in order of most important to least important. If, due to lack of space, there

is a choice between placing two di�erent landmarks we place the one that is more

important.

Cognitive psychologists and cartographers have developed a number of di�erent

theories for determining the salience of landmarks [Mac95, Lyn60]. Based on our own

experience, the rules for determining landmark importance are usually dependent on

the type of landmark. For example, during cross-street layout we apply the rule that
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the last major cross-street before a turn is more important than the second-to-last

cross-street. However, this same rule probably does not apply to buildings along

the route. If the second-to-last building is a McDonald's while the last building is

a residential apartment building, the McDonald's is probably the more important

landmark.

Choosing an importance value for each type of landmark falls outside the scope of

the LineDrive system. We believe that a designer must set importance values based

on knowledge about the type of landmark and the purpose of the map. However, as a

general principle we have found that even broad importance categorizations are useful

in designing the landmark layout search-algorithm. We have already described how

we broadly set the importance values for cross-streets based on their positions along

the route. As a contrasting example, consider the problem of setting importance for

highway entrance and exit signs. Based on our experience, we believe that the exit

signs between highways and standard residential roads are most important, followed

by highway entrance signs. This ranking is based on the fact that drivers usually exit

o� highways by �nding a sign that contains either the number or name of the road

they must turn onto. Since there are no stops on the highway it is easy to miss exits

and therefore the more information the driver has about an exit the easier it becomes

to correctly navigate the route. While highway entrance signs can be useful, drivers

are usually traveling slower and can usually see the highway from residential road,

making it easier to enter the highway without the entrance sign information.

For cross-streets we use importance in three ways; to initially reduce the number

of cross-streets we attempt to place, to penalize hidden cross-streets, and to order the

cross-street cleanup at the end of the layout search. Point landmark importance is

used similarly. Initially we remove any landmarks that fall below a given importance

threshold. During the anneal we penalize hidden landmarks by a score proportional

to their importance. During cleanup we remove con
icting landmarks in order from

least important to most important.

LineDrive also has the ability to break the landmark layout search into indepen-

dent phases based on the importance. We initially bin the point landmarks into two
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or more importance categories and then perform simulated annealing in phases, plac-

ing the landmarks in the highest ranking bin �rst, then the second bin and so on. For

example, all the highway exit signs are annealed �rst and then the highway entrance

signs are annealed. The higher ranking landmarks are more likely to be placed since

their are fewer potential map objects they might intersect. By breaking the context

layout search into independent phases we reduce the dimensionality of the search

space.

8.1.5.2 Constraint Region

We have already described placement constraint regions for label layout and cross-

street layout. For point landmarks we have found that the size of the constraint

regions fall into three categories; landmarks constrained to lie on a single point,

landmarks constrained to lie along a main road, and landmarks constrained to lie

near a turning point. Some landmarks such as the origin and destination icons as

well as traÆc circles lie directly on the route and are tightly constrained. In fact, there

is exactly one location in our map corresponding to each of these types of landmarks.

For example, the origin icon must be placed at the origin of the �rst main road in the

route. However, unlike the landmarks, we allow much greater 
exibility in placing

the labels for these landmarks. As shown in �gure 8.3(a) the landmark labels usually

have several placement constraints surrounding the landmark itself.

Like cross-streets, some point landmarks such as buildings located along a road

can be placed within a constraint region parallel to the road. For these landmarks we

use the same type of placement constraints as we use for cross-streets and road labels

generated with the along-road labeling style. Just as for cross-streets, we initially

compute the closest point on the uniformly scaled main route to the original position

of the building and then construct an constraint region interval around this point. If

more than one building is to be placed along the same road, we limit the lengths of

the constraint regions to ensure that they do not overlap so that the proper ordering

of the buildings along the road is maintained. As shown in �gure 8.3(b) we can then

simply treat the landmark as a road label containing two graphic components; an

icon and a text label.
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Figure 8.3: Point landmark placement constraints. (a) Some landmarks such

as this destination icon are constrained to lie on exactly one point. The layout

algorithm does not have any 
exibility in placing the destination icon. However, the

label for the destination landmark has more 
exible constraints. The center of the

destination landmark label must lie on one of the dotted curves. (b) The building

landmark is constrained to lie along the road as indicated by the dotted constraint

curve. We treat the landmark just like a road label containing an icon element and

a text element as its graphic components. (c) The center of the exit sign landmark

is constrained to lie within the dotted bounding box centered at the target turning

point..

The third category of point landmarks are those which must be placed near a

turning point. Such landmarks can be considered as labeling a target turning point.

Highway entrance and exit signs, stop signs and stop lights, are a common example

of such landmarks. The main constraint on such signs is that they must appear close

to the target turning point. As shown in �gure 8.3(c), we build a constraint regions

for such landmarks as a fairly large bounding box centered about the target turning

point.

8.1.5.3 Position-Based Score

Both label layout and cross-street layout searches require the speci�cation of a pre-

ferred position within the placement constraint region. For labels this preferred po-

sition is the point in the region closest to the center of the target object. For cross-

streets the preferred position is the original intersection point. Both of these layout
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searches then compute a position-based score which penalizes a given label or cross-

street position by a factor proportional to distance from the current position to the

preferred position. We compute a similar position-based score for point landmarks.

The notion of a preferred position is well-speci�ed for point landmarks that are

tightly constrained to a single point as well as point landmarks that lie along a road.

For point landmarks labeling a turning point however, we have two position-based

requirements. The landmark must be located near its target turning point and it

must be located as far away as possible from the other turning points so that the

navigator properly associates the landmark at its target. Therefore we compute two

position-based scores for such landmarks. First, we penalize a landmark by a score

proportional to its distance from its target. Then we compute the distance from the

landmark to every other turning point, and if the distance is less than the distance

between the landmark and its target turning point we add a constant penalty to the

score. We repeat this second test during the cleanup phase of landmark layout and

remove any point landmark from the map whose distance to its own target is greater

than its distance to another turning point.

8.2 Decoration

As shown in �gure 8.4, the decoration stage of LineDrive is responsible for adding

four kinds of graphic decorations to the map to enhance its usability; (1) light gray

extensions are added to the ends of the roads, (2) a north orientation arrow is added

to indicate the map orientation, (3) bullets are added at the turning points to indicate

decision points on the route, and (4) the rendering style of the roads is used to indicate

the type of the road and can also provide a subtle cue that the map is not drawn

to scale. These decorations greatly strengthen the essential map information at the

expense of very slightly increasing map clutter. We describe each of these decorations

in turn.
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Before 
Decoration

After 
Decoration

Figure 8.4: Before and after decoration. Four kinds of graphic decorations

enhance the usability of the map. Extensions to the ends of roads, rendered in a

light gray color, accentuate turning points and help associate road labels with their

roads. The orientation arrow shows the overall orientation of the route. Bullets at

turning points further accentuate turning points and show where each turn decision

is required. The rendering style di�erentiates roads into three categories. Highways

are rendered with double lines, standard residential roads are rendered with single

lines and highway on- and o�-ramps are rendered with single lines at half-thickness.

