
Video Sprite Replacement
Nancy Wang

University of California: Berkeley
Nancydragon12345@gmail.com

Figure 1: Basic Conception.
 The initial proposal for the project of this paper was to completely replace a person from a video with a cartoon

character. The current focus is to use pose recognition to match the sprites instead. A set of sprites of a cartoon
character (left) would be compared the individual in question in a key frame from the video (middle). After finding
the best match, the cartoon pose would then be substituted into the individual’s place. This set of examples sprites is
of the video game character Mario from the Paper Mario series under Nintendo Co, Ltd.

ABSTRACT

Animation has gained much attention overtime since the
creation of animated films during early 20th century. Up to
present day, a popular thing to do, through various media,
is to combine live-action and animation together in videos.
This practice has been done by professionals and amateurs
alike from film industries for movies to public internet
videos.

However, the process can be time consuming and costly to
draw or model out the animation separately and then put it
into video. This paper explores methods to simplify the
process by using pose recognition between two different
sets of sprite images--a set of key sprites of a live-action
person from a video with a set of key sprites of a cartoon
character.

Keywords: animation, affine, cartoon, control joints, key

frame, motion tracking, skeletons, retargeting, rotoscoping,
key sprites, toon sprites, video.

INTRODUCTION

Animation is created by combining visual and motion style
together. Characters created for this type of medium can be
portrayed from realistic to highly exaggerated facial
expressions and movements. The production of these is
usually handled by teams of professionals in the film and
other media industry.

Background

The problem with animation in general is that it can be
really time-consuming or costly to do. In the early days of
traditional animation, animators would have to draw out
everything by hand. Animators would draw out each frame
individually, with each sequential one slightly differing
from the one before to simulate movement. Considering
animations are run at 24 frames per second on average,
requiring 12 to 24 drawings per second, an one-hour
animated movie would need up to 86400 sketches. [4]

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

An early method of recording human motion was
rotoscoping. For older films such as Disney Studio’s Snow
White, animators would trace animation over film footage
of live actors playing out the scenes in order to copy the
movement for realistic motion of their animated characters.
However, motion capturing through this process was still
done generally painstakingly by hand. [7]

Presently, motion capture has been a standard tool by many
animated film industries such as Pixar and Dreamworks to
apply motion to 3d models. This is done by having live
action actors wear special suits from which computer can
record their movements. However, such equipment,
software, and personnel use tend to be very expensive.

Motivation

It is interesting to try to match the cartoon sprite one selects
to that of a real life person on video such without hand-
drawing everything. This can be difficult to do since the
poses might not match well or the motion can be very
complex. Another problem is that most well-developed
motion capturing software and equipment are too expensive
for most of the populace. While it is readily used for huge
industries under entertainment companies such Pixar and
Disney, this is generally not easily available by small
production groups or individuals.

What we suggest is to try to apply some existing vision
based techniques to attempt to replace live-action people
from existing videos with our own selected cartoon
character sprites.

RELATED WORK

Some previous work have developed some methods to
address the problem. Concerning cartoon capture and
retargeting of animated characters, Bregler [1] focused on
isolating the motion style of an existing cartoon animation
and apply the same style to a new output domain. He splits
the cartoon motion into affine and key-shape deformations.
This involves estimating motion vectors that approximate
the contours of the input key shapes, which is then used to
apply to the target key-shapes.

In their study of Sign Language Pose Recognition, Pennock
and Gringold [6] applies a robust version of the Lucas-
Kanade [3] algorithm. Through this, they constrain the
dimensionality of the affine transform from 6D to 4D,
keeping only rotation and translation properties, and
recognizes hand poses from one direction only. They had
come across errors in which some poses were misclassified
when read. Bregler mentions in his paper that algorithms
such as Horn-Schunk’s [2] and Lucas-Kanade that calculate
affine warp flow in 1D is not precise for non-linear
deformations.

