
3D Puppetry: A Kinect-based Interface for 3D Animation

Robert T. Held⇤, Ankit Gupta†, Brian Curless†, and Maneesh Agrawala⇤

⇤University of California, Berkeley †University of Washington
{rheld,maneesh}@cs.berkeley.edu {ankit,curless}@cs.washington.edu

ABSTRACT
We present a system for producing 3D animations using phys-
ical objects (i.e., puppets) as input. Puppeteers can load 3D
models of familiar rigid objects, including toys, into our sys-
tem and use them as puppets for an animation. During a per-
formance, the puppeteer physically manipulates these pup-
pets in front of a Kinect depth sensor. Our system uses a com-
bination of image-feature matching and 3D shape matching
to identify and track the physical puppets. It then renders the
corresponding 3D models into a virtual set. Our system oper-
ates in real time so that the puppeteer can immediately see the
resulting animation and make adjustments on the fly. It also
provides 6D virtual camera and lighting controls, which the
puppeteer can adjust before, during, or after a performance.
Finally our system supports layered animations to help pup-
peteers produce animations in which several characters move
at the same time. We demonstrate the accessibility of our sys-
tem with a variety of animations created by puppeteers with
no prior animation experience.

Author Keywords
Tangible user interface, animation, object tracking

ACM Classification Keywords
I.3.6 [Computer Graphics]: Methodology and Techniques -
Interaction Techniques; I.3.7 [Computer Graphics]:
Three-dimensional Graphics and Realism - Animation.

INTRODUCTION
Today, the most common way to create 3D animated stories
is to use high-end, key-frame-based animation software such
as Maya [3], 3ds Max [2] or Blender [7]. While these systems
provide fine control over the motion, position, and timing of
each element in the scene, users must learn a complex suite
of tools and commands to operate their high-threshold, high-
ceiling interfaces. Building the expertise to use these tools
effectively requires time and patience.

A simpler alternative is to film a performer moving phys-
ical puppets with their hands. Real-time, kinesthetic feed-
back from the puppets allows the puppeteer to concentrate on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, Massachusetts, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

Figure 1. Our system allows puppeteers to use toys and other physical
props to directly perform 3D animations.

the performance, rather than how it is being captured. Such
direct manipulation significantly reduces the learning curve
required to create 3D stories, and even children can readily
participate. However, the resulting video usually reveals the
puppeteers and their controls. Moreover, video is difficult
to modify once it is captured, and the physical nature of a
video-recorded puppet show places practical limits on light-
ing, background complexity, and camera motions.

Motion capture offers another alternative for creating 3D an-
imation that retains the real-time physical performance ben-
efits of video recording a puppet show, but removes the con-
straints on lighting, background complexity, camera motions
and puppeteer visibility. Such systems track the motions of
physical props or puppets and map the motions onto virtual
objects or characters rendered into virtual sets. However,
current motion-capture implementations require complex and
often expensive hardware setups (e.g. multiple high-frame-
rate cameras, physical markers on the objects, specialized
gloves on the hands, etc.) making them inaccessible to ca-
sual users [29, 31].

We introduce a 3D puppetry system that allows users to
quickly create 3D animations by performing the motions with
their own familiar, rigid toys, props, and puppets. As shown
in Figure 1, the puppeteer directly manipulates these objects
in front of an inexpensive Kinect depth camera [10]. We
use the Kinect along with the ReconstructMe 3D scanning
software [13] to build virtual 3D models of each puppet as
a pre-process. Then, as the puppeteer performs the story,

Apathetic Ambulance
V

ie
w

 f
ro

m
 K

in
e

c
t

R
e

n
d

e
re

d
 O

u
tp

u
t

Figure 2. Example frames of our system in action. The bottom row shows the puppeteer manipulating physical puppets. The top row shows the result
of our system tracking the puppets in real time and rendering them in a virtual set.

our system captures the motions of the physical puppets
and renders the corresponding 3D models into a virtual set
(Figure 2). Our system operates in real-time so that the
puppeteer can immediately see the resulting animation and
make adjustments to the motions on the fly.

We use inexpensive capture hardware and a relatively sim-
ple setup to make our system accessible to many users. Our
system does not require any markers or specialized gloves
for tracking. The performative mode of interaction, which
closely resembles a physical puppet show, makes it familiar
and approachable to novices. Kinesthetic and proprioceptive
feedback gives the puppeteer constant and direct knowledge
of the pose of each puppet as it is handled. For instance,
the puppeteer can determine a puppet’s pose simply by feel-
ing its shape and knowing the spatial positions of her hands
relative to the performance space. Moreover, with tangible
3D puppets, the physics of the real world can help to produce
natural-looking motions. To animate a car crash, for example,
a puppeteer can either manually move two toy cars simultane-
ously, or more easily, just send one car rolling into the other
and rely on momentum to complete the performance.

Our puppet-tracking algorithm does impose a few restrictions
on puppeteers. It assumes that puppets are rigid objects—it
cannot track articulated joints or easily deformable materials
such as cloth. In addition, if puppeteers move the puppets
very quickly over long distances our system can lose track of
them. However, in practice we have found that a wide variety
of toys and props are made of suitably rigid materials and that
puppeteers quickly learn the limitations on movement speed.

In addition to its basic tracking functionality, our system in-
cludes controls and effects to help users create animated sto-
ries. Because our system generates a 3D animated scene,
users can adjust the camera, lighting, and background sets
of the rendered animation at any time, before, during, or after
the performance. In practice we have found that puppeteers
sometimes move puppets outside of the tracking volume ac-

cidentally, at which point they no longer appear in the virtual
set. To warn puppeteers before this happens, we reduce the
opacity of the rendered puppets as they approach the edge of
the tracking space. Finally, some stories may require a pup-
peteer to perform with more than two puppets at a time. We
provide an interface for creating layered animations to facili-
tate such multi-puppet animations. Puppeteers can separately
capture performances with different puppets, and then com-
bine them into one animation.