8.2.1 Road Extensions

Extensions on the ends of each road accentuate the turning points and help associate

the road's label with the road. Before adding extensions, we look up the pair of roads
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at each turning point in the database to check if they continue beyond the turning

point. If a road does extend, we set the length of the extension to a prede�ned

minimum extension length. The extensions are drawn in the same light gray color as

cross-streets to de-emphasize them from the main portion of the roads. The change

in color helps emphasize the turning points.

The topology at each intersection between a pair of roads can be either a L-

intersection, X-intersection or T-intersection. By including the road extensions we

depict the topology of each turning point on the main route. This topological infor-

mation can provide another cue for navigators to verify that they have reached the

proper turning point as they follow a route.

If during label layout, the center of the road's label was placed directly above or

below an extension, we grow the extension so that it passes completely over or under

the label. Growing the extension in this manner helps form the proper association

between the label and its target road.

Finally, we clip the extension to all other roads and cross-streets. Very short

extensions can look confusing, so if the clipping causes the extension to become smaller

than the minimum extension length we completely remove that extension from the

map.

8.2.2 North Orientation Arrow

The north orientation arrow shows the overall route orientation with respect to global

north and can make it easier for navigators to geographically place the route. To place

the orientation arrow, we search the map image for an empty region large enough to

hold the arrow. We accelerate the search by �rst building a �xed resolution occupancy

grid over the map image and then only searching in empty cells of this grid. The

search is ordered to �rst look for space in the four corners of the image and then

search through the remaining image.
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8.2.3 Bullets at Turning Points

Bullets, in the form of small circles, are drawn at each turning point to show exactly

where each turn decision must be made. The bullets also help di�erentiate between

roads that are headed in the same general direction. For example, the bullet between

highways CA-85 and US-101 in �gure 8.4 shows that the navigator must actively

switch from one road to the other.

Another approach to accentuating turning points is to alternate the color of the

roads at each turning point. For example, the road entering the turning point could

be drawn in green while the road exiting the turning point could be drawn in black.

However, compared to using small bullets at the turning points, this approach requires

using an additional color-based encoding in the map. In our experiments we have

found that the color change becomes a striking feature of the map, drawing attention

away from the other map elements. The bullets are not as visually prominent and

therefore a more appropriate choice for enhancing the decision points..

8.2.4 Rendering Style

The rendering style for each road is set according to the type of the road. Our database

di�erentiates between three types of roads: limited access highways, highway ramps,

and standard residential roads. Thus, we set the rendering style for each road based

on its type. Limited access highways are drawn as double lines, while ramps are

drawn at half the thickness of the standard roads.

We have also experimented with rendering LineDrive maps using a stroke-based,

pen-and-ink style. Following the approach described by Markosian et al. [MKT+97],

we consider each road and cross-street as a piecewise linear curve and break the

curves into sets of small equal length segments. We then perturb the endpoints of

each segment by a small random amount and �nally interpolate the perturbed points

with a B-spline.

As shown in �gure 8.5, the variations in the lines makes the map look more like

a sketch than a precise computer-generated image. Strothotte et al. [SPR+94] have

shown that rendering style can in
uence how people interpret architectural drawings,



CHAPTER 8. CONTEXT LAYOUT AND DECORATION 118

Figure 8.5: Map rendered in sketchy style. We use a stroke-based approach to

add small variations to the roads and cross-streets. This gives the map the appearance

of a sketch and can cue the navigator that the map is not drawn to scale.

and we believe a similar principle applies to route maps. The sketchy rendering style

is a subtle cue that the map is not drawn to scale.



Chapter 9

Designing for Display Constraints

As computers have become ubiquitous, computer display devices1 have taken a wide

variety of forms. Display sizes range from wall-sized screens, covering tens of square

feet down to wrist-watch screens covering under one square inch. Spatial resolution

and color resolution vary from photographic quality color prints down to 20 text char-

acter monochrome displays found in pagers. When designing images to be displayed

by a computer it is essential to consider the size and resolution constraints imposed

by the display device.

The form-factor of the route map must be easy to carry and manipulate if it is to

be used while traversing the route. Any display larger than a single sheet of paper is

inconvenient and reduces usability. The clean, clutter-free composition of LineDrive

maps is speci�cally designed to emphasize the essential route information within

images that are at most about a third of a printed page in size. In fact, LineDrive

maps are also well-suited to smaller displays as found on cell phones and personal

digital assistants (PDAs). However, each display device imposes slightly di�erent

constraints on the LineDrive maps. In this chapter we describe how we select the

image size and modify the graphic design of LineDrive maps to meet the constraints

imposed by two categories of display devices; (1) web-sized displays designed to be

viewed in a browser on standard computer monitors and printed on letter-size paper,

1We include printers and the associated printouts as display devices in addition to standard CRT

based displays.
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and (2) small screen displays such as those found on cell phones and PDAs.

We conclude the chapter with techniques for placing additional information such as

text direction and detail maps, near the LineDrive maps for both categories of display

devices. The additional information both reinforces the information depicted in the

LineDrive maps, and presents the route in a slightly di�erent manner. The navigator

can quickly switch between the di�erent depictions to form a better understanding of

the route.

9.1 Image Size Selection

Recall that LineDrive designs route maps to �t within a pre-speci�ed image size. As

shown in our block diagram in �gure 4.2, we have developed an image-size oracle to

automatically select an image size for the map by computing the amount of space

the map needs to most e�ectively communicate the essential route information. The

image should provide enough space so that all the roads and turning points are clearly

visible. However, if the image is too large, the map will contain large regions of empty

space. Moreover, the exact dimensions of the route are not known until after the road

layout stage of the algorithm. The challenge therefore, is to balance the image space

requirements, without knowing the exact size of the route. Our approach is to choose

the image size based on an estimate of the aspect ratio of the route.

The image size oracle must also consider the resolution and interface constraints

imposed by the display device. Web pages designed for printing are usually about

650 pixels across by 1000 pixels long. As shown in �gure 9.2 we typically place the

LineDrive map in the top third of the page, oriented either horizontally or vertically.

The orientation is dependent on the estimated aspect ratio of the route.

The resolution constraints on small screen displays are much tighter than for

web pages. Cell phones using the Wireless Application Protocol (WAP) are limited

to black and white images of 127X127 pixels, while the most common version of

the Palm PDAs can show images of 160X160 with 16 levels of gray color resolution.

Although these devices o�er limited interaction capabilities they usually provide good

support for vertical scrolling. We provide two methods for delivering LineDrive maps
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(b) (c)
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Figure 9.1: Estimating map aspect ratio. (a) The route contains one long north-

south road (I-91) and many short east-west roads. (b) If the image size is selected

based on the original north-south aspect ratio, the image is given more vertical space

than horizontal space. The top and bottom of the image go unused because after

growing all the short roads the aspect ratio of the map becomes much wider. (c)

Computing the aspect ratio after growing the roads yields a horizontal image size

and a more e�ective use of the space.

on such displays; we can split routes into multiple maps as shown in �gure 9.3 and we

can rotate the route so that navigator only needs to scroll vertically to see the entire

route, as shown in �gure 9.4.

