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Abstract 
We present an intuitive interface for painting on unparameterized 
three-dimensional polygon meshes using a 6D Polhemus space 
tracker as an input device. Given a physical object we first acquire 
its surface geometry using a Cyberware scanner. We then treat the 
sensor of the space tracker as a paintbrush. As we move the sensor 
over the surface of the physical object we color the corresponding 
locations on the scanned mesh. The physical object provides a 
natural force-feedback guide for painting on the mesh, making it 
intuitive and easy to accurately place color on the mesh. 

CR categories: 1.3.6 [Computer Graphics]: Methodology - Inter- 
action Techniques. 1.3.7 [Computer Graphics]: 3D Graphics and 
Realism - Color and texture; Visible surface algorithms. 

Additional keywords: 3D painting, painting systems, direct ma- 
nipulation, user-interface. 

1 Introduction 
Painting systems are a very common tool for computer graphics 
and have been well studied for painting on 2D surfaces. While 
many two dimensional techniques can be applied to painting on 
3D surfaces, there are issues that are unique to 3D object painting. 
The most important aspect in developing a 3D painting system is 
maintaining an intuitive, precise and responsive interface. It is 
crucial that the user be able to place color on the surface mesh 
easily and accurately. 

Many computer graphics studios (including Pixar and Indus- 
trial Light and Magic) have developed their own 3D paint pro- 
grams which use a mouse as the input device. These painting 
systems are often used to paint textures onto the 3D computer 
graphics models which they will then animate. The user paints on 
some two-dimensional image representing the three dimensional 
surface and the program applies an appropriate transformation to 
convert the 2D screen space mouse movements into movements 
of a virtual paintbrush over the 3D mesh. Hanrahan and Haeberli 
describe such a system for painting on three-dimensional param- 
eterized meshes using a two-dimensional input device in [5]. The 
main feature of this system, and one which we retain in ours, is 
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that painting is done directly on the mesh in a WYSIWYG (What 
You See Is What You Get) fashion. The drawback of this system 
is that the transformation from the 2D screen space to the 3D 
mesh may not always be immediately clear. 

This type of system could be extended to use a 3D input 
device. Movements of a sensor through space would map directly 
to movements of the virtual paintbrush. Such a system might be 
difficult to use, however. because there would be no way to “feel” 
when the paintbrush is touching the mesh surface. This problem 
could be solved by providing the user with force-feedback, the 
importance of which is well recognized (see [2], [IO], [4]). 

In our system. 3D computer models are built from physical ob- 
jects, so these objects are available to serve as a guide for painting. 
As 3D computer graphics applications have become widespread, 
the demand for 3D models has lead to the development of 3D 
scanners which can scan the surface geometry of a physical ob- 
ject. Turk and Levoy have recently developed a technique for 
taking several scans of an object and “zippering” them together 
to create a complete surface mesh for the object [I 11. If a sur- 
face mesh has been derived from a physical object in this way, 
the quickest, most intuitive method for specifying where to paint 
the mesh would be to point to the corresponding location on the 
surface of the physical object. 

Our approach is based on this idea. Given a physical object 
we scan its surface geometry. We then use a 6D Polhcmus space 
tracker as an input device to the painting system. As we move the 
sensor of the tracker over the surface of the physical object, we 
paint the corresponding locations on the surface of the scanned 
mesh. The sensor of the space tracker can be thought of as a 
paintbrush, providing a familiar metaphor for understanding how 
to USC our system. 

The remainder of this paper is organized as follows. Section 
2 describes the organization of our painting system. Section 3 
details how our system represents meshes internally. Section 4 
discusses the algorithms and methods we use for painting, reg- 
istration, and combating registration errors. Our results are pre- 
sented in section 5. Section 6 discusses possible future directions 
of this work, and section 7 summarizes our conclusions about our 
system. 

2 System Configuration 
The block diagram in figure I depicts our overall system con- 

liguration. Before we can paint, we must create a mesh represent- 
ing a physical object. We use a Cyberware laser range scanner 
to take multiple scans of an object and combine them into a sin- 
gle mesh using the zipper software. The Polhemus Fastrak space 
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Figure 1: 3D Painting System Configuration 

tracking system tracks the location of a stylus as it is moved over 
the physical object. The painter application maps these stylus 
positions to positions on the zippered mesh. 

