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Figure 1: Left: A low-dynamic range (LDR) image showing Golden Gate Bridge captured at night shown without perceptual tone mapping.
Center: Perceptual tone mapping for low-light conditions. Right: Perceptual tone mapping for low-light conditions with lower exposure
setting.

Abstract

In this paper we present a system for perceptually-based tone map-
ping of low dynamic range video filmed in low light conditions.
Our system extends the work of Kirk and O’Brien [2011], which
models the non-linear shift in hue that takes place as the eye transi-
tions from brightly lit scene (photopic) to the low light scene (sco-
topic). We describe how to approximate cones and rod responses
from low dynamic range (LDR) RGB data, from which we can
model the Purkinje effect by adding offsets in the opponent color
model. We also explain how to handle saturated and dark pixels in
the LDR input to avoid visual artifacts in the tone mapped image.
Our goal is an efficient system with intuitive parameters for tone
mapping low dynamic range videos filmed in low light conditions.
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1 Introduction

Night time photography is considered one of the most difficult light-
ing conditions to shoot. This is because night time hues and desired
lighting are not well-captured in an RGB image. For example, the
fireworks seem less spectacular against the reddish brown hue of
the sky; the moonlit scene is missing its romantic blur allure and

Contact email: yglee@berkeley.edu

appear monochromatic. To recapture the look and feel of night, cin-
ematographers go to great lengths to perform color correction and
tone mapping for each shot of the film. In live-action production,
color correction processing is carefully done to imbue the scene
with the artistic intent of the director, while maintaining realism
and authenticity of the night time scene. For computer generated
animation, lighting artists jump over hurdles to ensure that night
time look remains authentic while ensuring that lighting captures
the mood of the story. We aim to support the artists by introducing
an efficient perceptually-based tone mapping system for low light
videos. Our tone mapping algorithm performs at interactive rates
and exposes intuitive parameters for users to discover new looks
that they had not encountered before.

The difficulty of capturing a night scene is partly due to loss of
night time cues perceived by the human eye when captured with a
camera. In brightly lit scene, three types of cone cells in the eye
mediate light perception. Each type of cells have a distinctive spec-
tral responses and allow perception of a three-dimensional color
space. In low light scene, rods become more active than the three
cones. These four types of photoreceptors (long, medium, short
cones, and rods) are combined in a nonlinear blend process into
three-dimensional colorspace of the brain. This color shift as eye
adapts from well-lit to low-light conditions is known as the Purk-
inje Effect. Commercially available cameras and display devices
are designed to operate in three-dimensional colorspace as they as-
sume photopic viewing conditions. Therefore, they fail to take into
account the visual adaptation of the eye as the lighting changes. As
a result, low-light images captured with commercial cameras look
underexposed or very similar to well-lit images. A system that can
automatically tone map night time images allows filmmakers and
photographers to tackle this problem by replicating the Purkinje Ef-
fect as part of post processing step.

We have developed a system that can perform perceptually based
tone mapping of low-light video from input RGB video at inter-
active rates. Our system is modeled after the work of Kirk and
O’Brien [Kirk et al., 2011], which reproduces perceptually correct
low-light scene by simulating the nonlinear shift in color percep-
tion that occurs as scene intensity drops from photopic (or well-lit,
cone-dominant vision) to scotopic (or dark, rod-dominant vision).
Spectral image approximates continuous distribution of light en-
ergy entering at every pixel in higher dimensional representation
than an RGB image. Instead of taking in spectral images as Kirk



and O’Brien does for their system, we estimate photoreceptor re-
sponse to each pixel from low dynamic range image. Spectral im-
ages allowed previous system to compute rod and cone responses
directly by integrating their response functions against pixels spec-
tral density function. However, spectral images are very difficult
to generate with commodity hardware and requires numerous pho-
tographs of the same scene taken under different filters and expo-
sure settings.

Our contribution is simplifying the perceptually based tone map-
ping process such that it takes in commonly available inputs such as
low dynamic range images. We developed a robust method for esti-
mating photoreceptor responses from LDR input. This required ap-
proximating four dimensional information from three dimensions.
This is particularly challenging with saturated pixels. We developed
a special procedure for explicitly handling the saturated pixels to
avoid visual artifacts in the tone mapped output. Furthermore, we
improved efficiency of the tone mapping system by simplifying the
optimization procedure.