9.1.1 Estimating Aspect Ratio

The aspect ratio of the image viewport can have a large a�ect on the layout of a

route map. Consider a route map created for a predominantly north-south route that

is designed to �t a wide aspect ratio viewport. All of the north-south roads would

end up squashed while large regions of the image to the left and right of route would

remain unused.
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(a) Wide Aspect-Ratio (b) Tall Aspect-Ratio

Figure 9.2: LineDrive maps designed for the Web. The size of the LineDrive

map image is dependent on the estimated aspect ratio of the route. (a) A wide aspect

ratio route is given a wide image that covers the top third of the web page. (b) A tall

aspect ratio route is given a tall image that covers the top left part of the web page.

Text directions as well as overview and detail destination maps provide additional

route information.
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A better approach is to choose the viewport size based on the aspect ratio of

the route. However, simply using the aspect ratio of the original uniformly scaled

route does not always produce the desired result. Suppose, as in �gure 9.1, the

original route contains many east-west roads near its origin and destination, with one

extremely long north-south road in between. Although the original aspect ratio for

the route is north-south, after growing the short roads in our road layout, the aspect

ratio of the route changes substantially. To estimate the aspect ratio of our �nal map

before performing road layout, we initially �t all the roads at their original lengths

to a large square viewport. We then grow all the short roads to their minimum pixel

length and �nally compute the aspect ratio of this new map, thus generating a more

realistic estimate.

The estimated route aspect ratio divides our routes into two categories, those that

run predominantly east-west and are therefore wider than they are tall and those that

run predominantly north-south and are therefore taller than they are wide. For wide

aspect ratio routes we use a �xed image size of 650X350 pixels, to cover about a third

of the page. The horizontal length of the maps is limited to 650 pixels so that the

LineDrive maps will print on letter-size paper without any clipping. An example of

a wide aspect ratio map designed for the web is shown in �gure 9.2(a).

For tall aspect ratio routes we use a base image size of 350X500 again covering

roughly a third of the page. However, letter-size paper does not limit the vertical

resolution of our maps and we can therefore extend the vertical image size of tall

routes as needed up to a limit of 800 pixels. Thus, we start with a base vertical image

resolution of 500 pixels for maps with 10 or less steps and add 20 pixels for each step

thereafter. An example of a tall aspect ratio map designed for the web is shown in

�gure 9.2(b).

9.1.2 Splitting Route Into Multiple Maps

Since LineDrive scales each road in the route individually, space required to generate

an overlap-free map is generally related to the number of steps in the route. In the

United States most routes, including cross-country routes, contain less than 30 steps.
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Figure 9.3: LineDrive map on a WAP cell phone. The small-screen display

requires forces the route to be split across multiple images. One bit color resolution

forces the graphic design of the maps to be simpli�ed as well.

In European countries such as the United Kingdom, however, the road networks are

older with fewer highways and therefore routes containing over 75 steps are common.

Even using the optimization techniques in LineDrive, it is not always possible to pro-

duce an overlap-free layout within the given image space for such routes. Therefore,

when designing maps for web-sized displays, if the route contains more than 30 steps

LineDrive splits the route into roughly equal sized segments of roads. For example,

if a route contains 45 steps, LineDrive will split the route into two segments, the �rst

containing 23 steps, and the second containing 22 steps. A web-sized display is then

created for each segment of the route. This approach ensures that each segment of

the route is given enough space to produce a clear and legible map.

With small-screen devices such as cell phones and PDAs only a few steps of the

route will �t in a single image. Splitting the route into multiple segments o�ers a
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simple solution to the problem. As shown in �gure 9.3 for WAP based cell phones

with extremely limited resolution we place at most two turning points in each image.

Each map is designed to the full screen resolution of 127X127 pixels.

The main drawback of this approach is that the entire route is never encapsulated

in a single map and is instead split over two or more images. Just as with stripmaps

the navigator must 
ip between multiple maps and to form a mental representation

for the route. However, this solution is preferable to generating a crowded, unreadable

map containing all the steps.

9.1.3 Verticalization

Another approach to displaying routes on small screen devices is to create a larger

map image that can be scrolled. Since many cell phones and PDAs provide good

controls for scrolling vertically but not horizontally the best interface would be one

which allows the entire map to be seen by scrolling the image only vertically. In such

situations, the image size is constrained only in the horizontal direction. Luckily, most

routes have some predominant orientation. We �nd the predominant orientation by

�tting a tight, oriented bounding box [GLM96] to the route after growing all the

short roads just as we did for the aspect ratio computation. We can then �t the map

to our horizontally constrained image by rotating the entire route so that the largest

extent of the map is aligned with the vertical axis of the viewport. This approach

provides extra space in the direction the route needs it most. As shown in �gure 9.4,

the orientation arrow helps indicate that the map has been rotated.

A common cartographic convention is that the north orientation arrow should

align as closely as possible with the vertical axis of the viewport. Thus, we choose

the rotation angle, either clockwise or counter-clockwise, which ensures that north

arrow points in the upward semi-circle of directions. The rotation angle is bounded

between �90:0 degrees and although the north arrow may not be aligned with the

vertical axis of the viewport after the rotation it usually has a strong component in

the vertical direction. In the worst case the north arrow will point to the left or to

the right after the rotation. It will never point downwards.
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Figure 9.4: LineDrive map on a Palm PDA. The route is rotated so that it

�ts the horizontally constrained image size of the PDA. The vertical dimension is

unconstrained and users can scroll up to see the remainder of the route.
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Once the map has been verticalized, we can compute a vertical resolution for the

image based on the number of steps in the route. For PDAs we have empirically

found that providing a vertical resolution of 200 pixels for maps with less than 10

steps, and adding 10 pixels for each step thereafter, works well.

9.2 Simplifying Graphic Design for Small-Screens

To produce clear, readable, routes maps for small-screen displays, which generally

lack both spatial and color resolution, we simplify the graphic design of the maps in

several ways. Antialiasing does not work well with limited color resolution. On the

common Palm PDA displays containing four bits of color depth, antialiased lines and

text that are not oriented either horizontally or vertically appear somewhat blurry.

With a single bit of color depth as found on WAP based cell phones, it is impossible

to perform any antialiasing and text oriented at an angle can be very diÆcult to

read. Since legible road labels are essential for following the route we modify the

label layout stage of LineDrive to favor label placements that are oriented vertically

or horizontally. We simply add a penalty to the score of a label if it is oriented at an

angle.

Under the tight spatial resolution constraints, secondary route information clutters

the map more than it helps navigation. Moreover the reduced color resolution makes is

diÆcult to to de-emphasize secondary information. Cross-streets and road extensions

that are colored light gray in the web-sized maps are almost the same color as the

main roads in the small-screen maps. For these reasons we eliminate all the context

information from the maps designed for small screens, by skipping the context layout

stage of the system. In addition, in the decoration stage we only add extensions to

roads where they are required to help associate road labels with their target roads.

