
Iterative Learning: Leveraging the Computer as an On-Demand Expert Artist

Armin Samii∗

University of California, Berkeley
Tim Althoff †

University of California, Berkeley

(a) Original Image (b) Brightness Adjustment (c) Exposure Adjustment (d) Contrast Adjustment

(e) Brightness Adjustment (f) Saturation Adjustment (g) Black Clipping Adjustment

Figure 1: Step-by-step suggestions are presented to show the user how to improvethe photograph.

Abstract

We develop a novel method to present a novice photographer with
expert suggestions on how to improve a selected photograph. By
modeling an expert’s artistic decision process, we are able to predict
the expert’s decisions on a new photograph. We use an Iterative
Learning Approach (ILA) in which we learn how to make a series
of simple enhancements. First, we train a collection of independent
regression models, each of which learns a single type of photograph
adjustment (e.g. change in contrast). We then train a sequence
model, which chooses the next adjustment to be made. This method
allows the novice user to reason about each of the ILA’s decisions.
We show that our method lends itself to a friendly user interface
to facilitate human understanding. Finally, we present examples
showing that our method is comparable to recent work.

CR Categories: I.3.7 [Computer Graphics]: Applications—Photo
Editing;

Keywords: Computational Photography, Machine Learning, User
Interfaces

∗e-mail:samii@eecs.berkeley.edu
†e-mail:althoff@eecs.berkeley.edu

1 Introduction

Applications such as Adobe Photoshop Lightroom1 and darktable2

provide users with many options to adjust a photograph after it is
taken. For novice photographers, these options may be cryptic and
it may be difficult to know which adjustments will improve an pho-
tograph. Even experienced photographers may have trouble decid-
ing how to adjust a photograph, similar to “writer’s block.”

One option is to explore the various available adjustments until
something acceptable is found, but this method is not efficient given
the dozens of available choices. Another is to apply preset adjust-
ments provided by the application developers, but the presets of-
fered in most applications are not content-dependent and there are
too many to efficiently explore. A preset which improves one pho-
tograph may look strange on another, even if the two photographs
are similar. Further, the presets are not ordered in any meaningful
way, so a good preset may be hard to find in the large list available.

With these problems in mind, researchers have developed auto-
matic retouching tools. However, unlike with presets, these meth-
ods manipulate the pixels directly and return a compressed image,
so the user cannot later modify the parameters without more loss of
data (“invasive editing”). Further, these methods are a “black box”
which do not provide a photographer with insight into how the final
photograph was obtained.

We solve these shortcomings with an Iterative Learning Approach
(ILA). This method presents the photographer with options to im-
prove a given photograph. We choose a meaningful type of adjust-
ment based on the image content and present the user with each
step of our decision process. This gives the user the opportunity to
learn about photograph enhancement in the process. Each adjust-
ment we make is equivalent to one adjustment available in Adobe
Lightroom, so they can intuitively reason about each decision and
replicate it. An overview of the framework is displayed in Figure2.
One example sequence is shown in Figure1.

1http://www.adobe.com/products/photoshoplightroom
2http://www.darktable.org

Input Photograph Calculate Features
Choose Adjustment Type

"Sequence Learning"
Choose Adjustment Strength

"Parameter Learning"
Apply Adjustment Show to User

Figure 2: The Iterative Learning Approach. Given an input image, we repeatedly calculate the features, determine which adjustment to
apply, and determine the strength of that adjustment. The user is shown theresult of each iteration.

We show that our results are similar to the adjustments made by
expert photographers and comparable to “black-box” approaches.

2 Related Work

Our work can be segmented into two categories: image quality
enhancement and machine learning algorithms. We present an
overview of the literature in these fields.

2.1 Image Quality Enhancement

Many quality improvement methods require multiple images
to fill in missing data, such as optimal relighting for show-
ing detail [Akers et al. 2003; Moreno-Noguer et al. 2005], display-
ing images with high dynamic range [Fattal and Lischinski 2002;
Durand and Dorsey 2002], and reducing noise in an image
[Petschnigg et al. 2004]. These methods have good results, but hav-
ing multiple images is not practical in many applications, including
ours. We also aim to subjectively improve the aesthetics of a pho-
tograph (e.g. stylizing with false vignetting), instead of only objec-
tively improving the quality of an image (e.g. noise reduction).

Berthouzozet. al. develop a method for improving both the ob-
jective quality and subjective aesthetics of an image based on user-
defined macros [Berthouzoz et al. 2011]. This method shows good
results for applying complicated styles (such as adding snow) to
a photograph. Unfortunately, each macro needs to be manually
trained by an expert artist that uses their framework. There is also
no automatic suggestion of types of macros - the user must decide
which style to apply. Although our method is not able to handle
complicated local adjustments, it requires no manual training data
from the user and automatically decides a style to apply.