We demonstrate the flexibility and accessibility of our ap-
proach with a set of animated stories created by first-time
puppeteers with no prior animation experience. Our pup-
peteers combined several features of our system, including
6D camera and lighting controls, physical interactions be-
tween puppets, faded entrances and exits, and layered anima-
tions to tell engaging short stories. Our results indicate that
novice users can quickly generate entertaining 3D animations
with our system.

RELATED WORK
Our 3D puppetry system builds on several areas of related
work.

Tangible Interfaces With tangible interfaces [16], the user
handles physical objects to interact with a computer. These
systems use a variety of methods to track objects, including
computer vision, electronic tags, and bar codes [21]. For in-
stance, one could use a small paddle to rearrange furniture in
a miniaturized virtual room [20], or move two tracked cards
together to make virtual characters interact [22].

Our system bears the most resemblance to interfaces that use
the identity of everyday objects to guide interactions. Avra-
hami et al. [4], use a touch-sensitive tablet and stereo cameras
to track physical props. Users can roll plastic soccer balls at
the tablet to play a sports game, or directly place game tokens
on the screen to play tic-tac-toe. Lego OASIS [34] identifies
Lego figures using a depth sensor and then projects relevant

animations into the physical space. For instance, they can de-
tect a Lego dragon figure and project flames onto it. Finally,
Johnson, et al.’s [18] sympathetic interface uses a plush toy
with embedded sensors as input. The puppeteer manipulates
the limbs of the puppet to control its virtual representation,
which can interact with other virtual characters. These sys-
tems all use physical input to trigger preset events and inter-
actions, whereas we design our interface to permit free-form
creation of new animations.

Kinect-based Interfaces. Researchers have used the Kinect
to produce new, low-cost, physical interfaces. The interfaces
can track the human body [28] or hands [15] to provide
interaction with virtual objects, including medical-imaging
data [11]. Though our system also uses the Kinect, we
track physical objects, rather than the puppeteer’s body.
The KinectFusion project [17] allows one to quickly scan
a physical environment. We use a similar system, Recon-
structMe [13], to convert physical puppets into 3D models.
However, the rest of our interface bears less resemblance to
these systems, as we focus on object tracking rather than
scanning.

Object-based Motion Capture. Motion-capture generally
refers to systems that record the movements of physical
objects and converts them into animations. Our system most
closely parallels object-based motion-capture systems, which
track small physical objects and apply their movements
to virtual characters [9, 25, 24]. While the prior systems
focus on the detailed articulation of one character at a time,
we provide a quick way for puppeteers to tell stories by
performing with multiple rigid puppets at the same time. The
other systems also require multiple cameras [9] or specialized
sensing hardware [25, 24], while our system requires only a
single Kinect and a tabletop.

Video Puppetry. The 2D video-puppetry system developed
by Barnes, et al. [5] lets puppeteers perform animations with
paper cut-out characters. It identifies, tracks, and re-renders
the characters with the puppeteer removed in real time. Pup-
peteers operate our system in a similar way, but our use of
3D puppets enables more types of animations. For instance,
3D puppets can be rotated in three dimensions, whereas 2D
cutouts are restricted to one axis of rotation and cannot ro-
tate out of the plane. We also allow 6D control of the cam-
era (3D translation and 3D rotation) during performance and
playback, while camera changes in the video-puppetry sys-
tem are limited to translations and zooms. Finally, the mass
and shape of 3D objects let the user rely more on physics to
tell a story. For instance, one could set a toy car rolling across
a scene, which would not be possible with a piece of paper.

SYSTEM OVERVIEW
Our system consists of three main modules: Setup, Cap-
ture, and Render. During Setup, puppeteers scan physical
puppets into our Puppet Database and build color models of
their own skin. The Capture module consists of three com-
ponents: a Puppet Identifier, a Point-cloud Segmenter, and a
Pose Tracker (Figure 3). The Puppet Identifier uses 2D im-
age features to detect the presence of each physical puppet
and initialize the Pose Tracker. The Point-cloud Segmenter

takes in a colored 3D point cloud from the Kinect and out-
puts individual point clouds corresponding to each physical
puppet. The Pose Tracker then aligns each physical puppet’s
segmented point cloud with its stored 3D model to determine
its pose. In the Render module, our system uses the captured
poses to render the corresponding 3D model for each physical
puppet in the virtual set. This module provides camera and
lighting controls, and the option to swap 3D backgrounds.

SETUP
For tracking and rendering purposes, our system maintains a
Puppet Database of defining characteristics for each trackable
puppet. The database entry for each puppet consists of a 3D
model and several sets of color images and depth maps asso-
ciated with different example poses. If a puppeteer wishes to
use a new puppet with our system, this information must be
scanned in and stored in the database once as a pre-processing
step. Finally, prior to running our system for the first time,
each puppeteer must build a color model of their skin. This
model is used by the Point-cloud Segmenter to isolate points
that belong to puppets, and not the puppeteer’s hands, and is
necessary for accurate tracking.

Building the Puppet Database
The Puppet Database includes a 3D model of each physical
puppet. To create a 3D model, the puppeteer first uses Re-
constructMe [13] to scan the physical puppet with the Kinect
sensor. As the puppeteer moves the Kinect around the puppet,
casually capturing it from all sides, ReconstructMe converts
the stream of incoming Kinect point clouds into an untextured
3D mesh of the puppet in real-time. The raw mesh also in-
cludes parts of the environment around the puppet, so we crop
out non-puppet points and fill any remaining holes using the
MeshMixer modeling software [27].