The Cybenvare Scanner uses optical triangulation to determine 
the distance of points on the object from the scanning system. A 
sheet of laser light is emitted by the scanner. As the object is 
passed through this sheet of light, a camera, located at a known 
position and orientation within the scanner. watches the object. 
The scanner triangulates the depths of points along the intersection 
of the object and the laser sheet based on the image captured by 
the camera. As the object passes through the laser sheet, a mesh 
of points representing the object as seen from this point of view 
is formed. 

The Polhemus Fastrak tracking system reports the 3D position 
and orients.tion of a stylus used to select the area on the mesh 
to paint. A field generator located near the object emits an AC 
magnetic field which is detected by sensors in the stylus to deter- 
mine the stylus’s position and orientation with respect to the field 
generator. The painter application continously polls the tracker 
for the stylus’ poisiton and orientation at about 30 Hertz. 

3 Data Representation 
Previous work in 3D painting has only allowed painting on param- 
eterized meshes, or on meshes that have texture coordinates previ- 
ously assigned at each mesh point. Paint or surface properties ap- 
plied to these meshes can be stored in a texture map. in the former 
cast using the parameter values at points on the mesh as texture 
coordinates. While Maillot, Yahia. and Verroust have developed 
a method for parameterizing smooth surface representations(91, 
there are no general techniques for parameterizing arbitrary sur- 
fact meshes. 

Although a single Cyberware scan results in a parameterized 
triangle mesh, suitable for use by other 3D painting systems, such 
a mesh is generally not a complete description of the object. This 
incompleteness is due to self-occlusions on the object, making 
some points on the object invisible to a rotational scan. By com- 
bining data from multiple scans, Turk and Levoy’s zippering algo- 
rithm [ 1 I] produces a more complctc mesh for the object. How- 
ever, the resulting mesh is irregular and unparameterized. so we 
lose the ability to store surface characteristics in texture maps. 

To paint on unparameterized meshes, we store surface charac- 
teristics (e.g. color and lighting model coefficients) at each mesh 
vertex. When painting on the object, these surface characteris- 
tics are changed only at the mesh vertices. We render the mesh 

using the SGI hardware Gouraud shading to interpolate the color 
between the vertices of triangles composing the mesh. Because 
we do not require regular or parameterized meshes, our algo- 
rithm works with meshes acquired from many different kinds of 
scanning technologies. including hand digitizers, CT scanners and 
MRI scanners. CT and MRI scanners produce volume data rather 
than a surface mesh and so an algorithm like marching cubes [8] 
would be required to convert the volume data set into a suitable 
mesh representation. 

Since we only have color information at the vertices of the 
mesh polygons. the polygons should be small enough to avoid 
sampling artifacts when displaying the mesh. As Cook, Carpenter 
and Catmull point out in their description of the REYES rendering 
architecture [3], this is possible when polygons are on the order 
of a half pixe.1 in size. Due to memory constraints we typically 
paint on meshes in which triangles are about the size of a pixel 
when the mesh is displayed at a “reasonable” size (e.g. a quarter 
of the size of the monitor). We have implemented controls for 
scaling the display of the mesh so that it is always possible to 
reduce its display size to achieve subpixel color accuracy. 

Since we would like to use a mesh with small triangles, the 
number of triangles in a typical mesh may be quite large. We 
therefore need to augment the triangle mesh with a spatial data 
representation that will allow us to find mesh vertices quickly. 
To facilitate this, WC uniformly voxelize space. Associated with 
each voxel is a list of vertices on the mesh that arc contained in 
that voxel. Storing these voxels in a hash table gives us nearly 
constant-time access to any vertex on the mesh, given a point 
close to it. Alternatively we could have used a hierarchical repre- 
sentation such as an octree for storing the spatial representation. 

We do not use a simple 3D array indexed by voxel location 
because most meshes will contain large empty regions in voxel 
space. By using a hash table, we do not explicitly store the empty 
regions of voxel space. which results in a tremendous reduction 
in memory usage. 