Junjun and Zhang’s [5] work into sketch-based skeleton-
driven animation 2D is based on using creating a skeleton
and moving its joints to create deformations of figures. In
first, involves detecting the silhouette of the figure and
applying triangulation and thinning algorithms to obtain a
skeleton. Deformation of the target is created through
manually moving the skeleton joints to obtain the new
figure.

Considering these referred works, we would like to focus
on matching the shapes of one real-life person with the
key-shapes of a cartoon character by comparing the optical-
flow error between them.

METHODS

This paper involves character pose recognition by finding
the pose with the least affine optical flow error between
characters. Some preprocessing of images and videos are
required before applying them into our system.

Inputs

For the first step, we want to take a video to track the
motion of an individual recorded in the video. For the
purposes of concentrating on the individual’s movement
only, we use Adobe After Effects to video mat the
background. This is done by using the program’s rotobrush
tool on the person of interest in the first frame, which will
automatically be applied to each subsequent frame, with
some user editing to fix any rotoscope lines that may go out
of place. The rotoscope masks obtained from this are used
later in the Matlab code for pose matching in the key
frames.

Using the same video after rotoscoping has been done, we
use Adobe After Effects to apply motion tracking on the
individual to track his movement across the screen. The
tracked motion is then applied to a marker that
encompasses the individual. Because the motion trackers
are not very precise on tracking joints, we set the motion
tracker on the whole figure. Since videos are difficult to
handle in Matlab, the frames of the two videos, acquired
from rotoscoping and motion tracking the original, are
converted into images files. The key frames in both videos
are preselected to be put to use in our program.

FIGURE 2: During preprocessing, the original video (top)
is imported in Adobe After Effects. The rotobrush feature
helps rotoscope the individual (middle) in every frame.
Motion tracking of individual is applied to Green Box
marker (bottom).

Our Matlab program is given three sets of data: a set of key
frames of the video that contains the rotoscoped masks of
the person of interest, a set of key frames of the video that
contains the rotoscoped person motion tracked with a green
marker, and a set of cartoon sprites to be used to substitute
in to the retargeted images (as seen in example of frame 43
in Figure 2). Each group of images is read as an array of
images. The number of cartoons sprites does not
necessarily have to be the same amount as the number of
key frames. The main idea of this paper is to extract key
shapes of a real-life person and match to the toon sprites
accordingly.

Our program then iterates through the array of marked key
frames in order to build an image array of key-shape sprites.
After detecting the green-box marker, it crops the key
sprite from the corresponding rotoscoped image according
to the position of the marker. This array of key sprites will
be used to compare against the poses of the toon sprites.

Comparing Key Shapes

After the key-shape sprites are obtained, the program starts
comparing each one to each toon sprite pose. This is done
by calculating the error in between each pair of the key
sprite and the toon pose. For calculations, we will mainly
be using Bregler’s affine parameters and equations in
finding the optical flow error between the masks of the
shape of each pair of sprites. The affine parameters at time
frame t are defined as

FIGURE 3: affine paramenters from Bregler [1]

with a1, a2, a3, and a4 describing rotation, x/y scale, and
shear, and dx,and dy for the x/y translation.
.
We acquire image gradient of the difference between key-
sprite and toon-sprite.

 which is the image gradient of It in x and y
direction.

The affine parameters theta (θaff) are then obtained thusly.

FIGURE 4: equation 11 [1]
From Bregler’s reference, the standard least-squares
solutions of this linearized term is defined as

FIGURE 5: equation 12 and 13 [1]

After affine parameters theta are obtained, we calculate the
affine flow warp of the key-sprite S using the newly
acquired theta.

FIGURE 6: equation 1 [1]

Once we get the warp(θ,S), we calculate the error between
the images with the following error equation

FIGURE 7: equation 8 [1]

with I0 as the toon image. Finally, The error calculated at
each pixel is summed up.

With this error calculations done for each toon sprite for
the current key sprite, the toon pose with the least amount
of error compared with the key sprite is then pasted onto
the position of the real-life person in the original key frame.