9.3 Designing the Complete Page

While LineDrive maps contain all the information required to traverse a given route,

additional information such as text directions and detail maps can make navigation
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easier. These additional information sources reinforce and extend the information

depicted in the LineDrive map. However, the additional information is most useful

when it is placed near the LineDrive map so that the navigator can easily take in all

the information with a single glance. The page designer, shown in the block diagram

�gure 4.2, is responsible for collecting the additional route information and then

composing all the route information including the LineDrive map to form a complete

description of the route.

For both web-sized and small-screen displays we complement the LineDrive map

with the text directions. LineDrive maps present the route from an allocentric

third-person, birds-eye perspective, while the computer-generated text directions of-

ten present more of a �rst-person, route perspective. Taylor and Tversky [TT92a,

TT92b, TT96] have shown that human-generated verbal directions usually mix these

two perspectives. The LineDrive web page presents both perspectives at once so that

navigators can choose the one they prefer or use a combination of both. We have often

found it useful to be able to quickly look back and forth between the text directions

and the LineDrive map in order to verify the action to take at each turning point (i.e.

turn left or turn right).

As shown in �gure 9.2 for web-sized displays the text directions are placed either

below or to the right of the LineDrive map, depending on the aspect ratio of the

map. For small-screen PDAs the text directions are placed immediately below the

LineDrive map. With cell-phones, the text directions follow the set of LineDrive map

images.

One diÆculty with using only LineDrive maps combined with text directions is

that they provide little detail outside of the main route. If the navigator accidentally

strays from the route, it can be diÆcult to �nd a way back onto it. This can be

especially problematic near the destination of the route where the navigator is less

likely to be familiar with the area and may need to stray from the route in order

to �nd parking. Similarly, LineDrive maps can be diÆcult to place within a larger

geographic context because they provide very little geographic context beyond the

outside of the channel immediately surrounding the route. We address these problems

for the web-sized displays by providing two standard computer-generated maps below
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the text direction. An overview map shows the entire route at constant scale so the

large scale geographic features near the route are likely to be visible and provide

some orientation. A detail destination map provides extra information about the

road network surrounding the destination. These maps are sized vertically to try to

ensure that the complete page including LineDrive map and text �t within a single

printed sheet of paper. We do not provide the overview and destination maps for

small-screen displays because the standard computer-generated maps contain very

little information when constrained to the color resolution of the these displays.



Chapter 10

Results

The intuition behind LineDrive is that, for local trips within a semi-familiar region,

hand-drawn route maps are much easier to use while traversing the route than stan-

dard road maps drawn to-scale. As we developed the LineDrive system, we period-

ically tested the validity of our intuition by taking user surveys. The surveys were

designed to tell us how people typically use Web-based route mapping services and

whether or not our prototype LineDrive map designs would be more useful than stan-

dard computer-generated route maps. The user feedback led to many re�nements in

the graphic design of the LineDrive maps, as can be seen by comparing maps produced

by our early prototype system (see �gure 4.1) to maps produced by our current sys-

tem (see �gure 4.3). Through this iterative approach we not only validated our initial

intuition, but we gathered many insights into how we could improve the usability of

the LineDrive route maps as well. While the insights themselves have been described

in the earlier chapters of this dissertation, we we begin this chapter by presenting the

results from these early surveys and connecting the survey results with the insights

we learned.

We completed this iterative, user-centered design for LineDrive in October 2000,

and publicly released a beta version of the system through www.mapblast.com at

that time. Examples of several route maps generated using the current version are

presented in �gures 10.1- 10.3 as well as �gures 9.2- 9.4 of the previous chapter.

We tested the performance of the LineDrive system in two ways: (1) by computing

130



CHAPTER 10. RESULTS 131

San Francisco to Atlanta

Figure 10.1: LineDrive map from San Francisco to Atlanta. Unlike in the

standard overview map shown below, the non-uniform scaling in the LineDrive map

allows all roads to be visible in this cross-country route. Since the ramp between

Marin St. and US-101 intersects Army Street (actually passes above Army) it is not

dropped from the map and proper intersection topology is maintained.
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Bellevue to Seattle

Figure 10.2: LineDrive map from Bellevue to Seattle. All ramps are main-

tained in this relatively short route from Bellevue to Seattle. Road shape is retained

at both ends of I-5 in order to maintain a consistent turn angle with the adjacent

ramps. The exit signs provide important context information for entering and exiting

the highways. The highways are labeled using the highway-shield labeling style which

helps di�erentiate the interstate, state and local highways from residential roads.
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North Las Vegas to
Mc Carran Airport

Figure 10.3: LineDrive map from North Las Vegas to McCarran Airport.

Cross-streets provide context and aid navigation in this route. The sketchy rendering

style in this map is a subtle cue that the map is not drawn to scale.

detailed statistics on a test suite of 7727 routes and (2) by collecting extensive user

feedback on the beta version of LineDrive. We describe both of these performance

tests in the last two sections of this chapter.

10.1 Early User Surveys

We conducted two user surveys during the early design of LineDrive. The �rst survey,

taken in April 2000, was developed to provide insight into how people use standard
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Web-based driving direction services such as MapQuest, MapBlast, Expedia etc. As

shown in table 10.1, we asked Stanford business school students to voluntarily �ll

out a web-based questionnaire about how they typically use such online mapping

services. We received 122 responses. Although the respondents were self-selected and

as business school students perhaps biased in favor of technology, we believe that

the responses do provide insight into how a large segment of users use online driving

directions.

This survey validated several of our hypotheses regarding how people use online

driving directions. Responses to the �rst question show that people who use online

driving directions tend to use them fairly often. About 50% of our respondents use

them either all the time or pretty often. Almost all people who generate driving

directions print them out to take with them on the trip. The response to the second

question shows that driving directions are most commonly used while traversing the

route. As the responses to our third question show, over three quarters of all trips

for which people generate driving directions are within the navigator's own greater

metropolitan area. This question validated our intuition that people generally use

online driving directions for local trips.

The �rst survey also shows that many users are dissatis�ed with the standard

computer-generated route maps. Just over 70% of respondents said that they rely

either exclusively or primarily on the text directions, ignoring the maps. The last

survey question shows several reasons for the reliance on the text directions. Accord-

ing to 50.1% of respondents, the overview maps are diÆcult to use, while 64.8% said

that the step-by-step focus maps are diÆcult to use. One person commented that

\The [standard] maps would be useful if they were easier to read. The current maps

that come with directions never seem to be at the right scale," while another wrote,

\I �nd the [standard] maps to be microscopic and hard to read."

The text directions usually provide a good description of each turning point on

the route. Therefore, one of the main functions of the overview and step-by-step

maps is to provide additional context for the route, not found in the text direction.

However, 42.6% of respondents said that recovering from a wrong turn is diÆcult with

standard online directions. The form-factor of standard online driving directions is
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First User Survey (122 responses)

How often do you use online driving direction?

15 12.3% All the time.

44 36.1% Pretty often.

53 43.4% Occasionally.

10 8.2% Rarely.

How often do you print the directions to take with you on your journey?

95 77.9% Always.

21 17.2% Most of the time.

6 4.9% Half the time.

0 0.0% Occasionally.

0 0.0% Never.