Current methods for fully automatic photograph enhancement fo-
cus on obtaining a better resulting image [Bychkovsky et al. 2011;
Kang et al. 2010]. These approaches are black boxes: they do not
allow a novice photographer using the tool to understand how the
computer made its decision. Our approach arrives at a compara-
ble resulting image while showing the user intermediate decisions,
each of which can be reasoned about. Also, these methods only
attempt to learn a few of the most common or useful adjustments,
such as a tone curve adjustment and color correction. Our method
supports generic operators, such as synthetic vignetting and tone
splitting. These methods are also “invasive” in that they work on
compressed 8 bit/channel images rather than RAW formats, which
limits the amount of adjustments a user can make after obtaining
the resulting image. Our method makes adjustments without any
loss of data by maintaining a cumulative list of settings to apply
onto the RAW file, so the user can adjust these settings after we
present the ILA’s result.

Because of the lack of training data previously available, learn-
ing aesthetic adjustments was difficult. Kanget. al. ask the user
to make adjustments to a specific set of photographs to train their
model [Kang et al. 2010]. To enhance a new photograph, they per-
form a nearst-neighbor search on the image features and copy the
adjustment parameters. This is not appropriate because it does not
adapt to the content in the image.

Bychkovskyet. al recently improved upon this work by creating a

publically-available dataset containing 5000 photographs, each one
with five corresponding adjustments by experienced photographers
[Bychkovsky et al. 2011]. They are able to train a regression based
on the differences in feature-space of the input and output image
pairs. Unfortunately, the individual adjustments made by the pho-
tographers are not available, which motivates us to use our own
dataset of adjustment-history metadata stored in Adobe Lightroom.

2.2 Machine Learning

Our approach uses statistical machine learning techniques to model
the expert artist’s knowledge and experience. A model based on
n-grams [Brown et al. 1992; Chen and Goodman 1996] is used to
predict a good adjustment sequence and their parameters are esti-
mated by regression techniques.

Traditionally, sequence learning has been studied in computational
linguistics computational biology, communication theory, and data
compression. A well understood model in this context is then-
gram model [Brown et al. 1992]. In statistical natural language
processing, ann-gram is a contiguous sequence ofn items (e.g.
phonemes, syllables, letters, words) from a given sequence of text
or speech. Ann-gram model is a probabilistic language model that
can predict the next item in such a sequence based on statistical
properties ofn-grams. Mathematically, ann-gram models pre-
dicts xi based onxi−(n−1), . . . , xi−1. In probability terms, this
is P (xi|xi−(n−1), . . . , xi−1). When used for language modeling,
this is equivalent to the independence assumption that each word
depends only on the lastn − 1 words. Therefore,n-gram models
are (n − 1)-order Markov models that approximate the true under-
lying language. This assumption is important because it simplifies
the problem of learning the language model from data.

Näıve n-gram models assign a probability of zero to previ-
ously unseenn-grams. In practice, it is therefore necessary to
smooth the probability distributions by also assigning non-zero
probabilities to unseen words orn-grams. Several smoothing
methods have been developed, from simple Lidstone smoothing
[Lidstone 1920] to more sophisticated models, such as discounting
models [Good 1953; Katz 1987; Ney et al. 1994] or back-off mod-
els [Kneser and Ney 1995]. Some of these methods are equivalent
to assigning a prior distribution to the probabilities of then-grams
and using Bayesian inference to compute the resulting posteriorn-
gram probabilities [Chen and Goodman 1996].

Popular choices for regression techniques include Ordinary
Least-Squares regression (OLS) [Fu 1998], Ridge regression
[Hoerl and Kennard 1970a; Hoerl and Kennard 1970b], Lasso
[Tibshirani 1996], Elastic Net [Zou and Hastie 2005], Least
Angle regression (LARS) [Efron et al. 2004], and Gaussian
Process regression (GPR) [Williams and Rasmussen 1996;
Rasmussen 2004]. These techniques are presented in more detail
in Section5.2.

3 Training Data

Adobe Lightroom maintains the history of adjustments applied to
every photograph. Our code to extract this metadata is available

on our project website3. We make the assumption that every adjust-
ment sequence in the photographer’s Lightroom metadata improves
the image. We explain the benefits of using each adjustment instead
of only looking at the original and final image.

While learning the strength of each adjustment, we treat each step
of the history as an independent training example. This helps the
training data in three ways: ease of access, quantity, and quality.
Note that these benefits are applicable specifically toparameter
learning, not sequence learning (although it is equally easy to ob-
tain sequence learning data).