To add color to the model, the puppeteer loads the untextured
mesh into our puppet-tracking system in Painting mode and
places the physical puppet in front of the Kinect. Painting
mode tracks only one puppet at a time, and uses a stripped-
down version of the Capture module. It aligns the puppet’s
3D model with the incoming Kinect point cloud, and then
transfers the colors from the point cloud to the vertices of the
3D model. Figure 4 shows the result of scanning a toy using
ReconstructMe and colorizing the model using our approach.
Our Painting mode could also be used to colorize models ob-
tained from other sources (e.g., laser scanners). The complete
algorithmic details of our tracking approach are given in the
Capture Section.

For accurate tracking it is essential that the 3D model match
the shape of the physical puppet as closely as possible. How-
ever, our system does not require that puppeteers use Re-
constructMe, and we also use models from other sources in-
cluding Google’s 3D Warehouse [12] and Autodesk’s 123D
Catch [1], which uses a multi-view stereo algorithm to pro-
duce 3D models from sets of digital photographs. In practice,
we found the ReconstructMe pipeline to provide the simplest
method for quickly generating suitably accurate 3D models
of common objects such as toys, props and puppets.

 Pose Tracker!

Point-cloud Segmenter!
Background & Skin

Removal! Puppet-based Segmentation!

ICP-based Alignment!

Puppet Identifier !

SIFT Matches! Puppet ID’s & !
Rough Pose Estimates!Puppet Database!

Kinect Data!

Puppet Poses!

Puppet-specific !
Point Clouds!

Figure 3. Overview of our system’s Capture module. With each frame, the Kinect provides an RGB image and depth map. The puppet identifier
compares SIFT features in those data to the features found in a database of image templates to identify puppets and roughly estimate their poses. The
RGB and depth information are also combined into point clouds, which are processed to remove the background and the puppeteer’s hands, and then
matched to stored 3D models using ICP to estimate the puppets’ 6D poses.

Physical Puppet ReconstructMe Model Colorized Model

Figure 4. Overview of model-loading using ReconstructMe. Left: A
photograph of the toy to be scanned. Middle: An untextured 3D model
of the toy produced by ReconstructMe. Right: The same model, with
vertex colors assigned using our system.

In addition to the 3D model, our Puppet Database includes
roughly 30 color and depth template images for each puppet,
along with the pose of the puppet in each image. Our sys-
tem relies on these templates to detect physical puppets in the
Kinect’s field of view. Thus, they must sample the range of
possible orientations and positions of the puppet throughout
the Kinect’s field of view. We capture these images with our
Capture module in Template-capture mode. As with Painting
mode, Template-capture mode only tracks one puppet. The
puppeteer places the puppet in the Kinect’s field of view and
the system detects its pose. The puppeteer then presses a key
to save the current image, depth map, and puppet pose and
repeats this process for several unique poses throughout the
Kinect’s field of view. We have found that roughly 30 tem-
plate images spaced in a 2x3 grid with 4-5 orientations in each
position is sufficient for accurate puppet tracking. Cropped
versions of example image templates can be seen in the bot-
tom two rows of Fig. 5.

Skin Model
Our system uses the 3D point cloud from the Kinect to re-
cover each puppet’s 6D pose. However, to ensure accuracy,
it needs point clouds that only contain points belonging to
the puppets. Therefore, the Capture module must filter out
any points that belong to the puppeteer’s hands. It uses a
histogram-based color model of the puppeteer’s skin to per-
form this filtering. Our system creates this skin model once
for each puppeteer as part of Setup.

The color model divides a 3D RGB color space into
96x96x96 bins. The puppeteer uses the Kinect to capture
color images of his/her hands, and the system places the skin

pixels into the color bins. If the number of pixels assigned
to a bin exceeds a preset threshold, the system labels the
color range associated with that bin as skin. The result is a
tight volume of colors that belong to the puppeteer’s skin.
This choice of color model is powerful because it can handle
arbitrary, non-linear boundaries. However, like any other
color-based model, it prevents the use of puppets with colors
that are very similar to the puppeteer’s skin color.

CAPTURE
Figure 3 gives an overview of the Capture module, which we
split into three components: a Puppet Identifier, a Point-cloud
Segmenter, and a Pose Tracker. The inputs to the Capture
module are the Puppet Database and Kinect data. The Kinect
provides color images and depth maps, which are converted
to 3D point clouds at 30 frames per second. For a given frame,
the Puppet Identifier and Point-cloud Segmenter run first, and
then send their data to the Pose Tracker, which determines the
pose of each puppet.

Puppet Identifier
The Puppet Identifier serves two main functions: (1) it iden-
tifies puppets within the Kinect’s field of view, and (2) it
roughly estimates their poses as an initialization for the Pose
Tracker. The Puppet Identifier runs continuously, but its out-
put is only used in two situations: when a physical puppet
first enters the field of view or when the accuracy of the sys-
tem’s pose estimate for that puppet falls below a threshold
and tracking must be restarted. See the Pose Tracker module
for more details.

Matching Image Features. To identify puppets within the
Kinect’s field of view, we first find scale-invariant feature
transform (SIFT) [23] features within the template images in
the Puppet Database. We use SIFT features because they re-
veal distinctive 2D image elements that are invariant to trans-
lation, rotation, and scale. Our implementation uses Sift-
GPU [33] to achieve high-performance. We compute the
SIFT features for the templates once as a pre-process when
we first capture the template images in the Setup module.