2 Previous Work

Our tone mapping algorithm extends the work of Kirk and OBrien
[2011]. Their system simulates the non-linear color shift that hap-
pens in low light environment known as the Purkinje Effect and
uses spectral images as input to approximate the Long, Medium,
Short Cones and Rod responses (LMSR) . The main difference in
our pipeline from their work is the estimation of LMSR responses
from low dynamic range input frames. As opposed to using spec-
tral images as input, we approximate the LMSR responses from low
dynamic range (LDR) images by lofting the pixel values to the high
dynamic range and multiplying by the matrix we fitted that converts
high dynamic range (HDR) data to the LMSR responses. Approx-
imating four channel response from three channels of data was a
challenging problem due to dimensional difference (three channels
versus four) compounded by the limitation of information that can
be stored in an 8-bit RGB image.

We can approximate LMSR responses from the non-spectral im-
age by using a linear mapping from RGB to LMSR since the re-
flectance spectra for many common scenes can be approximated us-
ing a small number of bases [Maloney and Wandell, 1987]. There-
fore, we solved for the HDR to LMSR matrix as a least squares
problem. However, we found that the matrix solved this way is not
robust enough to handle variety of low-light image inputs. In the
methods section, we detail how we made our HDR to LMSR matrix
more robust by performing additional steps such as constraint op-
timization. Furthermore, using low-dynamic range image as input
requires special handling of the saturated pixels. This is a problem
not encountered by Kirk and OBrien as they specifically dealt with
high dynamic range pixel values as input. Our system performs a
special treatment for saturated pixels in addition to tone mapping.

Many of the previous works on night time tone mapping, such
as Durand and Dorsey [2000] and Khan and Pattanaik [2004],
simulates perceptual response by adding a linear amount of sin-
gle blue color to the overall image to model the color shift in low
light scenes, which is inconsistent with psychophysical data. Our
method computes a perceptual difference determined by rod con-
tribution and apply this to the opponent color model, which re-
quires an additional step of approximating opponent color model
responses from photoreceptor responses. Therefore, our method
models the biological processes while previous methods tend to fo-
cus on more ad hoc descriptions of human perception. Our system
also has single exposure parameter to simulate range of images de-
picting different lighting conditions. For comparisons sake we in-
cluded image generated by adding a linear amount of single blue
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Figure 2: (a): A low-dynamic range (LDR) image without
tonemapping. (b): Result of clamping negative LMSR values to
zero. (c): The result from adding linear blue offset to the image.
(d): The result from our tone mapping algorithm

color to the image, and juxtaposed it with image output from our
system. Comparison of Figure 2(c) and Figure 2,(d) demonstrates
that linear blue shift does not model the perceptual response as well
as our output.

Krawczyk and colleagues [2005] address perceptually-based tone
mapping of night time images as part of their real-time HDR to
LDR tone mapping system. Their system models the sensitivity of
rods as function of luminance of the image and also models loss
of visual acuity by convolving the regions of low luminance with
the Gaussian Kernel. The resulting image for scotopic setting is a
grey scale image that does not accurately reflect the psychophysical
response of viewers during night time. As their system input is
limited to HDR format, it cannot explicitly handle tone mapping of
LDR images or video. Our system can operate at interactive rate
and can extended to real-time implementation on the GPU since
the process is pixel independent. Therefore, it is possible to build
user interface on top of our system that allows for real-time user
interaction for tone mapping low-light video.

There are existing photo editing tools such as Adobe Photoshop
and Lightroom that allows manual tone mapping. However, man-
ual editing can be a labor intensive process and may require highly
trained artists who are familiar with the system. Therefore, train-
ing required to use Photoshop and Lightroom effectively is another
cost factor that must be considered in comparison with our auto-
mated approach, which require minimal training for the desired and
consistent output. Depending on the type of project, availability of
trained artists, and production time, automation of tone mapping
process may be the preferred approach that saves time and money
for the individual or the studio. Artists can also discover new looks
at fast iteration time with automatic tone mapping.

3 Methods

Kirk and OBriens work requires LMSR responses to perform per-
ceptually based tone mapping. To acquire LMSR responses, they



Figure 3: Diagram of Kirk and O’Brien’s perceptually based tone
mapping pipeline.

created spectral image of the scene and used it to compute accu-
rate LMSR values. However, spectral images are not readily avail-
able in most conditions. To acquire spectral image, one must cap-
ture the same scene with multiple exposure settings and multiple
color filters. Therefore, Kirk and OBrien also proposed an approx-
imation method to compute the LMSR responses from HDR data.
Given some training data with HDR images and their correspond-
ing LMSR images, they use least square to fit a four by three RGB
to LMSR matrix H as Equation 1.

min
H4x3
||HP − Q||2

where,

P =

 R
G
B

 ,Q =


L
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(1)

Their result shows that this matrix works well for low light pix-
els but not for brighter pixels. This is because a linear transfor-
mation is not sufficient to model the non-linear characteristics of
RGB to LMSR mapping. To address this problem, they proposed
to blend the tone mapped output image with original image accord-
ing to each pixels mesopic factor measurement as in Equation 2,
where w is the mesopic measurement ranged from 0 to 1. Iout, Iin,
and I f ilt is the output image, input image, and tone mapped image
respectively.