About what percent of the time do you use driving directions within your own

greater metropolitan area (versus out-of-town)?

76.3% Percentage of use in-town. (Average across respondents)

24.7% Percentage of use out-of-town. (Average across respondents)

Which of the following best describes your use of maps and text once you depart

for your destination?

19 15.6% Use text only.

67 54.9% Primarily use text.

18 14.8% Use text and maps equally.

15 12.3% Primarily use maps.

3 2.4% Use maps only.

Driving directions usually include one overview map and a series of smaller

focus maps that highlight speci�c turns. Once you depart for your destination,

which of the following best describes your use of the maps in online directions?

19 15.6% I don't use the maps. I look at text directions exclusively.

60 49.2% I use the overview map only.

19 15.6% I mostly use the overview but sometimes look at focus maps.

12 9.8% I use the overview map and focus maps equally.

12 9.8% I mostly use the focus maps but sometimes look at the overview.

0 0.0% I use the focus maps only.

Would you say that online driving directions su�er from any of these problems?

61 50.0% Print-outs are too long and cumbersome.

52 42.6% DiÆcult to recover from a wrong turn.

62 50.1% Overview map diÆcult to use or not helpful.

79 64.8% Focus maps are diÆcult to use or not helpful.

48 39.3% Directions are not reliable.

Table 10.1: First user survey. We received responses from 122 Stanford Business

School students about their experiences with standard online driving directions.
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(a) Prototype LineDrive Webpage (b) Standard MapBlast! Webpage

Figure 10.4: Prototype LineDrive vs. standard MapBlast! webpages. For

the second survey we asked people to choose which webpage they preferred. (a)

The prototype LineDrive webpage provides a map and text directions, (b) while the

standard MapBlast! map provides an overview map and a step-by-step map with each

line of the text directions. We only show the �rst printed page of the the MapBlast!

webpage. The entire webpage extended over 4 printed pages. Note that although the

origin-destination pair is the same for both webpages, the route is slightly di�erent.
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Second User Survey (90 responses)

Which set of driving directions do you prefer?

11 12.2% Webpage containing standard computer-generated maps.

79 87.8% Webpage containing prototype LineDrive map.

Table 10.2: Second user survey. We received responses from 90 Stanford Business

School students about the set of directions they preferred.

also a problem for many users. In our survey, exactly 50% of respondents said that

the printouts were usually too long and cumbersome.

The second survey, taken in July 2000, was developed to determine whether or

not navigators would prefer a LineDrive map containing length, angle, and shape

distortions to standard computer-generated route maps. We again presented the

survey to Stanford Business school students and purposely chose the route origin to

be at Stanford and the route destination to be in Berkeley so that the respondents

would be likely to be familiar with the area around the route. Our survey �rst asked

respondents to look at two di�erent webpages. As shown in �gure 10.4, the �rst was

the standard webpage generated for the route and included step-by-step maps for each

turn. The second webpage replaced the standard overview map with the prototype

LineDrive map (we generated the page using photoshop) and did not show step-by-

step maps. We then asked respondents to choose which map they preferred and why.

As shown in table 10.2, 88% of respondents thought the LineDrive prototype map

was preferable to the standard overview map.

The main comment echoed by many respondents was that the LineDrive maps are

\Much clearer and easier to follow. Less clutter and more streamlined." This second

survey helped validate our hypothesis that the length, angle and shape generalizations

found in hand-drawn maps and imitated in LineDrive help generate simpler, cleaner

maps that are easier to use than standard maps drawn to-scale. In their comments,

respondents also provided several suggestions for improving the graphic design of the

maps which we subsequently added into the system. A few people mentioned the idea

of placing bullets at turning points to help emphasize decision points along the route.

As mentioned in chapter 4, the prototype version of LineDrive considered each road
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as a straight line heading in one of the eight cardinal directions (N, S, E, W, NE,

NW, SE, SW). Several people thought that adding more road shape, particularly for

highway exit and entrance ramps would improve map usability. Finally, a few people

mentioned that adding major cross-streets, particularly before turning points would

be very helpful. Interestingly, many of the respondents mentioned that they really

liked the clutter-free look of the maps and said that we should make sure not to add

anything that would increase clutter.

One limitation of these surveys was that they did not allow the respondents to

generate LineDrive maps for their own routes. While LineDrive might be able to

generate one good map between Stanford and Berkeley it was unclear whether or

not the system could scale to generate an e�ective map for any route. However, the

results of the these two surveys gave us con�dence that LineDrive maps could be far

more useful than standard computer generated maps. Based on these survey results

we convinced Vicinity Corporation, an online mapping company to give us access to

their route mapping services and developed the current version of LineDrive.

10.2 System Performance

To test the performance of the current LineDrive system we �rst collected a test suite

comprised of 7727 routes queried over one day at www.mapblast.com. The median

route distance for the test suite is 52.5 miles and the median number of turning points

is 13. We ran each route through the system twice, �rst generating a webpage size

image at a �xed resolution of 600 x 400 and then generating a PDA size image with a

�xed horizontal resolution of 160 and a variable vertical resolution. The running time

is largely dependent on the number of objects (i.e. roads, labels, etc.) that must be

placed in the map. The median run time for a single map on an 800 MHz Pentium

III was 0.7 seconds for the �rst run and 0.8 seconds for the second run. Although

the vast majority of maps are clustered around these median times, a few outliers

containing over 100 roads took about 13 seconds to generate for the webpage size.

A small percentage of the LineDrive maps generated from the test suite of routes

contained layout problems such as topological errors or label-label overlap. In many
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Performance Statistics (7727 routes)

Web PDA

Median Time 0.7s 0.8s

Short Roads (< 10 pixels) 415 5.4% 430 5.6%

False Intersections 25 0.3% 23 0.3%

Missing Intersections 15 0.2% 14 0.2%

Label-Label Overlaps 37 0.5% 289 3.7%

Label-Road Intersections 901 11.7% 2096 27.1%

Table 10.3: Performance statistics. Our test suite contains 7727 routes with a

median of 13 turning points per route and a median distance of 52.5 miles. Every

row except for median time indicates the number of maps containing at least one

instance of the problem. For example, the short roads row presents the number of

maps containing at least one road less than 10 pixels long.

cases, these problems were unavoidable because it is not always possible to make all

roads large enough to be visible and simultaneously maintain the topology of the

route. In a few cases, the problems could have been avoided but the randomized

search did not converge to a near-optimal layout. The frequency of various layout

problems for the 7727 route test suite are summarized in table 10.3.

The most signi�cant problems that can arise in road layout are (1) that some roads

may not be made large enough to be visible and clearly labeled or (2) that false or

missing intersections may be introduced during the layout. Short roads, de�ned as less

than 10 pixels in length, occurred in 5.3% of the webpage maps and 5.6% of the PDA

maps. In most cases, the short roads could not be made longer either because there

were a large number of roads all heading in the same direction or because lengthening

the roads would have introduced a false or missing intersection. Although the PDA is

horizontally constrained, the increase in the number of maps containing short roads is

small because verticalization of these maps provides space for the short roads to grow.