4 Methods 

4.1 Object-mesh registration 
When painting an object with our system, the user places the 

object on a table in front of the workstation. Before we can paint 
the mesh, we need to determine a transformation bctwcen po- 
sitions reported by the tracking system in the coordinate space 
of the physical object and points in the coordinate space of the 
mesh. We would also like this transformation to ensure that rela- 
tive orientations of the physical stylus and the virtual paintbrush 
are the same. We can accomplish this by finding an affme, shear- 
free transformation between the two coordinate spaces. We use a 
method developed by Horn [6] for obtaining such a transfo.rma- 
tion. 

Horn’s method determines a translation, rotation. and scaling 
that will align points in one coordinate system to corresponding 
points in anol.her coordinate system, while minimizing the total 
distance between the sets of points. The two sets of points may 
be collected as follows. First, the mouse is used to select a point 
on the mesh. Then, the stylus is used to point to the corresponding 
point on the object. thus specifying a correspondence pair. Horn’s 
method requires three or more of these correspondence pairs to 
determine the registration transformation. 

There are several sources of error in collecting the two sets 
of points including inaccuracies in the tracking system, and in- 
accuracies in matching the points on the mesh to points on the 
object. Howcvcr. as the number of correspondence pairs is in- 
creased, small alignment errors in individual pairs arc averaged 
out and the total alignment error decreases. Ilnfortunately, spcci- 
fying correspondence pairs is tedious and time consuming. 
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Figure 2: A large set of sensor sample points is collected by 
running the sensor of the space tracker randomly over the surface 
of the object. These sensor points are roughly hand-aligned with 
the mesh, and then Besl’s algorithm is used to obtain a more 
precise alignment. 

An algorithm developed by Besl[l] ovcrcomcs this problem. 
Although two sets of points are still required, it is not necessary 
to specify the point-to-point correspondences between them. We 
collect a large set of points in tracker space by sampling the po- 
sition of the stylus while randomly moving it across the surface 
of the physical object. We use a subset of the mesh vertices 
as the other set of points. Besl’s algorithm determines the best 
transformation between the two sets of points by iterating on the 
following steps. First an approximate correspondence between 
the two sets of points is computed, based on their proximity in 
space. Then, Horn’s method is applied to these pairs of points 
to align them more closely. On each successive iteration of the 
algorithm, the proximity-based correspondence improves, which 
in turn improves the transformation generated by Horn’s method. 

Besl’s algorithm is guaranteed only to find a locally optimal 
alignment. not a globally optimal one. Therefore, we need to 
ensure that the sensor samples and the mesh are initially aligned 
such that the globally optimal solution can be found. The ini- 
tial alignment is done by hand as (see figure 2). and is often a 
difficult and time consuming process. To speed this process, we 
have added the ability to easily generate a rough alignment of the 
sensor samples to the mesh. Once we have collected the large 
set of sensor samples. we ask the user to specify three or more 
correspondence pairs as described at the beginning of this section. 
From these pairs we calculate the scale factor between the sensor 
samples and the mesh. We also translate the centroid of the sensor 
correspondence points so that it is aligned with the centroid of the 
mesh. This produces a rough alignment of the sensor samples to 
the mesh which can then be hand-refined to produce the initial 
alignment required for Besl’s algorithm. 

Our registration scheme is summarized as follows: 

I. The user collects many samples of the physical object’s 
surface by running the stylus over the object. 

2. The user selects three or more points on the mesh, and points 
to their corresponding locations on the physical object with 
the stylus. These correspondence pairs are used to compute 
a rough alignment of the sensor samples collected during 
step 1 to the mesh. 

3. If necessary, the user makes further hand adjustments to the 
rough alignment of the sensor samples to the mesh using 
the mouse to bring them into initial alignment. 

4. Besl’s algorithm is run to refine the alignment of the sensor 
samples to the mesh. 

/ 

Brush 

Figure 3: Paint is applied to all mesh vertices falling within the 
brush volume. Here the vertices in the dark gray region are 
painted. 