Iout(x, y) = w(x, y) · Iin + (1 − w) · I f ilt(x, y) (2)

A lower w value means the pixel is darker according to human vi-
sion so a higher weight should be assigned to I f ilt, and vice versa.
Given this approximation approach, they successfully reduce the re-
quirement of input data to be HDR images, which still requires cap-
turing a scene with multiple exposure settings. [Debevec and Malik,
1997]. Our goal in this paper is to extend Kirk and OBriens work
further to support general LDR RGB input so that this algorithm
can process image and video data that are much more accessible.

To extend Kirk and OBriens work to support LDR RGB input, we
approximate HDR RGB values based on the LDR RGB input and
exposure settings from the user. We use two steps to convert LDR

Figure 4: Diagram of our perceptually based tone mapping
pipeline.

RGB into HDR RGB. The first step is to undo the gamma correc-
tion in LDR input RGB. Since images captured by different devices
might use different gamma correction setting, the ideal approach is
to let the user input the gamma settings of their devices. When this
information is not available, users can choose not to undo gamma
correction or undo a standard NTSC gamma correction as in Equa-
tion 3, where E is input RGB values scaled to [0, 1].

L =


E

0.45 ,E ≤ 0.081(
E + 0.099/1.099

) 1
0.45 , 0.081 < E

(3)

The second step is scaling the LDR RGB value to the range of HDR
RGB. The scalar accounts for two elements. The first element is the
exposure setting difference between input image and standard ex-
posure setting. For instance, the standard exposure setting in our
experiment is one second of exposure time and ISO100. If input
image is captured at two seconds exposure and ISO 400, then the
first scaling factor should be eight. Users can also adjust this fac-
tor to achieve different filtered result to account for their desired
brightness of output. The second element account for the range dif-
ference between the range of LDR RGB data (8 bits) and the range
of camera image sensor data (usually 10 to 16 bits, depending on
the image sensor.) As HDR images in our training dataset are cre-
ated from 16 bits camera RAW images, we need to multiply input
LDR RGB values by 256 to map them into the range of RAW im-
age.

After computing approximated HDR values from LDR input, the
next step of our pipeline is to convert HDR RGB values into LMSR
response. Here we present our finding on problem of Kirk and
OBriens original method and how we address the problem. We
first train a RGB to LMSR matrix using Kirk and OBriens orig-
inal method. However, we encountered a problem when apply-
ing matrix to generate the LMSR response. The problem is that
it sometimes generates negative LMSR response. This is because
the trained matrix contains negative coefficients so it will generate
negative LMSR response for some pixels. Since LMSR response
should not be negative, we tried to clamp those values to zero. Fig-
ure 2(b) shows the result of this approach. There are some bad
purple patches shown on blue regions of original input. This is be-
cause by clamping negative response values to zero, we lose the
inter-channel difference information, which makes colors of those
pixels shifted.
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Figure 5: Left: The result from tone mapping for low light con-
ditions without special handling of saturated pixels. Right: The
result from tone mapping for low light conditions with special han-
dling of saturated pixels.

To address the negative LMSR response problem, we use a different
approach to train RGB to LMSR matrix. The original method from
Kirk and OBriens work trains a four by three matrix that will con-
vert RGB to LMSR by least square fitting. We make three changes
on their method. The first change we make is to normalize the train-
ing HDR data so that they have same average response in different
color channels. Here the idea is similar to running a gray world
white balancing on the RGB data to account for the fact that our
input LDR RGB data are also subject to white balancing.The sec-
ond change is replacing least square fitting by constrained convex
optimization. By forcing the matrix elements to be non-negative,
we can constrain the approximated LMSR response to be also non-
negative. The third change is that instead of fitting a four by three
matrix, we now fit a four by three matrix with translation vector as
in Equation 4.

minH4x4 ||HP − Q||
2

subject toH(i, j) >= 0,

where P =


R
G
B
1

 ,Q =
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 , i, j ∈ [1, 4]

(4)

With a four by three matrix, the LMSR response is linear combina-
tion of RGB samples. With a four by three matrix with translation
vector, LMSR response is linear combination of RGB samples plus
an translation vector, which accounts for difference between mean
value of RGB and mean value of LMSR in training data.