For the purpose of quick comparison, we set up the output
of the system to overlays the toon sprite over the original
figure so the user can quickly see how close their poses
match visually.

Otherwise, the system can be easily modified to paste the
toon sprite in a new blank image with a black background
of equal size to the original image. The new images
obtained may be applied with video matting to add the
original background or any other backgrounds in post-
processing.

FIGURE 8: Quick visual overview of calculation process using Key Frame 9 (frame 40 of original video) as an example.
The key sprite of the individual from the original picture (top left) is cropped out based on the position of the Green Box
Marker (top right). Each cropped image (second row) is compared to a set of toon sprite images (third row, sprites of Samus

Aran from the Metroid games series). The pose with the least amount of error, in this case the first one, is then chosen to
place at the position or the original individual.

Comparing with Control Points and Skeletons

Ideally, we would have like to be able to apply motion
tracking to the individual joints of the original real-life
person. However, when using Adobe After Effects, the
motion trackers would constantly linger or skew off track,
and it would be immensely difficult and time-consuming
to retarget each of the motion tracked points for every
frame.

In an attempt to simplify the pose-recognition process, we
want to try using control points and skeletons on each
sprite instead of comparing the key-shapes in their
entirely. To do so, we proceed in manually creating two
copied versions of the sets of the original images and sets
of toon sprites with these markers. The first version of the
copies have the end joints (the head, hands, and feet) of
each sprite clearly marked with green circles. The second
version of the copies are marked with lines along the
limbs, main body, and the head to represent the skeleton
of each figure.

FIGURE 9:
Examples using original frame 5 (left column) and one of
the Dark Link sprites from the Legend of Zelda game
series (right column)
Top row: original version of images
Middle row: Sprites marked with control joints
Bottom row: Sprites marked with lines for skeletons

The system we defined in Matlab has also been modified
to incorporate these new inputs for processing. With the
parameters set in the code to read the images marked by
either control points or skeletons, the system would
ideally read and detect the green markers in the from the
modified images, and create masks based on those. This
would be used to calculate the errors between the markers
in the images. However, the system has come across some
problems with this, which will be explained further under
the Results Section

RESULTS

For our initial results using pose recognition between the
key shapes of the live person and cartoon sprite, we get
relatively good results. With some minor mismatches for
a few of the key frames, the poses of the toon sprites
matched pretty well with that of the real-life individual in
the video. The toon sprite is laid over the original person
to easily compare their poses in each frame. Complete
results acquired through this project can be seen in figure
13.

FIGURE 10:
Outputed results of key frames 5 (top), 10 (middle), 15
(bottom), overlaid with Samus Aran sprites. Obtained
through pose-recognition of key-shapes.

Since we only provided five toon poses for the Samus
Aran sprites, it stands to reason that the some of the poses

would look somewhat off. Also, there is also to consider
that all the Samus Aran toon sprites provided only shows
her right arm, equipped with her primary weapon. So one
cannot really compare the upper limbs of the jogger and
that of Samus’s. Aside for that, cartoon characters do not
necessarily be perfectly human-shaped; as long it matches
well for the most part it should be fine.

As for the Dark Link sprites, these results turn out better
considering there was more sprites provided (Dark Link
had nine toon poses as opposed to Samus’s five). As with
the Samus’s output results, complete results acquired can
be seen in figure 13

FIGURE 11:
Outputed results of key frames 4 (top), 8 (middle), 11
(bottom), overlaid with Dark Link sprites. Obtained
through pose-recognition of key-shapes.

Given a more variety of poses than the Samus Aran
sprites, we can see the poses of the Dark Link sprites
match even better. However, some of the matching does
look different for some key frames. For instance, one may
notice in key frame 8 of figure 11 that this cartoon
character’s legs does not quite extend all the way since his
limbs are generally shorter and thicker than the original
individual’s. Aside from that, the comparison of the poses
between these two characters worked out nicely.

