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Figure 1: One application of automatically detecting visual landmarks is the ability to create new wayfinding directions with visually important cues. Here the
turn-by-turn directions have been annotated with images of the detected visual landmarks near some of the turns.

Abstract

We propose a method for automatically determining visual land-
marks in urban environments. We define a visual landmark as a
visual element that would be considered important to an unfamiliar
human if he/she were attempting to navigate a wayfinding route.
Our system trains a machine learning model from user-annotated
panoramic images via a popular crowd sourcing platform ensuring
a varied set of human biases. Our model shows promising perfor-
mance in its ability to predict the probability of visual landmarks
in novel views across an entire urban environment from the sparse
training data.

1 Introduction

Wayfinding is the process of navigating a physical environment,
usually expressed as a series of point-to-point directions from an
origin to a destination. Recent developments in mapping technol-
ogy and the ubiquity of the Internet have facilitated the incorpora-
tion of wayfinding aids into everyday life. People commonly print
maps or use in-car navigation systems to reach a destination. How-
ever, there are still numerous challenges that wayfinding still poses
in visualizing and describing routes.

Currently, most wayfinding applications provide human-readable
text or detailed roadmaps showing a route through an environment.
While this information describes the general layout of a route, it
often lacks a crucial element that is present in almost all human-
described routes: visual landmarks.

As a simple, illustrative example, consider describing directions
to your home. It is very likely that you will include various vi-
sual landmarks (e.g. an oddly colored building at a congested cor-
ner) to help an unfamiliar navigator successfully traverse the route.
These landmarks are especially useful in crowded urban environ-
ments where street signs and road markers may be obscured. In
essence, the visual landmarks provide alternate means for naviga-
tors to verify that they are correctly following the route.

We approach this problem by developing a method for automati-
cally determining these visual landmarks in an urban environment.
Figure 1 demonstrates a potential application of our detection re-
sults. Annotating existing wayfinding directions with visual land-

marks provides a much more intuitive way for people to navigate
their environments and is more consistent with the way people de-
scribe directions to one another.

Our method relies on user-annotated visual landmarks to serve
as training data for a machine learning algorithm that produces a
“model” for visual landmarks. We can predict the visual landmarks
in novel views of an urban environment by testing agreement with
our derived model. In this work we concentrate on 360-degree
panoramas of cities scraped from Google StreetView1, however
other sensing modalities (LIDAR, aerial imagery) may be incor-
porated in later work.

2 Related Work

There have been a number of effortss over the last decade that have
considered solutions to providing effective wayfinding directions.
Summarizing each of these techniques is beyond the scope of this
paper. Readers interested in an overview of these more classical ap-
proaches should refer to the principled study presented by Lovelace
et al. [1999]. More recent research has considered the benefits of in-
corporating visual landmarks into wayfinding directions, but have
relied on manual specification of landmarks [Raubal and Winter
2002] or models trained for specific scenes [Millonig and Schecht-
ner 2007]. We extend these approaches by automatically detecting
visual landmarks in novel scenes using a small set of training data.

The training data that we use to perform the detection is col-
lected through Amazon’s Mechanical Turk2 crowd sourcing sys-
tem. There has been a trend in the last decade to rely on these
so-called crowds of workers to complete tasks that used to require
expensive and relatively small user studies. This crowd sourcing
model has been applied in many problem domains [Kittur et al.
2008]. Crowd sourcing itself has been studied as it presents chal-
lenges in verifying collected data, motivating workers [Mason and
Watts 2010; Horton and Chilton 2010], and communicating tasks
effectively.

Detecting visual landmarks can be thought of as an attempt to de-
tect the “salient” regions in urban environments, although our goal

1http://www.google.com/streetview
2http://www.mturk.com



Figure 2: The set of panoramas that were used to collect user-defined visual
landmarks. We tried to choose a set of images that was representative of the
types of elements an urban environment might contain.

is more aligned with detecting the Schelling Points of these envi-
ronments [Schelling 1980]. There has been extensive work in au-
tomatically detecting salient regions in images with various goals
such as human attention prediction [Judd et al. 2009] [Itti et al.
1998], image summarization [Goferman et al. 2010], and recog-
nition [Gao and Vasconcelos 2004]. Similar to the work of Caduff
and Timpf [2008], we focus specifically on determining visual land-
marks. Our work can be seen as a practical implementation of their
theoretical results.