We found that in some images the colors of light sources are not
preserved well. This is a problem inherent in LDR input, where the
low dynamic range will limit approximated HDR samples from dif-
fering too much. Therefore, an exposure scalar setting works well
for dark regions might not work well for bright regions. To address
this problem, we introduce a bright pixel handling threshold K. For
pixels with intensity higher than K, we increase their blending fac-
tor in Equation 5 to favor original LDR pixels more.

w′ =

{
w, if I < K

α + (1 − α) · w, if I ≥ K

α =
I − K

255 − K

(5)

This threshold accounts for the fact that those near saturated pixels
actually have higher HDR values than can be visualized in low dy-
namic range. Therefore we should favor original LDR input more.

Kirk and OBriens work applied quadratic programming when neg-
ative RGB response are created in the process of mapping LMSR
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Figure 6: Left: The result from tone mapping for low light con-
ditions without quadratic programming optimization. Right: The
result from tone mapping for low light conditions with quadratic
programming optimization.
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Figure 7: Left: The result from tone mapping for low light con-
ditions with undoing NTSC gamma correction. Right: The re-
sult from tone mapping for low light conditions without undoing
gamma correction.

response back to RGB domain. We found that it is a performance
bottleneck of their pipeline and it does not necessarily create a bet-
ter result than simply clamping negative values to zero. Figure 6
shows the comparison between quadratic programming and clamp-
ing to zero approach. The result of quadratic programming does not
look visually plausible. In our matlab prototype implementation, it
takes 490 seconds to process the image with quadratic program-
ming, as opposed to 7 seconds for clamping approach. Therefore
we opt to use the clamping approach in our final implementation.

4 Results and Discussion

Figure 7 shows the output of our pipeline with undoing NTSC
gamma function or not undoing gamma correction. It is hard to
tell which image is better than the other. Therefore to save some
computation resource, all our video results are ran without undoing
gamma correction.

Figure 5 shows the comparison of our output image with or without
the saturated pixel threshold K, as can be seen that the light are
better preserved with the bright pixel handling threshold. Currently
we set K to 230 in all our experiments.

Our pipeline requires a HDR tone mapping algorithm to go from
HDR space to LDR space. Currently we are using bilateral tone
mapping algorithm by [Durand and Dorsey, 2002].

Figure 9 shows output of our pipeline with vari-
ous input images and different exposure settings.
We also put our video results on our website
http://www.ocf.berkeley.edu/ yglee/lowlight/lowlight/Home.html.
Figure 8 shows the computation time analysis of our pipeline ran
on a Mac laptop, with Intel Core 2 Duo 2.0Ghz CPU and 2GB
RAM. The x-axis is number of pixels in the input video per frame
and the y-axis is the average processing time per frame. So far



Figure 8: Plot of processing time for our system. X-axis shows
number of pixels, Y-axis shows time in seconds. Numbers next to
points are resolutions of images

we still can not reach real-time processing speed. 50 percents of
computation time belongs to tone mapping algorithm that convert
HDR pixels back to LDR range. How to reduce the cost of tone
mapping or even get rid of it remains one direction of our future
work.

5 Future Work

Ferwerda et al. [1996] , and Jensen et al. [2000] examine related
issues in addition to color shift during night time, such as increased
noise and loss of spatial acuity at low light levels. Our work focuses
on capturing the perceptually plausible hue of low light scenes. For
future work, we intend to add additional features such as noise and
blur kernel parameters to account for these additional effects to in-
crease the believability of the night time scene.

We also intend to explore better ways of handling the dark and sat-
urated pixels of LDR image. The saturated pixels can be treated
as holes in the image and on which we can then apply hole filling
algorithm to better estimate HDR values of these pixels.

As our current pipeline cannot achieve real time speed, we will also
investigate methods to speed up our pipeline. As HDR tone map-
ping algorithm is the bottleneck of our pipeline, one possible ap-
proach is to apply another tone mapping algorithm leveraging GPU
for speed up. Some research results in bilateral grid or domain
transform has shown very promising speed. On the other hand, as
the input data of our work is are in low dynamic range, we will also
study how to model Purkinje effect in low dynamic range so we will
not need converting between LDR and HDR anymore.
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Figure 9: The first row of images are the low dynamic range input images to our tone mapping pipeline. Each column
shows set of output images from our tone mapping system. Our tone mapping system allows single parameter control of the
exposure, which reduces the range to simulate darkness. The exposure value is decreased as images go from top to bottom.
Note that the images in the second column (city) were generated from a well-lit input. It shows that our tone mapping
system works better with low-light image inputs.