4.2 Painting 
To paint a three-dimensional surface we must determine where 
new paint is to be applied. The tip of our paintbrush has a 3D 
shape associated with it which defines the volume within which 
paint is applied (see figure 3). In general this brush volume can 
be any 3D shape. The most straightforward painting algorithm 
would be to paint every vertex that falls within the brush volume. 
We can think of this approach as filling the entire brush volume 
with paint using a 3D scan-line algorithm to step through all the 
voxels within the volume. The drawback of this approach is that 
the mesh is likely to be relatively flat within this volume, therefore 
not filling much of it. This volume-fill algorithm would search 
through many empty voxels. 

Our approach is to first find a vertex on the mesh that is within 
the brush volume. We then perform a breadth-first flood fill of the 
mesh from this seed point. The vertex on the mesh closest to the 
ray extended along the brush direction from the sensor position is 
used as the seed, as depicted in figure 4. 

Although we poll the tracker for the position of its sensor at 
about 30 Hertz, the sampling rate is not fast enough to produce a 
smooth stroke as the brush is swept along the object. For the paint 
to be applied smoothly, without gaps, we need to fill the surface 
with paint along a stroke. The flood fill idea can be modified to 
account for this. coloring vertices within the volume defined by 
sweeping the 3D brush shape along a stroke connecting successive 
sensor positions. In our system, we connect successive positions 
using a linear stroke. Thus, for a sphere brush we would sweep 
out a cylindrical volume with spherical end caps along the stroke. 

One problem for the flood fill algorithm is that it can not cor- 
rectly handle all surface geometries. Consider a surface with a 
small indentation. If we place the brush directly above the inden- 
tation WC should be able to paint the surfaces on either side of it. 
However, the flood fill brush will only paint one side of it, because 
it floods out along the mesh surface from the seed point as shown 
in figure 5(A). This problem could be prevented by performing a 
volume-fill within the brush geometry, as in figure 4, rather than 
flood filling out from the seed point along the mesh surface. In 
practice, we have never encountered a surface geometry for which 
the surface flood fill causes noticeable anomalies. 

Another problem with this algorithm is that mesh triangles 
which are occluded to the paintbrush may be painted. The correct 
solution to the problem would be to do a complete visibility test 
before painting a vertex to ensure that the vertex was visible to 
the brush. Because this test is very expensive and would hinder 
interactive performance, we only check that the dot product of the 
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Figure 4: Two methods for determining where to apply paint 
within a spherical brush volume. The scan-line algorithm walks 
through every voxel within the brush volume. The flood-fill al- 
gorithm extends a ray from the brush tip to the surface and then 
floods paint out along the surface. 

vertex normal and the brush orientation is negative. This ensures 
that we only paint vertices that are facing the brush, but there 
are still some cases where we might paint occluded triangles, as 
shown in figure 5(B). In this case the flood fill seed point falls on 
the left side: of Peak B. As color floods out from the seed point 
along the left side of Peak B, points that are occluded by Peak 
A will be painted. The volume-fill approach would be no better 
than the flood-fill approach at handling this mesh geometry. Both 
methods fail because they do not check for occlusions between 
the tip of the brush and the mesh surface. 

With hundreds of thousands of polygons in a typical mesh it 
would be impossible to redraw the entire mesh after each paint 
stroke and maintain interactive performance. Instead, we only 
redraw the triangles in which at least one vertex was painted. By 
using the surface flood fill algorithm in combination with this lazy 
update scheme we can interactively paint large meshes. 

4.3 Brush effects 
We have implemented several different brush volumes including 
a sphere, cylinder and cone, and several different brush effects. 
The sphere brush paints all vertices within a sphere centered at 
the brush tip. The cylinder paints all vertices within a cylinder 
centered at the brush tip and oriented in the direction of the brush. 
The cylinder brush is typically used to fill large areas by stroking 
it lengthwise along the surface. The cone brush paints all vertices 
within a cone, with its apex at the brush tip and oriented in the 
direction of the brush. By tilting this brush as we paint we can 
achieve the Ieffect of painting with an airbrush. 

Another effect we implemented was to modulate the appli- 
cation of color using 3D solid textures and 2D image textures. 
To apply solid textures, we use the vertex location as an index 
into a texture map and apply the corresponding texture color. For 
2D textures we define a plane on which the texture resides and 
perform an orthogonal projection of the unparameterized 3D mesh 
points into the texture plane. This gives a mapping from the mesh 
points into the texture. The user can control the position, orien- 
tation and scale of the 2D texture plane through a mouse-driven 
interface. 