False and missing intersections occurred much less frequently than short roads and

in all cases, avoiding the false or missing intersection would have required shrinking

one or more roads to be extremely small. These percentages do re
ect the priorities

we gave each of the road layout constraints. Recall that as described in section 6.3.4,
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User Feedback (2242 responses)

Would you use LineDrive maps in the future?

1246 55.6% Yes, I would use them instead of standard driving directions.

976 43.5% Yes, I would use them along with standard driving directions.

20 0.9% No thanks, I'll stick with standard driving directions.

How would you rate this feature?

1787 79.7% It's a blast.

253 11.3% Just �ne.

202 9.0% Needs some work ...

Table 10.4: User feedback. The beta version of LineDrive has been accessed over

150,000 times and we have received 2242 responses to the system.

preventing topological errors is our highest priority constraint, while growing short

roads is given the next highest priority.

The main problems that can occur in label layout are (1) that a label will be placed

overlapping another label, or (2) that a label may be placed overlapping a road or

landmark. Less than 0.5% of webpage sized maps contained overlapping labels, while

3.7% of PDA sized maps contained label-label overlap. This increase is due to the fact

that long labels are especially diÆcult to place without overlap on the horizontally

constrained PDA. Although label-road overlap occurs in a signi�cantly larger number

of maps, such intersections are much less detrimental to the overall usability of the

map than label-label overlap.

10.3 User Response

The beta version of LineDrive was available to the public from October, 2000 until

March, 2001 and served over 150,000 maps in this period. Over 2200 users voluntarily

�lled out a feedback form describing their impressions of the LineDrive maps. Again,

while the group of respondents was self-selected, it is unclear whether any result-

ing bias would be positive or negative. Despite the potential bias, we believe that

the feedback provides valuable insight into users' reactions to the maps. As shown
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in table 10.4, the general response to the LineDrive maps was overwhelmingly posi-

tive. Less than one percent of respondents said they would rather use the standard

computer-generated maps than the LineDrive maps.

Nearly half of the respondents said they would like to use LineDrive maps in

conjunction with standard maps. As noted in the previous chapter, with the version

of LineDrive designed for the Web, we provide two standard road maps drawn to-scale;

a detail map of the destination and an overview map showing large-scale geographic

context of the entire route. We believe that these maps in conjunction with the

LineDrive map and text directions cover the needs of most users.

Long distance trips often require more context than LineDrive maps provide.

While the cross-country map in �gure 10.1(a) is a good stress-test showing that

LineDrive can produce readable maps for routes containing many steps at vastly

di�erent scales, it is probably not the ideal map during such a long trip. Most

navigators taking this trip would require a road atlas showing detailed local context

along the way. LineDrive maps are designed for relatively short trips (i.e. under 100

miles) within a familiar region. Our experience is that most car-based trips fall within

this range and the majority of people who use web-based mapping services generate

directions to locations within their own greater metropolitan area.

One diÆculty with using LineDrive maps alone is that they provide little detail

outside of the main route. If the navigator accidentally strays from the route, it can

be diÆcult to �nd a way back onto it. This can be especially problematic near the

destination of the route where the navigator is less likely to be familiar with the area

and may need to stray from the route in order to �nd parking. We address these

problems on the website by providing a standard computer-generated map of the

region near the destination of the route along with the LineDrive map.

About 9% of the respondents said the LineDrive system needs some work. How-

ever, most concerns were not with the LineDrive map, but instead with the partic-

ular route chosen by the route �nding service. The beta version of LineDrive did

not support cross-streets and local landmarks and the most common feature requests

applicable to the maps were for the addition of cross-streets and exit signs. Based

on the results of the beta test, LineDrive became the default map style for driving
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directions at www.mapblast.com in March 2001. This version supports cross-streets.



Chapter 11

Conclusions and Future Work

In this dissertation we have shown how to build a fully automated system for designing

route maps that are as e�ective as hand-drawn route maps. To develop LineDrive we

used a general two step approach that required �rst identifying the cognitive design

principles used in the best hand-designed examples of route maps and then encoding

those principles algorithmically. We review our contributions in section 11.1 and 11.2.

In section 11.3 we describe several directions for future work.

11.1 Cognitive Design Principles for Route Maps

To formalize the cognitive design principles used in hand-drawn route maps we ex-

amined a variety of hand-drawn examples as well as prior research on the cognitive

psychology research of way�nding. From this analysis we identi�ed three main cog-

nitive design principles for hand-drawn route maps:

Cognitive Design Principle 1: People interpret the route in terms of paths

and turns. Both verbal route directions and hand-drawn route maps are structured

as a series of turns from one road to the next. The emphasis is on communicating the

roads entering and exiting each turn and the turn direction (left or right) between

them. The names of the roads connect the map to the physical world and the turn

direction speci�es the action to take at the turn. This turning point information is

143
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essential for following the route.

Cognitive Design Principle 2: People use landmarks for context and er-

ror recovery. Additional context information can facilitate navigation. Landmarks

such as cross-streets, signage and buildings along the route provide consistency checks

which navigators can use to verify that they are correctly following the route. Sim-

ilarly, distances along each segment of the route can help navigators judge their

progress. Larger scale area landmarks like nearby bodies of water and global proper-

ties of the route such as its overall shape can help navigators orient the route to the

surrounding geography. However, context elements are not essential for following the

route and are usually included in a hand-drawn route map only when they do not

interfere with the primary turning point information.

Cognitive Design Principle 3: People mentally distort geometry. As long as

the turns (the names of the exiting and entering roads and the turn direction between

them) are present in the map, navigators usually do not need to know the exact road

length, turning angle or road shape to follow the map. Hand-drawn maps often

emphasize the turning points by distorting these geometric properties of the route.

In fact, cognitive psychologists have shown that people's mental representations of

routes also contain many such simplifying distortions. Moreover, the environment

in many cases prevents the simpli�cations from causing errors; the exact degree of

turn does not have to be indicated in the map because the shape of the physical

intersection of the roads determines the turn.

11.2 LineDrive: A Fully Automated Route Map

Design System

The key insight underlying our algorithmic design is that carefully instantiating these

three cognitive design principles can dramatically improve the usability of a route

map. We have incorporated all three into an automated route map design system
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called LineDrive and as a result LineDrive maps retain the ease of use found in hand-

drawn route maps. In particular all the turning points are visible, the maps are

completely clutter-free and they present all the information required to traverse the

route within a compact and convenient form-factor.

LineDrive is set up as a search-based layout optimization algorithm. Given a set

of map elements, roads, their labels, context elements like cross-streets and so on,

LineDrive lays them out by choosing visual or retinal attributes like position, orien-

tation and size for each element. LineDrive expresses each of our cognitive design

principles as a numerical constraint functions and then uses search-based optimiza-

tion techniques to automatically �nd a route map layout that best adheres to these

principles. The diÆcult aspect of characterizing the route map layout problem as an

optimization problem is developing eÆcient constraint functions that capture all the

features of our cognitive design principles. This dissertation details our approach to

algorithmically expressing these cognitive design principles.