One important feature of our work is the ability to reliably detect
the configurations of urban elements (buildings, signs, cars, peo-
ple, etc). Although our current system ignores the potential gains
from incorporating knowledge of these elements, we plan to con-
sider them in future work. Previous research has attempted to auto-
matically detect buildings - a prolific visual landmark - either from
single images [Hoiem et al. 2007] or from LiDAR returns [Carlberg
et al. 2009]. There have also been encouraging results in detecting
roads [Ünsalan and Boyer 2005], cars [Felzenszwalb et al. 2008],
people [Felzenszwalb et al. 2008], and trees [Secord and Zakhor
2007; Leckie et al. 2003]. Our system will use these approaches to
automatically exclude large portions of urban environments from
the prediction step resulting in a more efficient and accurate ap-
proach.

3 Collecting the Training Data

Our approach to automatically detecting visual landmarks in urban
environments is to train a machine learning model capable of reli-
ably predicting whether pixels in panoramas are visually important
or not. In order to train a machine learning model to perform this
task, a set of training data is required. Specifically, for our particu-
lar machine learning algorithm, we require a set of panoramas with
hand-annotated regions containing visual landmarks. In order to
produce a large enough training set, we rely on a crowd of workers
to annotate the set of panoramas in Figure 2 with this information.

We implemented our crowd-sourced solution via Amazon’s Me-
chanical Turk - an online system allowing a “requester” to post
tasks in the form of web applications that are completed by “work-
ers”. We prompted workers to, “...mark a single region in [each
panorama] that you consider most important if you were giving

someone directions through that intersection.” The web applica-
tion we built allowed users to pan over a 360-degree panorama and
mark rectangular regions with their mouse. Figure 4 shows a view
snapshots of the interface presented to the workers.

Each annotation specified by the workers was saved to a database
asynchronously to avoid refreshing the browser and causing poten-
tial loss of fidelity in workers’ interest. The machine learning al-
gorithm described in Section 4 uses this data to train a machine
learning model capable of predicting visual landmarks.

Although the purpose of collecting the training data was primarily
for training our model to predict visual landmarks, one auxiliary
conclusion of our results is that people tend to mark the same re-
gions despite their inability to communicate with one another about
the task. Figure 3 shows a visualization of all of the annotations
received for one panorama. Notice that almost all of the workers
in this case marked the fountain as being to most important visual
landmark for guiding someone else through the intersection.

Figure 3: A visualization of the set of user-annotations for one our training
panoramas (see Figure 2). Notice that almost all of the users marked the
same area, providing strong evidence that our model is trained to predict
Schelling Points [Schelling 1980].

The agreement amongst the set of non-communicating work-
ers is most directly explainable by the concept of a Schelling
Point [Schelling 1980]. A Schelling Point is a feature that two
people who have a common goal, but cannot communicate, consis-
tently choose as being important. Thomas Schelling gives the ex-
ample of two parachuters who become separated but have the same
map. Each is asked to choose a point on the map to meet; a point
they would predict the other parachuter would also choose. In his
work, Schelling showed that people tend to agree on these features
despite their inability to coordinate with one another. Similarly, our
system is effectively attempting to find the visual Schelling Points
of urban environments.

4 Building a Model for Visual Landmarks

Our approach to predicting visual landmarks in novel urban inter-
sections is to derive a machine learning model of visual importance
based on the set of user-defined annotations we gathered from our
collection system discussed in Section 3.

Given a set of regions in a set of panoramas that have been marked
as visual landmarks, we use the framework provided by Fan et
al. [2008] to train a support vector machine capable of determining
whether pixels in a novel panorama (one not included in our train-
ing) are part of a visual landmark or not. Specifically, we minimize
the function:

min
w

1

2
wTw + C

N+M∑
i=1

ζ (w;xi, yi) (1)



(a) The initial view presented to a user (b) A panned view (down and left) (c) A user-annotation of the visual landmark

Figure 4: In our online user-annotation system a user is initially (a) presented with a random view of a 360-degree panorama. The user is able to (b) pan around
the panorama and (c) mark the visual landmark with a rectangular box. The annotation is saved to a database and eventually used to train our machine learning
model.
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Figure 5: A representative set of features used as input to our machine learn-
ing algorithm. The top row are some of the levels in a Gaussian pyramid
over intensities, the middle two rows are the same levels for the chromatic-
ities, and the last row is all of the levels in a steerable pyramid for one filter
orientation.

where yi are the training labels (+1 or −1), xi are the features,
and w are the weights of the model. The explicit parameters of
this optimization are the cost function ζ, the weighting parameter
C, the number of positive examples N , and the number of negative
examples M . Additionally, solving this equation usually involves
an approximation technique introducing an error parameter ε con-
trolling the accuracy of the solution.