During a performance, we compute SIFT features for each
color image from the Kinect (or “RGB frame”) and com-
pare them to the pre-computed features of each template im-
age. Given the set of feature matches for each template im-

Figure 5. SIFT-based puppet identification. The RGB frame contains
two physical puppets that our system has matched to the template im-
ages below it. We use color-coded dots to indicate the coordinates of
the matched SIFT features. For each puppet, the best-matched template
contains the most SIFT matches to the frame.

age, we use Lowe’s [23] Hough-transform-based approach
to find the subset of that are consistent with a single rigid
transformation to the RGB frame. This procedure removes
unreliable matches between the RGB frame and each tem-
plate. Then, for each puppet in the database, we determine
the best-matching template image based on the remaining
feature matches. We eliminate templates with fewer than 20
feature matches and this usually leaves us with one template
match (from the entire database) for each physical puppet in
the Kinect’s field of view (Figure 5). In some cases this pro-
cedure finds more than one best-matching template, each cor-
responding to a different puppet in the database, for a single
physical puppet. In these instances we select the template
with the highest ratio of matched features to total features in
the template.

Rough Pose Estimation. We compute a rough pose esti-
mate for each physical puppet that we match in the database.
Both the template image and RGB frame have correspond-
ing depth maps, which we use to recover the 3D coordinates
of each pair of matched features. We then compute the opti-
mal translation between the two sets of matching coordinates.
We found that computing the full 6D rigid transform between
the points using Horn’s method [14] gave unreliable estimates
of the rotation component. Instead, we compute just the 3D
translation between the points and concatenate this with the
transformation stored with the template to give a rough esti-

mate of the physical puppet’s pose. When needed, we use this
estimate to label points in the Point-cloud Segmenter and to
initialize the pose refinement in the Pose Tracker.

Point-cloud Segmenter
The Kinect 3D point cloud generated for each frame is undif-
ferentiated and includes points that belong to each physical
puppet as well as the background of the performance space
and the puppeteer’s hands. The Point-cloud Segmenter first
removes the background points and the hands from the cloud
and then splits the remaining points into separate clouds for
each physical puppet (Figure 6).

Removing Background and Hands. To remove the back-
ground points our system captures a background depth map
of the empty performance space each time the puppeteer first
runs our system. Then, during the performance, if the depth
of any point in the incoming Kinect point cloud is within 2%
of the background, the Segmenter removes it from the point
cloud. To eliminate points that belong to the puppeteer’s
hands, the Segmenter compares the color of each incoming
point to the skin color model; if the color of the point matches
any bin labeled as skin, the point is removed. Almost all re-
maining points in the cloud belong to physical puppets.

Segmenting by Physical Puppet. To further segment the
point cloud, the Segmenter requires pose information for each
physical puppet in the Kinect’s field of view. In most cases the
Segmenter uses the last known pose from the Pose Tracker.
However, whenever a physical puppet is first introduced into
the performance space the Pose Tracker cannot provide this
pose information. In these cases we use the rough pose esti-
mate produced by the Puppet Identifier. The Segmenter then
iterates over each incoming point, computes its distance to
the closest point on each visible puppet model, and assigns
the point to the closest puppet. To reduce erroneous matches
when two physical puppets are close to one another, if the ra-
tio of distances between a point and two puppets is less than
1.2 (i.e., the point is about equally close to both puppets and
could belong to either one) we do not assign it to any puppet.

Pose Tracker
The Pose Tracker is responsible for accurately estimating the
pose of each puppet in the Kinect’s field of view. It com-
putes this estimate by aligning the segmented point cloud for
a physical puppet with the corresponding 3D model in the
database. The Pose Tracker refines the pose estimate for each
puppet by aligning its 3D model from the database to the
corresponding cloud produced by the Point-cloud Segmenter.
We use the iterative closest point (ICP) algorithm [6] to com-
pute the alignment.

The ICP algorithm aligns two sets of 3D points by 1) deter-
mining point-to-point correspondences between the sets, 2)
calculating the least-squares optimal rigid transformation be-
tween the corresponding points [14], 3) transforming one of
the sets to better align the points, and 4) iterating until the
fractional reduction in error between iterations drops below a
threshold. In our ICP implementation, one set of points is the
segmented point cloud for a puppet and the other set is com-
prised of the vertices of its 3D model (Figure 7). Because

Raw point cloud Background Removed Skin Removed Segmented by Puppet

Figure 6. Steps of point-cloud segmentation. Beginning with the raw point cloud from the Kinect, our segmenter removes the background and the
puppeteer’s skin, and finally produces separate point clouds associated with each puppet.

Stored Puppet Model

Segmented Point Cloud

Initial Alignment 2 Iterations 4 Iterations 32 IterationsIn
pu

t P
oi

nt
 C

lo
ud

s

Figure 7. Progression of ICP alignment between a segmented point cloud and a Puppet Database model. Our ICP algorithm begins by transforming
the puppet model using its last known pose (if available; otherwise it uses the rough pose estimate from the Puppet Identifier). Then each ICP iteration
brings the clouds into closer alignment until the root mean square distance between their points meet an error threshold.

ICP is a greedy, local optimization algorithm, good pose ini-
tialization is critical both for finding the global optimum and
for fast convergence. To initialize ICP in a given frame, we
transform each puppet’s 3D model using its pose from the
last frame, if it exists. Otherwise we use the rough, SIFT-
based pose estimate produced by the Puppet Identifier. Joung
et al. [19] use a similar SIFT-based initialization for ICP in
the context of 3D environment reconstruction.

Detecting Bad Poses After ICP finishes, we count the number
of points in the segmented point cloud that do not have corre-
sponding points in the puppet model. If this number accounts
for more than 33% of the points in the segmented point cloud,
we assume that we have an incorrect pose estimate. If a pup-
pet fails this test for 20 frames in a row, then we consider the
puppet “lost” and wait for a new rough pose estimate from
the Puppet Identifier to restart tracking.