The LineDrive system generates most route maps in about a second. It is currently

the default map rendering engine for driving directions at www.mapblast.com. The

system is serving about 250,000 maps per day. About 2200 users have answered a

questionnaire; over 99 percent reported that they prefer LineDrive maps to standard

computer-generated route maps. Based on these results we believe that LineDrive

maps are far more e�ective than standard computer-generated route maps.

11.3 Future Work

There are several directions for future research. In this section we begin by presenting

some approaches for extending LineDrive. We then describe how the techniques

developed for LineDrive might be applied to automatically designing other types of

maps. We conclude with a discussion of how our two-step approach for developing

automated visualization design systems might apply to visualization domains other

than cartographic maps.



CHAPTER 11. CONCLUSIONS AND FUTURE WORK 146

11.3.1 Extensions to LineDrive

There are a number of directions in which the LineDrive system could be extended.

Here we consider a few of these directions.

Optimizing visualizations for small and large displays: While we described

some methods for designing LineDrive maps to the constraints of PDA's and cell

phones in chapter 9, it would be useful to understand how to e�ectively present the

maps on all kinds of display devices from cell phones to high-resolution, large-size

display walls. Fully adapting LineDrive maps to small-screen devices will require ac-

commodating their limited spatial and color resolution. We already reorient the maps

for devices that provide vertical scrolling, and we split the route into smaller segments

for extremely small-screen devices like cell phones. We could further examine how

to adapt LineDrive maps to limited color resolution. For example, antialiasing text

is diÆcult under these color resolution limitations, especially when text is drawn at

an angle. To accommodate this limitation we would have to change the optimization

constraints to prefer placing road labels in horizontal orientations to other orienta-

tions. Similarly we would like to adapt LineDrive maps to work with high-resolution

devices like Stanford's Interactive Mural [GSW01] or the IBM High-Resolution Bertha

display (3840 by 1560 with 204 dots per inch of 24-bit color)[IBM01]. With such dis-

plays we might adapt LineDrive maps to show more of the surrounding context for

the route.

Adapting maps to the capabilities of the navigator: The LineDrive system

currently does not have any model of the navigator and cannot adapt to the abilities

of the navigator. It may be possible to extend LineDrive to account for users' abilities,

such as their familiarity with the neighborhood of the route. A visualization designed

for a user who is unfamiliar would contain more information to keep the user on

course. It would also avoid abbreviations. For many routes the user will be more

familiar with the region near the origin of the route than the destination of the route.

In such cases we might give the user the option of removing the roads leading from

the origin to the nearest highway in order to reduce clutter. Similarly we would like
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to investigate how spatial and verbal abilities of the viewer might a�ect the design

of the maps. We currently orient the LineDrive maps so that North always is up.

Certain experts like pilots prefer maps oriented so that the forward direction is up.

These maps can reduce error because they do not require mental rotation to infer

direction of turn. A north-up map might be better for planning and a forward-up

map better for execution.

Dynamic route maps: LineDrive maps are currently designed as static visualiza-

tions, which navigators can print out to take with them on a trip. With handheld

computers or in-car navigation systems containing Global Position Service (GPS) de-

vices tracking the navigator, it would be possible to generate dynamically updating

versions of the maps as the underlying data and goals of the route change. For ex-

ample, as traÆc patterns change, the map might update itself to show the fastest

possible route. Dynamic route maps would be particularly useful if the navigator

becomes lost. The map would update as necessary to help the navigator recover from

the error. It would show either the best route back to the original route or a new

route from the current location to the destination.

With constant location tracking through GPS the form of the route map visual-

ization might change as well. A simple extension would be to place an animated icon

in the map to show the navigator's current position in the route. A more complex

interactive visualization could provide more zoomed-in detail around the current lo-

cation of the navigator and gradually reduce detail in parts of the route that are far

away from the navigator, to create a dynamic focus-plus-context view of the route.

As we noted in chapter 3, most of the prior work in producing such views for maps,

introduces severe distortions along the borders between the focus view and the con-

text view. The distortions can make it diÆcult to understand how the two views �t

together. It may be possible to develop a visualization that smoothly varies the level-

of-detail from a detailed view at the current location of navigator a less detailed view

as distance increases. Moreover such an interactive map should smoothly update the

region as the navigator moves along the route.
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Route maps for pedestrians and other modes of transport: LineDrive maps

are currently designed to show driving directions. We would like to extend LineDrive

to support other types of routes including pedestrian, hiking and biking routes. While

these types of routes are similar to driving directions in many respects, they do change

the requirements of the route visualization in several ways. For example, it is usually

important to understand how the terrain, in particular hills, might a�ect the route.

Such route maps should show the grade of each segment on the route. Similarly

a driver is usually less interested in knowing the exact shape of each road, but a

hiker or bicycler will often want to know how the paths along the route curve and

switchback. For drivers the names of the roads serve as the major landmark and are

the most important information marking a turning point. For pedestrian routes and

hiking trails, the paths along the route may often be unnamed and therefore physical

landmarks like buildings are much more important for marking turns.

11.3.2 Point Location Maps and Routes Through Buildings

While LineDrive was developed for designing long-distance route maps, we believe

that many of the generalization techniques implemented in LineDrive may be applied

to other types of cartographic maps. Here we consider two types of maps that are

related to route maps: point location maps and short-distance 3D routes through

buildings.

Point location maps: Point location maps, such as those in brochures, business

cards and yellow pages show all the major routes to a point location such as an oÆce

building or restaurant. As shown in �gure 11.1, hand-designed point location maps

contain the types of scale distortions we see in LineDrive maps. Speci�cally, all the

relevant roads, regardless of their length, are visible. But, point location maps are

designed to show a 2D region around the point, while LineDrive maps are designed

to show a single route, which is essentially a 1D curve. Therefore, the constraints

designed for LineDrive maps may not transfer directly to point location maps. Point

location maps will probably require stronger constraints to ensure that the 2D region

around that point does not appear excessively stretched or distorted.
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Figure 11.1: Point location map. (left) A hand-designed point location map

showing routes from the major highways to the Jade Tree Restaurant at 2209 El

Camino Real, Stanford California. (right) A computer-generated map for the same

point location. The scale distortions in the point location map make it possible to see

the highways 280 and 101 as well as the local roads like El Camino Real, California

Ave. and College Ave, in the vicinity of the restaurant. The constant scale factor

and clutter make it impossible to see these roads in the standard computer-generated

map.

Point location maps can also be extended to include tourist maps that show all

the attractions, restaurants or shops within a relatively small region, as well as the

routes from the major highways to this region. Such tourist maps are often stylized

and distorted to emphasize the major points of interest in the map. In some cases,

tourist maps mix perspectives; they show the pattern of streets from above and the

landmarks from a street point of view, so they are easy to recognize. In other cases,

these maps are drawn with 3D perspective and/or 3D relief. A 3D view makes it

possible to present a frontal view of the landmarks along the route and by cutting

away rooftops it is possible to present the activities that are going on within a building.