1. Easy to Obtain: Theoretically, we would be able to install
our feature extracter as a Adobe Lightroom Plugin on any ex-
pert photographer’s computer. Without any added effort on
their part, we would extract all the features we need and add
it to a master training set.

2. Quantity: We treat every photograph as an independent set
of single adjustments. A photograph with ten adjustments is
treated as ten separate photographs, each with a simple adjust-
ment to learn. The caveat here is that we have independent
models for each type of adjustment, and a single photograph
is unlikely to have a data point for each of them. Still, because
of the amount of data we can obtain, we will have sufficient
data to train each model.

3. Quality: Each of our learning algorithms model a relatively
simple function compared to only using the initial and final
image, because this function is a single adjustment instead of a
complicated sequence of adjustments. Further, the most-used
adjustments (such as exposure correction) are trained very ac-
curately because of the amount of available data available.

The dataset we use is obtained from a single photographer. There
are 2237 adjustments across 572 photographs. This means that se-
quence learning (Section5.1) contains 572 training examples, and
all of the paramater learning models combined contain 2237 train-
ing examples. More common adjustments have more training ex-
amples. For example, exposure has 544 examples, contrast adjust-
ment has 169 examples, and adding fill light had 80 examples. We
ignore adjustments with fewer than 20 examples. For now, we also
ignore any local adjustments or multi-parameter adjustments (such
as a gradient filter or cropping), though it is planned for future work.

4 Features

The ILA requires features to be recalculated at every iteration. Do-
ing so on the full-size image would severely limit the number of
features that can be efficiently calculated. We thus choose features
that can be calculated on the image thumbnail; fine-scale structure
is ignored. We calculate the following features at each iteration:

• Histograms: Experimentation has shown that the best set of
channels to include in our feature vector are the Hue and Sat-
uration channels in HSV space and the Luminosity channel in
CIE LAB space. We split these three channels into 15 bins
each.

• Clipped values: The percentage of fully overexposed and un-
derexposed pixels.

• Average luminosity: The mean luminosity value in CIE LAB
space.

• Global Contrast: The global contrast using the root mean

3http://www.artoonie.com/projects/ila/lightroom-parse.html

square contrast metric [Peli 1990]:
√

√

√

√

1

MN

N−1
∑

i=0

M−1
∑

j=0

(Iij − Ī)2

whereM andN specify the width and height of the image,
Iij is the CIE LAB luminosity of pixel(i, j), and Ī is the
average luminosity.

• Face Detection: The number of faces present and the per-
centage of the area that contains a face. These two features
theoretically should distinguish between portraits and group
shots. We use a set of Haar-like features from the OpenCV li-
brary [Bradski 2000] and sum the area of the resulting bound-
ing boxes. Note that this does not need to be recalculated at
each iteration, and thus can be calculated on the full-size im-
age.

5 Iterative Learning

In our novel approach, we model the expert artist’s knowledge and
experience using well-known techniques from statistical machine
learning. As motivated in the introduction, we want to predict a
good adjustment sequence and their parameters based on the ad-
justment history and current image features. We solve this problem
in two independent steps: first, we predict the next adjustment (se-
quence learning), and second, given this adjustment we predict the
optimal parameter for it (parameter learning).

5.1 Sequence Learning

Intuitively, we are predicting the next adjustment by looking at past
adjustments and the current content of the photograph. For exam-
ple, based on the experience gained from the expert artist (that we
reflect in our model) we would usually change contrast after ad-
justing exposure, but given that a particular photograph already has
high contrast we may want to add a increase saturation instead.

Much like previous work usedn-gram models for language mod-
eling, i.e. how sentences are modeled by sequences of words, we
use them to learn the “language” of expert artists, i.e. how styles
are modeled by sequences of photographic adjustments. To do this,
it is necessary to extend the (n− 1)-order Markov model to satisfy
our requirements. If we compute ann-gram model based on a cor-
pus provided by an expert artist, we would always suggest the same
adjustments for the photograph, irrespective of its content.

However, we want to take the content of the photograph into ac-
count, e.g. decreasing exposure for an overexposed photographbut
increasing contrast for a correctly exposed but low-contrast pho-
tograph. For these reasons, we developed a novel model that in-
clude the current image features of the photograph. We call this a
feature-augmentedn-gram model. Graphically, the model is speci-
fied in Figure3, whereA1, . . . , AN is the adjustment sequence and
F1, . . . , FN are the image features. In this notation, eachFi is the
image feature vector before applying adjustmentAi. The presented
model is based on a bigram model (i.e. a first-order Markov model).
However, the following derivation can easily be adapted to higher
order models as indicated by the dashed arrows in Figure3.