We have also implemented several compositing filters that are 
applied to the paint as it is laid down on the surface. The simplest 
filter is the “over” filter. Using this filter, the paint from the 

brush replaces the paint at each affected vertex. The “blend” 
filter has a slider-selectable parameter (Y and performs standard 
alpha blending between the old mesh color and the new paint 
color. The “distance” filter is a special case of the blend filter for 
which alpha is proportional to the distance of each affected vertex 
from the tip OF the brush. 

Each of the brushes we have described so far only affects the 
surface characteristics of the mesh. We can also change the ge- 
ometry of the mesh using a displacement brush. Our displacement 
brush pulls mesh vertices within the brush geometry in the direc- 
tion of the brush. Although this is an effective way to change the 
surface geometry. it undermines the use of the physical object as 
a painting guide. In practice, however, we have found that if we 
apply small displacements, the physical object can still be used as 
a guide. A problem with the current implementation is that it is 
possible to produce objectionably long, thin triangles as we pull 
the surface. We could alleviate this problem by re-polygonalizing 
the triangles a:s we elongate them during the displacement. 

4.4 Combating registration errors 
The accuracy of the registration between the sensor and the mesh 
depends on several factors. The Polhemus Fastrak is only accu- 
rate to within 0.03 inches. and the magnetic field generated by the 
Polhemus is distorted by metallic objects as well as other electro- 
magnetic fields in the work area. Furthermore, Besl’s registration 
algorithm is dependent on an initial hand-alignment of the sen- 
sor samples to mesh vertices. If this initial alignment is poor, 
the registration transformation produced by Besl’s algorithm may 
not be globally optimal. Registration errors can cause the virtual 
brush tip to lie some distance away from the mesh even when the 
Polhemus stylus is physically touching the object surface. In this 
case it would be difficult to paint the surface with small brush 
volumes. 

One approach to overcome this would be to use a long, Ithin 
cylindrical brush. The problem with this approach is that painting 
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Figure 5: Mesh geometries which cause problems for the painting 
algorithm. 



a fine line with such a long, thin brush would force us to ensure 
that the brush is perpendicular to the mesh throughout the stroke. 
Slight changes in brush orientation would change the size of the 
area painted on the mesh. 

An alternative approach is to give the user the option of “glu- 
ing” the brush to the mesh. When painting, the location of the 
brush is constrained to be the closest point on the mesh to the 
sensor, rather than the sensor’s location itself. We can think of 
this as extending the tip of the brush so that it always touches the 
mesh surface. Since the brush’s position is now forced to lie on 
the surface, we can paint with very small brush shapes, even in 
the presence of registration errors. 

5 Results 
We have been able to paint detailed textures on several different 
meshes including the bunny and the wolf-head, shown in color 
plates 2-8. The bunny mesh was created by zippering 10 Cyber- 
ware scans of the ceramic bunny shown in plate 1: the final mesh 
contains 69.451 triangles. Plate 2 shows sensor sample points 
in the process of being initially aligned with the bunny mesh in 
preparation for running Besl’s registration algorithm. The purple 
crosses represent sensor sample points. 

A 3D checkerboard texture and 2D image texture of an orchid 
were applied to the bunny shown in plate 3. While the triangles in 
the original bunny mesh were about the size of a pixel, we found 
that a finer mesh was necessary to capture fine detail in the image 
texture. We refined the original bunny mesh by simply splitting 
each triangle into four smaller triangles. 

Plates 4-8 show several complete paintings we created with 
our system. Most of the paintings took several hours to complete. 
The wolf-head mesh in plate 8 contains 58.104 triangles while the 
higher-resolution wolf-head mesh used in plates 6 and 7 contains 
232,416 triangles. The bunny head mesh in plate 5 is a piece of 
the high-resolution bunny mesh, while the low-resolution bunny 
mesh was used in plate 4. 

In creating the bumpy wolf shown in plate 7 we used almost 
every painting tool we implemented. The bumps were created by 
applying the displacement brush with a spherical brush volume 
to the mesh. The distance filter was used in coloring the bumps 
as they were extruded from the mesh. As in plates 3 and 6, the 
orchid is a 2D image that was texture mapped onto the mesh. 