However, the same cannot be said about the other inputs
marked with control points and skeletons lines.
With key-shape comparison, the system takes about an
hour to running through all the error calculations to output
all fifteen key frames. We had hoped to improve on the
pose matching of our system by only comparing either the
control joints or the skeletons of each figure. However, in
either case, the outputs images end up overlaying the
same selected toon poses on every image.

FIGURE 12:
Outputed results of key frames 4 (top), 5 (middle), 6
(bottom), overlaid with Dark Link sprites.
Left Column: Obtained from comparing control joints.
Right Column: Obtained from comparing skeletons.

In both cases, this may be due to some of the limbs, as
well as the markers, overlapping each other, so those
poses may generate large errors, and would most likely be
left out. Also, since the joint and skeleton markers were
applied in manually through preprocessing, the actual
joints and skeletons of the figures might not be well
accurately presented.

DISCUSSION

Comments and advice were received on our project after
presenting the visualization of the project to our peers and
others. One commenter noted that this system can also be
applied by replacing cartoon characters with real-people
as well in live-action animation; it would be interesting to
use this to switch between any two characters from either
the animated or real-life domain.

Another also mentioned that comparing characters with
control points or skeletons would help better solve the
problem. Currently, the system incorrectly handles these

FIGURE 13:
Output Results using Dark Toon Link sprites and Samus Aran sprites.
First Row: Dark Toon Link sprites for key frames 1 to 5; Second Row: Dark Toon Link sprites for key frames 6 to 10;
Third Row: Drak Toon Link sprites for key frame 11 to 15; Fourth Row: Samus Aran sprites for key frames 1 to 5;
Fifth Row: Samus Aran sprites for key frames 6 to 10; Last Row: Samus Aran sprites for key frame 11 to 15.
Results for skeleton and control joint marked images are left out since only one toon pose is applied in both cases.

inputs so further work must be looked into. Aside from
pose-matching, the system could be further improved on
by implemented key-shape interpolation between key
frames to help create animation between the key poses.

More examples with this system may be shown later upon.
With this system, we wanted to keep improving the
system with consistent inputs.

FUTURE WORK

In the future, we would want to consider better
implementation of control joints and skeletons to track the
movements of an individual’s limbs more accurately.
Further progress into this may be seen in readings into of

Sketch-based skeleton-driven projects and other related
works mentioned earlier in this paper.

This system can also be extended to facial recognition by
applying control points to track facial muscle contraction
and relaxation.

ACKNOWLEDGEMENTS

We would also like to thank all of those that have
commented on the system and provided advice on it. We
would also like to thank everyone whose images,
algorithms, and ideas we have referenced and built upon
for this projects. Finally, we thank Maneesh Agrawala
and Floraine Berthouzoz for their teachings and advices in

during the whole course of CS294-69: Computational
Photography and Image Manipualtion.

References

1. BREGLER, C., LOEB, L., CHUANG, E., DESHPANDE, H.

2002. Turning to the Masters: Motion Capturing
Cartoons. In Proceedings of SIGGRAPH 2001,
ACM SIGGRAPH.

2. HORN, B, AND SCHUNK, G. 1981. Determining Optical

Flow. Artificial Intelligence 17.

3. LUCAS, B. D., KANADE, T. 1981. An Iterative Image

Registration Technique with an Application to
Stereo Vision. Proc. 7th Int. Joinnt Conf. on Art.
Intelligence.

4. NYSTROM, J.E. 1972-1997. How an Animated Cartoon
is Made. http://www.sci.fi/~animato

5. PAN, JUNJUN., AND ZHANG, JIAN J. Sketch-Based

Skeleton-Driven 2D Animation and Motion
Capture. 2011. National Centre for Computer
Animation, Media School, Bournemouth
University, UK.

6. PENNOCK, C., AND GINGOLD, Y. Sign Language (Pose)

Recognition. 2004.
http://cs.nyu.edu/~ccp252/classes/vision/final/
index.html

7. STURMAN, D. J. 1999, March 13. A Brief History of
Motion

Capture for Computer Character Animation.
Siggraph.org