Routes through buildings: We would also like to consider methods for visualizing

routes within 3D environments such as buildings or subway stations. A typical route

in such an environment might show emergency, �re escape evacuation routes, wheel-

chair accessible routes, or how to get to a particular oÆce or platform. Currently

such routes are shown by presenting each 
oor of the environment in plan view and
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Figure 11.2: Methods for visualizing 3D routes.(left) The walls and 
oors are

rendered semi-transparent so that the route shown in red remains visible. (right) The

building is exploded vertically so that each 
oor is visible. A route drawn in this

exploded view would be visible as it moved from 
oor to 
oor.

drawing the route separately in each view. The navigator must mentally connect

the route at transfer points between the 
oors such as stairways or elevators. These

visualizations force the viewer to mentally reconstruct the 3D route from a series of

2D slices.

The main challenge of visualizing routes within the complete 3D environment is

dealing with the occlusions created by the walls and 
oors. Navigators need to see

where walls and 
oors create physical barriers to the route, but they also need to be

able to see the route itself. One approach, as shown in �gure 11.2(left), may be to

use translucency to show where the walls and 
oors exist but also allow the route

to remain visible. Another approach as shown in �gure 11.2(right) might be to use

cutaways and exploded views to separate the building at each 
oor to allow each 
oor

to be seen individually. Note that since 3D environments consist of localized spaces

the types of scale distortions we use in LineDrive route maps are less useful and could

be very confusing. However, we would like to investigate the types of distortions that

are useful in such 3D environments.
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11.3.3 Applications Beyond Cartographic Maps

The two-step approach we developed for LineDrive is general and can be applied to

creating automated visualization design systems for a variety of di�erent types of

visualizations, including, 1) visualizations of instructions, directions and processes

which show how a certain task is performed, and 2) visualizations of numerical or

abstract data, such as graphs and charts. A number of research e�orts have been

directed toward automating the latter [Mac86, RM91, RLS+96], but far fewer to the

former [SF91].

Examples of the �rst category, visual instructions, are a standard part of our daily

lives. Maps, training manuals, textbooks, architectural plans, scienti�c papers, and

street signs all use visual diagrams to communicate instructions. We believe that it is

possible to apply our two-step approach to build fully automated visualization design

systems for creating visual instructions for a variety of domains. Here we consider a

few domains outside of cartographic maps:

Mechanical assembly instructions: Assembly of a complex structure or machine

is a common task. We de�ne a mechanical assembly as a collection of 3D parts that

are placed in speci�c spatial relationships with respect to one another. Assembly

instructions are designed to show how the 3D parts must be arranged to form the

complete object. Assembly is conceived as a hierarchy of actions on objects or object

parts. At the coarse, higher level, actions are segmented by the objects or parts

e�ected. At the �ner level, actions are segmented by a sequence of re�ned actions on

the same part. Congruent with this mental representation of assembly, diagrams of

assembly show successive placements of parts or objects. Illustrators have developed

a number of techniques such as cutaways, exploded view and insets to depict such

instructions. While assembly instructions usually describe how to put together 3D

objects like furniture, buildings, or machines, we can expand this domain in two

ways. We can include other functions for the visualization including showing how the

objects work, explaining their structure or repair and troubleshooting. We can also

include other types of 3D objects such as biological specimens and geological samples.
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Logistics plans and timelines: Large projects require some form of logistics plan-

ning to arrange when each subtask will be performed and who will work on each sub-

task. Such planning is especially important so that subtasks that are dependent on

one another can be performed in the proper order. A logistics plan is conceived of as a

dependency graph between the subtasks. Congruent with this mental representation

of a logistics plan is a time series or timeline showing the timeframe within which

each task will be completed. For example, a building construction project requires

arranging when the various contractors such as electricians, plumbers, roofers, etc.

should work on the project. In this case a visualization showing the various parts of

the building being added to a blueprint view of the building, as they are �nished can

help the planner �nd dependencies among the contractors' subtasks. In planning the

movement of forces in a battle a visualization showing the positions of the forces on

a map would help the planner better understand the 
ow of the forces over time.

Architectural plans: In the early design stages a building is conceived at a number

of di�erent levels including room placement, furniture layout, movement through the

building, 3D structure, lighting, etc. Congruent with these conceptions are design

sketches such as bubble diagrams showing placements of rooms, plan views show-

ing furniture layout and movement patterns, and axonometric and perspective views

showing 3D structure and lighting. As the design progresses these drawings become

more re�ned until they are fully formalized as blueprints for the building. While

architectural plans usually deal with physical buildings we can expand this domain

to include landscape architecture as well as neighborhood and city planning.

The cognitive design principles for instructional visualizations primarily depend

on the domain to be conveyed and the goals of the task. For the research presented in

this dissertation we focused our work on the domain of route maps. By considering

how our approach might extend to other, vastly di�erent domains we believe that it

will be possible to uncover general techniques to automate the visualization design

process.



Appendix A

Topological Error-Free Initial Road

Layout

To create an initial road layout that is free from topological errors we must �rst

determine where such errors may arise. Given a route and a viewport, we begin by

uniformly scaling all the roads to �t within the viewport. We then search the route

for intersections between non-consecutive roads on the route. These intersections are

\true" intersections on the route and should be maintained in the �nal road layout.

Suppose roads ri and ri+m intersect. We mark all the roads within the intersection

interval formed by these two roads with an interval index intervala. We can ensure

that the true intersection is maintained in our initial layout by growing all the roads

within the intersection interval by the same factor.

Yet, it is not enough to maintain true intersections. We must also ensure that

our initial layout does not contain any false intersections. To determine roads that

might generate false intersections, we grow all the short roads to be at least Lmin

pixels long and again mark the roads within each intersection interval. In this case

some of these intersections may have been introduced by growing the short roads and

therefore represent false intersections. However, we can ensure that our initial layout

does not contain false intersections if we return to the uniformly scaled route and

grow all the roads within each one of these false intersection intervals by the same

factor. Note that since we computed these intersection intervals after growing short

153
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roads up to Lmin pixels, this approach only ensures that false intersections are not

created up to a scale factor C that grows the shortest road within the interval up to

Lmin pixels.

All roads within each intersection interval should be grown by the same scale

factor to either maintain a true intersection or avoid a false intersection. We can

optimize the process of growing roads by combining overlapping intersection intervals

into a single interval. That is, if there is some road ri that is part of intervala and

intervalb we make a new intersection interval intervala;b and place all roads rj within

either intervala or intervalb into intervala;b. In this manner we compute the union

of overlapping intersection intervals and partition the route into disjoint intersection

intervals.

To create the initial layout we return to the uniformly scaled route. Within each

intersection interval we �nd the shortest road and if it is shorter than Lmin we scale

it up by a factor C so that it is Lmin pixels long. We also scale all the other roads

in the interval by C, thereby ensuring that topological errors are not generated. Any

remaining road shorter than Lmin must not lie within an intersection interval and can

therefore be individually scaled up to Lmin pixels.

After this growth stage all the roads are at least Lmin pixels long and the route

does not contain any topological errors. However the route may no longer �t within

the viewport and therefore we �nish the initial layout stage by rescaling the entire

route by a uniform factor so that it �ts inside the viewport.
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