Real-time Performance. The point-to-point correspondence
search is the main bottleneck of the ICP algorithm. Our im-
plementation uses a kd-tree to accelerate this step of the al-
gorithm. To ensure real-time performance, we also down-
sample the segmented point cloud as well as the 3D model
points. For the segmented point clouds, we keep every nth

point, where n is the downsampling rate. For the 3D mod-
els, we use Poisson disk-sampling as implemented by Cline,
et al. [8] to evenly reduce the number of points. We have
empirically found that downsampling to roughly 1000 points
for each segmented cloud and 5000 points for the 3D models
achieves real-time tracking with minimal loss in accuracy.

Filtering. Sensor noise and imprecise database models can
produce noticeable wobble in the tracked poses. To reduce
the amount of wobble, we apply separate bilateral filters to
the translation and rotation components of the puppet poses.

The bilateral filter is an edge-preserving, smoothing filter that
is commonly used to reduce noise while preserving strong
changes in a signal [30]. It computes a weighted average of
the input signal over a small neighborhood of samples to pro-
duce each output value. The weights are dependent on both
the domain and range of the input signal. In our implemen-
tation, we use the last ten pose estimates for a puppet as the
sample neighborhood. Since the poses change as a function
of time, we treat time as the domain of the signal and ei-
ther the translation or rotation component as the range. We
represent the rotations as quaternions for this computation.
We have found that the bilateral filters reduce wobble with-
out introducing noticeable lag or damping intentional puppet
motions.

Partially Occluded Puppets. We have found that the Pose
Tracker typically requires that the segmented point cloud con-
tain at least 125 points to produce robust pose estimates.
However, during a performance, if the puppeteer partially oc-
cludes the Kinect’s view of a puppet with her hands or another
puppet, the size of its point cloud may fall under this thresh-
old. In these cases we simply use the last known pose of the
puppet, essentially leaving it in place. In practice we have
noticed that this rule is rarely necessary, but that it signifi-
cantly improves the tracker’s robustness to occlusions in the
few instances that puppets are mostly occluded.

Entrances and Exits. The segmented point clouds also fall
below the 125-point threshold when physical puppets are en-
tering or exiting the performance space. In this case, the
thresholding approach we use to handle partially occluded
puppets would create artifacts; a puppet exiting the perfor-
mance space would have its 3D model permanently fixed to
the last position in which its point cloud contained at least 125
points. To solve this problem, we add an additional check.

We compute the angle between the Kinect’s optical axis and
the ray from the Kinect’s optical center to the centroid of the
puppet’s point cloud. If that angle lies within 2.5 degrees of
an edge of the system’s trackable volume, or the centroid lies
within 5cm of the nearest depth detectable by the Kinect, and
the puppet’s point cloud contains fewer than 125 points, it is
labeled as “lost” and not rendered. Our system labels a pup-
pet as “found” only if the Puppet Identifier detects it and its
point cloud contains more than 125 points.

Rendering
Our OpenGL-based renderer uses the poses from the Capture
module to render each puppet model within a 3D virtual set.
It operates in real time and provides visual feedback to the
puppeteer during a performance. To allow control over the
composition and appearance of a shot, we include 6D virtual-
camera and lighting controls. We also provide entrance and
exit effects to warn the puppeteer before he/she moves a phys-
ical puppet outside the performance space. Finally, we in-
clude layered animations to help puppeteers perform anima-
tions with more than two simultaneously moving puppets.

Camera Controls. Our 3D animation environment enables
6D virtual-camera control, which aids both the composition
and performance of animations. For instance, the puppeteer
may capture an animation with the virtual camera at one lo-
cation, but decide during playback that another vantage point
provides a more interesting view of the story. During perfor-
mance, however, we have found that puppeteers usually place
the virtual camera to mimic their point of view of the physical
performance space. This setup aids performance by helping
the puppeteer avoid difficult mental transformations between
the physical space and the rendered scene.

Lighting Controls. Our system allows the puppeteer to adjust
the illumination of the virtual set, including the position of
a light source, the strength of the ambient and diffuse light
levels, and whether or not to render shadows. Puppeteers can
switch between day and night scenes by adjusting the strength
of the ambient and diffuse components. They can also adjust
the light position to cast dramatic shadows on the faces of the
virtual puppets.

Entrance-and-exit Effects. The trackable volume of our sys-
tem is typically smaller than the virtual set. As a result,
puppets entering or leaving the trackable volume can spon-
taneously appear or disappear within the virtual set. Such
events can distract from the story. Careful placement of the
virtual camera can avoid capturing abrupt transitions, but then
the puppeteer’s scene-composition options become limited.
We address the issue by adjusting a puppet’s transparency
based on its proximity to the edge of the performance vol-
ume. Similar to our process for determining whether we have
lost tracking of a puppet, we compute the angle between the
centroids of the puppets and the Kinect’s optical axis. If that
angle lies within five degrees of any side of the performance
volume, the puppets are rendered with decreased opacity. We
apply the same effect for puppets that move too close to the
Kinect sensor for detection. Once a puppet comes within one
degree of leaving the side of the volume or within 5cm of

leaving the top of the volume, we render it completely trans-
parent. This process renders the puppets invisible before the
Pose Tracker labels them as lost. We find this rendering ap-
proach to be less distracting to a story than spontaneous en-
trances and exits. It can also help puppeteers set up anima-
tions. The puppeteer can slowly move a puppet to the edge
of the tracking region until it is just invisible but still tracked,
and then leave it in place. The puppeteer then knows exactly
where the puppet will appear if it re-enters the set.

Layered Animations. A key benefit of our system is that
it allows the puppeteer to concentrate on the performance,
rather than the interface. However, some stories can be dif-
ficult to perform. For instance, a story may require three or
more puppets to move at the same time. To aid these kinds
of performances, we implemented layered animations, which
allow the puppeteer to perform a single story using multi-
ple capture sessions. As the puppeteer adds a new layer to
a story, we simultaneously play back the previously captured
sessions. This mode of performance loses kinesthetic feed-
back between puppets in different layers, but can be useful
for performances with more than two puppets.