As with all machine learning models, the choice of which features
to extract from the input is extremely important. Although we con-
sidered many combinations of different features, ultimately we set-
tled on the same features used by Itti and Koch [Itti et al. 1998].
These include the Gaussian pyramids of the intensities and chro-
maticities of each panorama, concatenated with the responses of a
set of steerable filters over a range of spatial scales (similar in spirit
to the steerable pyramid [Simoncelli and Freeman 1995]). The in-
tensities were derived by computing the mean of the pixels in RGB
space. The chromaticities were computed by taking the ratio of
the red/green and blue/(red-green) channels of the original image.
Figure 5 shows some of these features for the top-left image in Fig-
ure 2.

5 Detection Results

The primary goal of this work is to generate a model capable of
predicting whether a pixel belongs to a visual landmark or not. We
tried many combinations of machine learning approaches, param-
eters to those approaches, and features. Documenting all of those
combinations is beyond the scope of this paper. The reader can refer
to our supplemental materials page for an exhaustive list3.

Ultimately we chose to train a linear support vector machine using
the liblinear library developed by Fan et al. [2008]. For the cost
function in Equation 1 we used the L1-regularized logistic regres-
sion form:

min
w
||w||1 + C

N+M∑
i=1

ζ (w;xi, yi)

Where,

ζ (w;xi, yi) = log(1 + exp(−yiwTxi))

We used a cost penalty (C) of 10, an error threshold (ε) of 0.01, and
a set of 4× 104 / 8× 104 positive/negative samples respectively as
parameters to the model training.

To test the performance of our generated model we generated pre-
dictions for the set of five panoramas in Figure 6. These panora-
mas were not included in our training set, however we did collect
user annotations for them as described in Section 3 for ground-truth
comparisons.

Figure 6 shows the results of our predictions. In these images,
brighter areas correspond to more likely candidates of visual land-
marks. We derive this likelihood by computing the dot product
between the extracted features in the input image and the model
weights derived during training.

In many cases our model is capable of predicting visual landmarks
consistent with humans. For instance, in the top images in Figure 7
the tall orange building and the blue wall mural are labeled as vi-
sual landmarks - consistent with the manual annotations. However,
our model is not robust enough to handle scenes where there is a lot
of occlusion and objects that may have similar statistics to visual
landmarks. The bottom images in Figure 7 demonstrate this limita-
tion. Note that the car is being labeled as the most important visual
element in this panorama rather than the brightly colored building.

3http://aether.cs.berkeley.edu/silicon/training.
results.php



Figure 6: The results of our machine learning model. The images on the left were treated as input to our prediction approach, which consists of extracting
features from the input and computing the dot product between those features and our model weights. Brighter areas in the right images correspond to more
likely visual landmarks.



Figure 7: A comparison of a success case (top) and a failure case (bottom). Notice that the model is capable of picking out buildings that colored significantly
different, except in the presence of distracting objects (cars, people, etc). We hope to remedy these shortcomings by eliminating these superfluous elements as
a pre-process.

We hope to fix these types of errors by first segmenting out transient
parts of the scene (cars, people, etc) using machine learning models
trained individually for those elements.

6 Conclusions

We have described a system for automatically predicting where vi-
sual landmarks exist in panoramic images of urban environments.
We collected user-defined visual landmarks from a small set of
panoramas using Amazon’s Mechanical Turk crowd sourcing plat-
form to train a support vector machine capable of predicting visual
landmarks in novel panoramas. Our results indicate that we can
reliably predict these landmarks in cases where the input contains
mostly buildings, but fail to do so when there are cars, people, and
significant tree coverage. We are confident that future research will
be able to avoid many of the pitfalls of the current system to create
a robust predictor.

7 Future Work

Currently our method treats all pixels in novel panoramas as be-
ing equal. We expect to gain a significant leap in prediction per-
formance by incorporating “priors” into the process. Specifically,
we plan to automatically rule out pixels where cars, people, trees,
roads, and sky are present. Additionally, our current system per-
forms its training and detection on unrectified panoramas. Project-
ing these spherical images into their respective orthographic forms
should also increase the prediction performance of our system.

Another direction of future work is to incorporate more sensing
modalities into the training and prediction phases of our system.
LiDAR has been used extensively in the community for detection
purposes and could provide us with similar benefits.
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