6 Future Directions 
One of the drawbacks of our system is that there is a non-trivial 
amount of set-up time required to register the physical object to 
the mesh. Registration can take several minutes and must be 
done every time the user wants to paint an object. Furthermore, 
if the object is moved after it has been registered, it must be re- 
registered. The most time-consuming aspect is doing the final 
hand alignment of the registration points to the surface mesh. 

One solution to this problem would be to register the physical 
object as it is being scanned by the 3D scanner. Assuming the 
scanner always creates a mesh in the same coordinate system for 
each scan, we can preregister the tracker coordinate system to this 
mesh coordinate system using Besl’s algorithm. Then, scanning 
any new object will automatically register it to the tracking system. 
However, this approach fails when we combine multiple scans 
using the zipper software, because the physical object must be 
moved between scans and so we lose the correspondence between 
the mesh and the object. 

Ensuring that the object does not move once it has been regis- 
tered is can make painting awkward and unnatural. Allowing the 
object to be moved would let the user to paint more comfortably. 
One way to permit such object movement would be to attach an- 

other sensor of the space tracker to the object and then track the 
movement of the object in addition to the movement of the brush. 

A disadvantage of our approach is that we can only paint 
meshes for which we have a corresponding physical object. Thus, 
we can not directly paint a mesh created with a modeling or CAD 
program for example. However, several new rapid prototyping 
technologies have recently been developed for synthesizing 3D 
objects directly from computer models [7] [12]. Although it would 
be a considerable expense. with such a prototyping system we 
could create a physical object representing almost any mesh and 
then use it as a guide for painting on the mesh. 

Another problem is that the user is moving the sensor along 
the physical object while paint is only being applied to the mesh 
on the monitor. Thus, the user must look at two places at once to 
see where the paint is being applied. This problem is reduced by 
placing the physical object in front of the monitor while painting. 

One of the problems with polygon meshes is that they are 
hard to animate. Many animators are used to manipulating the 
control points of curved surface patches, not the vertices of an 
irregular mesh. Furthermore, they want to manipulate only a few 
control points, not the 100,000’s of vertices in our typical mesh. 
One solution we are investigating is to fit NURBS patches to our 
meshes. The boundaries of these patches would bc specified by 
tracing them using our system. In this case we would replace our 
space-filling brushes with an algorithm that chains together mesh 
vertices lying along the path traced out by the stylus. 

7 Conclusions 
We have developed an intuitive 3D interface for painting on 3D 
computer models. using the sensor of a Polhemus 6D tracker as 
a paintbrush. The fundamental feature of our system is that a 
physical object provides a force feedback guide for painting. Our 
system is fast enough to paint a mesh in real time as the sensor 
is moved over the physical surface. giving the user a sense of 
directly painting on the mesh. With this system there is no need 
to perform a transformation from 2D input space to the 3D mesh 
surface. as is required by other 3D painting systems that use a 2D 
input device. Also unlike other 3D painting systems, the meshes 
we paint do not need to be parameterized in any way. With our 
system an artist who is experienced with painting on 3D physical 
objects can almost directly apply that experience to painting on 
surface meshes. 
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Plate 1: ‘l‘he bunny Iuesh wils cre- 
ated from this ceranlic model. 

Plate 2: The bunny mesh with Plate 3: The ~UIII~~ nlesh t.exture 
registrat,ion points shown as: purple rnapped with a 2D orchid and a SD 
crosses, during halId-alignment.. checkerboard t,exture. 

Plate 4: A hand-yaintcd bunny 
mesh. 

Plate 5: Finer detail painted on a 
piece of the bunny nlesh. 

Plate 7 shows the bumpy 
wolf-head mesh+. ‘l’he 
bumps were created using 
the displacement brush. 

PI& h shows the hand- 
paint,ed wolf-head m&l+. 

Plate 6: The wolf-head modclt witll 
a texture mapped tatoo. 

PIaLe 7 Plate 8 

+ The wolf head 1nodr1 frown which this rue& ~a.5 produced ws creat.rd by Indust.rial Light and Magic 

Agrawala, Beers. arid 1 ~voy, “31) Painting on Scanned Surfaces” 
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