RESULTS
We created four animations to demonstrate our tracker, cam-
era and lighting controls, 3D performance space, and layered-
animation tools. “Apathetic Ambulance” (Figure 2), “Pool
Intruder” (Figure 8), and “Traffic Fight,” (Figure 8) were cre-
ated by the first author, while “Ghost Duck” (Figure 8) was
created by a novice user. We also conducted a user study
wherein five novices (male and female, 10-30 years old) cre-
ated animations using our system. All of the animations are
on our project website1. We first describe the four initial ani-
mations and then present the user study.

Animation Details
In “Apathetic Ambulance,” two cars crash into each other, and
then a fire truck crashes into the police car that has arrived to
help. An ambulance arrives, surveys the scene, and decides to
go home. The puppeteer made use of physics in this anima-
tion to push the physical puppets into each other during the
crashes. Our system tracked those motions in real time and
reproduced the physical interactions between the puppets in
the rendered result. The puppeteer also used the transparent
rendering of puppets near the edge of the tracking volume.
He placed the virtual fire truck, police car, and ambulance on
the roads in the virtual set, and then moved them out until
they were rendered invisible, but still tracked by the system.
This setup made him confident about where in the virtual set
the puppets would appear as they entered the animation. The
puppeteer needed five takes to record the animation. He threw
out one recording because the system did not accurately track
the ambulance model. He discarded the other attempts be-
cause he did not like his physical performance (e.g., the mo-
tion of the ambulance puppet was too slow).

In “Pool Intruder,” a duck goes to take a swim in his pool,
but encounters a big fish who refuses to let him in. The duck
recruits the help of a wheeled boat, which drags the fish away.
1http://vis.berkeley.edu/papers/3dpuppet

Pool Intruder
V

ie
w

 f
ro

m
 K

in
e

c
t

R
e

n
d

e
re

d
 O

u
tp

u
t

Ghost Duck

V
ie

w
 f

ro
m

 K
in

e
c
t

R
e

n
d

e
re

d
 O

u
tp

u
t

Traffic Fight

V
ie

w
 f

ro
m

 K
in

e
c
t

R
e

n
d

e
re

d
 O

u
tp

u
t

Figure 8. Summaries of three animations created with our system. For each animation, the bottom row shows the view from the Kinect sensor and the
top row shows the rendered output of our system. “Traffic Fight” consists of two performances layered together; we include the raw input of only one
of them.

Finally, the duck enjoys his pool. The puppeteer needed three
takes to produce the final animation, after not being satisfied
with the pacing of the first try or the relative positions of the
puppets in second try.

In “Ghost Duck,” a man enters his living room and goes
to his couch. A ghost duck then enters the room and sur-
prises the man, who tries to run away but hits a wall and
falls down. The puppeteer creatively applied our system’s
variable-opacity rendering to give the duck a ghost-like ap-
pearance. To show the man’s surprise, he made the puppet
jump up and down, demonstrating how one can convey emo-
tion even with rigid puppets. The jumps demonstrate how
puppeteers can use the full 3D performance space to tell their
stories. The puppeteer created this animation after using our
system for 40 minutes, including the five minutes we used to
explain its controls.

“Traffic Fight” demonstrates our system’s layered-animation
feature. An ambulance and fire truck fight in the middle of an
intersection, move aside as a police car passes through, and
then resume fighting. The animation uses three puppets that
move simultaneously, and would have been impossible to per-
form in one take by one puppeteer. In this case, the puppeteer
created two layers. In the first layer, he performed the motion
of the police car. He then played it back and created a sec-
ond layer with the fire truck and ambulance. Our system then
combined the two layers into one story. This example demon-
strates how layered animations rely heavily on the real-time
performance of our system. The puppets in each layer inter-
acted with one another, so the puppeteer had to continually
monitor the earlier animation and adjust his second perfor-
mance on the fly to make the interactions believable.

Implementation
We implemented our system with the Robotics Operating
System [32], OpenNI Kinect driver [26], and SiftGPU soft-
ware package [33]. Our system runs on a desktop PC with a
24-core, 3.33GHz Xeon CPU, 12GB RAM, and an NVIDIA
GTX 580 video card.

For our physical setup, we place a Kinect sensor 75cm above
a tabletop, which we use for a performance space. We orient
the Kinect so its optical axis makes a 22.5-degree angle with
the tabletop’s surface normal. This setup provides a trackable
performance volume of roughly 90cm by 60cm by 30cm. We
found that this setup maximized the useful performance space
while maintaining enough density in the point cloud to al-
low accurate tracking. While moving the Kinect further away
from the table top increases the size of the performance vol-
ume it also leads to larger gaps between samples in the point
cloud and degrades tracking. Our setup also allows the table-
top to serve as a physical proxy to the virtual ground plane.
Thus, a puppeteer can rest a puppet on the tabletop and keep it
within the animation while he/she manipulates other puppets.
Finally, we chose an oblique view because it usually captures
more of the distinguishing, frontal features of the physical
puppets than a view pointed straight down.

USER EXPERIENCE
We observed five novice puppeteers (male and female, 10-30
years old) while they produced their first animations with our
system. We began by helping each puppeteer create a skin
color model. We then took about five minutes to explain the
keyboard and mouse controls for changing camera, lighting,
and background settings. After this introduction, we asked
the puppeteers to play with our system and, when ready, to
record a simple story.

The puppeteers began by exploring the capabilities of our sys-
tem. They put physical puppets in the performance space and
watched how quickly our system could detect them. Next,
they moved the physical puppets throughout the performance
space to test how well our tracker could follow them. They
also cycled through the seven virtual sets we provided to
explore how characters could interact within them. For in-
stance, multiple puppeteers tried placing puppets under cov-
ered bridges and making them hide behind buildings. Three
of the puppeteers expressed excitement when they first saw
the virtual characters moving in response to their physical ac-
tions. In praising its simplicity, one claimed that he could
have used it without any introduction.

While playing with our system, puppeteers learned not to oc-
clude too much of each puppet with their hands. Otherwise,
the point clouds could become too small for accurate pose
detection, and our system would either render a puppet in
the wrong pose or stop rendering it altogether. They also
learned how quickly they could move each puppet without
losing tracking. As we discuss in the Limitations Section, the
maximum speed our system can track varies by puppet.

The lack of collision detection confused some puppeteers.
They were surprised to see that puppets could pass through
walls. We chose to omit collision detection between the vir-
tual puppets and the objects in the virtual sets from our system
because handling such collisions would require breaking the
one-to-one, physical-to-virtual mapping of our interface. If
a virtual wall stopped the motion of a puppet, then the vir-
tual and physical positions of that puppet would no longer
correctly match.

On average, our puppeteers took 16 minutes to play with the
system before trying to record their first animations. Once
they were ready to create an animation, we showed them
how to record and export their own performances, and how to
produce layered animations. While formulating their stories,
they continued to play with our system to plan the motions of
the puppets within the virtual sets. We found that first-time
users typically needed three or four recording attempts to pro-
duce an animation that they liked, with more complex stories
taking longer to produce. Puppeteers either discarded ani-
mations due to performance errors (e.g., the performance was
too slow or a physical puppet’s motion did not quite match the
puppeteer’s intention), or tracking errors. Practice with our
system helped reduce the latter issue, as puppeteers learned
to avoid motions that were too fast for our tracker.

The final animations produced by our novice puppeteers
made full use of the capabilities of our system, including

6D puppet motions, camera and lighting controls, and
layered animation. They typically adjusted the camera before
performing the motions to set the view so that it resembled
their view of the physical performance space but also ensured
that all subsequent puppet motions would be visible. They
also used camera controls to frame the output movie. One
puppeteer chose to change the lighting parameters after she
finished her performance. Once we explained our system,
each puppeteer took less than one hour to record a story, with
some only needing 30 minutes.

LIMITATIONS
Our system is primarily limited by the puppets and puppet
motions it can track.

Our system only tracks rigid puppets; the Capture module
does not account for articulated or deformable puppets. We
also cannot track puppets with sizes much smaller than those
in our example animations (the smallest being roughly 7cm x
8cm x 8cm). Smaller puppets do not produce enough unique
SIFT features for identification. Puppets that pass the size
limitation must also be unique in shape and texture so that
they are identified and tracked properly. If two puppets share
many of the same SIFT features, our Puppet Identifier can
generate false matches. Finally, radially symmetric puppets
produce errors during ICP alignment, as multiple orientations
provide equally optimal alignment solutions. As a result, the
output pose becomes more likely to rapidly jump between the
optima and generate temporally inconsistent pose estimates.

Fast puppet motions can also produce tracking errors. We
have found that the 3D shape of a puppet has a significant ef-
fect on the types of motions it can undergo without error. For
instance, the duck puppets seen in our sample animations are
the most prone to rotational errors due to their roughly radial
symmetry. In general, geometrically simple puppets are more
susceptible to tracking errors. For instance, the top of the
Lamborghini puppet in the “Apathetic Ambulance” animation
is almost completely flat. If that puppet moves quickly in a
direction tangential to its roof, the optimal ICP-derived pose
can slip and produce a mismatch between the physical and
virtual poses. Thus, the puppeteer must take more care with
the motions for that puppet.

CONCLUSION AND FUTURE WORK
We have presented a new interface for producing 3D ani-
mations by performing with physical puppets in front of a
Kinect depth sensor. The system’s direct, natural mode of
input and simple hardware requirements make it approach-
able to users of any skill level. We allow puppeteers to tell
stories by playing with toys and other physical props, which
makes the method of interaction familiar and entertaining.
Once puppeteers understand its limitations, the design of our
system also allows puppeteers to focus on their physical per-
formance, rather than the interface.

While puppeteers enjoy producing animations with our sys-
tem, we found that they enjoy free-form play almost as much.
In particular, they enjoy seeing how the physical puppets’ mo-
tions translate into the context of the different virtual sets.
This observation suggests other modes of play, for instance

where the puppets could explore the virtual world and trigger
preset animations, similar to the work in Lego OASIS [34].

Though we have demonstrated its utility for simple 3D ani-
mations, our system may be extended in a number of ways:

Integrated Puppet Loading. Our current implementation re-
lies on third-party software like ReconstructMe [13] or 123D
Catch [1] to provide 3D models for each puppets, followed
by manual capture of the SIFT template images. A more
streamlined implementation would combine 3D scanning and
template-capture into one process, which could be incorpo-
rated directly into our interface.

Articulated Puppets. Our example stories demonstrated how
puppeteers could impart emotion onto rigid puppets. How-
ever, articulated puppets would provide more expressiveness
and widen the range of puppets available to puppeteers. This
improvement would require substantial changes to our Puppet
Identifier and Pose Tracker in order to handle every possible
posture for each puppet.

Deformable Puppets. Our system currently cannot track soft,
deformable puppets, including most stuffed animals. In order
to track such puppets, we would need to modify our ICP al-
gorithm, which assumes that the shape of a physical puppet
does not change throughout a performance. The modification
might include deformation models for the ways in which the
shape of each puppet can deform.

Multiple Puppeteers. Currently we can easily handle multi-
ple puppeteers using our system at the same time, as long as
their skin tones closely match. We might also handle multiple
skin tones by combining the skin model for each puppeteer.
Beyond multiple puppeteers in one setting, we also envision
remote, collaborative puppeteering sessions using our system.

ACKNOWLEDGMENTS
We would like to thank Dieter Fox for providing valuable
insight into our tracking algorithm, Evan Herbst and Peter
Henry for sharing crucial code, and Nicholas Kong for his
help in making the video. We also thank the paper review-
ers for their helpful suggestions. This work was supported
by NSF grant CCF-0643552 and a gift from the Intel Science
and Technology Center for Visual Computing.

REFERENCES
1. Autodesk. 123D Catch. http://www.123dapp.com/catch.
2. Autodesk. 3ds Max. http://usa.autodesk.com/3ds-max/.
3. Autodesk. Maya. http://usa.autodesk.com/maya/.
4. Avrahami, D., Wobbrock, J. O., and Izadi, S. Portico:

tangible interaction on and around a tablet. In Proc.
UIST (2011), 347–356.

5. Barnes, C., Jacobs, D. E., Sanders, J., Goldman, D. B.,
Rusinkiewicz, S., Finkelstein, A., and Agrawala, M.
Video Puppetry: A performative interface for cutout
animation. ACM TOG (Proc. SIGGRAPH) 27, 5 (2008),
124:1–124:9.

6. Besl, P., and McKay, N. A method for registration of
3-D shapes. IEEE PAMI 14 (1992), 239–256.

7. Blender Foundation. Blender. http://www.blender.org.

8. Cline, D., Jeschke, S., White, K., Razdan, A., and
Wonka, P. Dart throwing on surfaces. Computer
Graphics Forum 28, 4 (2009), 1217–1226.

9. Dontcheva, M., Yngve, G., and Popović, Z. Layered
acting for character animation. ACM TOG (Proc.
SIGGRAPH) 22 (2003), 409–416.

10. Freedman, B., Shpunt, A., Machline, M., and Arieli, Y.
Depth mapping using projected patterns. Patent.
US8150142 (2012).

11. Gallo, L., Placitelli, A., and Ciampi, M. Controller-free
exploration of medical image data: Experiencing the
kinect. In Proc. CBMS (2011), 1–6.

12. Google. Google 3D Warehouse.
http://sketchup.google.com/3dwarehouse/.

13. Heindl, C., and Kopf, C. ReconstructMe.
http://reconstructme.net.

14. Horn, B. K. P. Closed-form solution of absolute
orientation using unit quaternions. JOSA A 4, 4 (1987),
629–642.

15. Iason Oikonomidis, N. K., and Argyros, A. Efficient
model-based 3D tracking of hand articulations using
kinect. In Proc. BMVC (2011), 101.1–101.11.

16. Ishii, H., and Ullmer, B. Tangible bits: Towards
seamless interfaces between people, bits and atoms. In
Proc. CHI (1997), 234–241.

17. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D.,
Newcombe, R., Kohli, P., Shotton, J., Hodges, S.,
Freeman, D., Davison, A., and Fitzgibbon, A.
Kinectfusion: real-time 3D reconstruction and
interaction using a moving depth camera. In Proc. UIST
(2011), 559–568.

18. Johnson, M. P., Wilson, A., Blumberg, B., Kline, C., and
Bobick, A. Sympathetic interfaces: Using a plush toy to
direct synthetic characters. In Proc. CHI (1999),
152–158.

19. Joung, J. H., An, K. H., Kang, J. W., Chung, M. J., and
Yu, W. 3D environment reconstruction using modified
color ICP algorithm by fusion of a camera and a 3D
laser range finder. In Proc. IROS (2009), 3082–3088.

20. Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K.,
and Tachibana, K. Virtual object manipulation on a
table-top AR environment. In Proc. ISAR (2000), 111
–119.

21. Klemmer, S. R., Li, J., Lin, J., and Landay, J. A.
Papier-mâché: Toolkit support for tangible input. In
Proc. CHI (2004), 399–406.

22. Lee, G. A., Kim, G. J., and Billinghurst, M. Immersive
authoring: What you experience is what you get
(wyxiwyg). Comm. ACM 48, 7 (2005), 76–81.

23. Lowe, D. G. Object recognition from local
scale-invariant features. In Proc. ICCV (1999),
1150–1157.

24. Numaguchi, N., Nakazawa, A., Shiratori, T., and
Hodgins, J. K. A puppet interface for retrieval of motion
capture data. In Proc. SCA (2011), 157–166.

25. Oore, S., Terzopoulos, D., and Hinton, G. E. A desktop
input device and interface for interactive 3D character
animation. In Proc. Graphics Interface (2002), 133–140.

26. OpenNI Organization. OpenNI. http://openni.org.

27. Schmidt, R., and Singh, K. meshmixer: an interface for
rapid mesh composition. In ACM TOG (Proc.
SIGGRAPH) (2010), 6:1.

28. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T.,
Finocchio, M., Moore, R., Kipman, A., and Blake, A.
Real-time human pose recognition in parts from single
depth images. In Proc. CVPR (2011), 1297 –1304.

29. Sturman, D. J. Computer puppetry. IEEE Computer
Graphics and Applications 18, 1 (1998), 38–45.

30. Tomasi, C., and Manduchi, R. Bilateral filtering for gray
and color images. In Proc. ICCV (1998), 839 –846.

31. Wang, R. Y., and Popović, J. Real-time hand-tracking
with a color glove. In ACM TOG (Proc. SIGGRAPH)
(2009), 63:1–63:8.

32. Willow Garage. Robotics Operating System.
http://ros.org.

33. Wu, C. SiftGPU: A GPU implementation of scale
invariant feature transform (SIFT).
http://cs.unc.edu/ ccwu/siftgpu, 2007.

34. Ziola, R., Grampurohit, S., Landes, N., Fogarty, J., and
Harrison, B. Examining interaction with
general-purpose object recognition in LEGO OASIS. In
Proc. IEEE VL/HCC (2011), 65–68.