5.1.1 Mathematical Derivation

Note that Figure3 is a completely observed graphical model with
the factorization

p({Ai}, {Fi}) = p(A1) ·
N
∏

i=2

p(Ai|Ai−1) ·
N
∏

i=1

p(Fi|Ai)

A1 A2 A3

F1 F2

...

F3

AN

FN

Figure 3: Graphical model for sequence learning, where
A1, . . . , AN is the adjustment sequence andF1, . . . , FN are the
image features. The solid arrows describe the first-order Markov
model (based on bigram model) and including the dashed arrow
leads to a second-order Markov model (based on trigram model).

where multinomial random variablesAi are the adjustments, con-
tinuous random variablesFi are the image features, andAk

i are
indicator variables capturing the state of the multinomial random
variable (Ak

i = 1 if Ai = k andAk
i = 0 otherwise). We use the

following definition for our parameters:

p(A1 = k) , πk =

K
∏

k=1

π
Ak

1

k

p(Ai = k|Ai−1 = l) , akl =

K
∏

k=1

K
∏

l=1

a
Ak

i
Al

i−1

kl

p(Fi|Ai = k) , N (Fi;µk,Σk) =

K
∏

k=1

N (Fi;µk,Σk)
Ak

i

where
∑

k πk = 1,
∑

k akl = 1, andN (µk,Σk) is a multivariate
Gaussian density with parametersµk andΣk. Now, we can write
our factorization above as

K
∏

k=1

π
Ak

1

k ·
N
∏

i=2

K
∏

k=1

K
∏

l=1

a
Ak

i
Al

i−1

kl ·
N
∏

i=1

K
∏

k=1

N (Fi;µk,Σk)
Ak

i .

Let us assume we haveS iid samples({Ais}, {Fis} for i =
1, . . . , N ands = 1, . . . , S). Then the loglikelihood of our data
is

l(D) = log p({A1s}, . . . , {Ans
}, {F1s}, . . . , {Fns

})

=

S
∑

s=1

log p({Ais}, {Fis})

=

S
∑

s=1

[

K
∑

k=1

A
k
1 log πk +

N
∑

i=2

K
∑

k=1

K
∑

l=1

A
k
i A

l
i−1 log akl

+

N
∑

i=1

K
∑

k=1

A
k
i logN (Fi;µk,Σk)

]

In this form, the Maximum Likelihood estimates can be obtained
by

π
∗
k =

∑S

s=1 A
k
1s

∑K

k=1

∑S

s=1 A
k
1s

a
∗
kl =

∑N

i=2

∑S

s=1 A
k
isA

l
i−1s

∑K

k=1

∑N

i=2

∑S

s=1 A
k
is
Al

i−1s

µ
∗
k =

∑N

i=1

∑S

s=1 A
k
isFis

∑N

i=1

∑S

s=1 A
k
is

Σ∗
k =

∑N

i=1

∑S

s=1 A
k
is(Fis − µ∗

k)(Fis − µ∗
k)

T

∑N

i=1

∑S

s=1 A
k
is

.

If we take a closer look ata∗
kl, we can see how they relate to the

concept ofn-grams (withn = 2 in this case):

a
∗
kl =

∑N

i=2

∑S

s=1 A
k
isA

l
i−1s

∑K

k=1

∑N

i=2

∑S

s=1 A
k
is
Al

i−1s

=
#(Ai = k ∧Ai−1 = l)

#(Ai−1 = l)

= p̂(Ai = k|Ai−1 = l)

which is the empirical probability of then-gram model based on
n-gram counts. Note that the presented derivation can easily be
adapted to higher ordern-gram models, as well as adapted to emis-
sion probabilitiesp(Fi|Ai = k) that are not Gaussian but, for ex-
ample, mixtures of Gaussians. However, in practice one needs to be
careful with more complex models if the amount of data provided
is comparably small because of overfitting. The performance of the
presented model is evaluated in Section7.1.

5.2 Parameter Learning

We want to predict the optimal parameter for a given adjustment
based on image features (e.g. the amount by which we want to in-
crease exposure). Mathematically, this is a simple regression prob-
lem for which regression techniques like Ordinary Least-Squares
regression (OLS) can be used. However, based on the features
described in Section4, for each adjustment, only a subset of our
features is correlated with the adjustment strength. For example,
to find the right exposure it could suffice to only look at the lu-
minosity histogram whereas for changing vibrance, the color his-
togram would be important instead. For this reason, we use regres-
sion methods that, in addition to fitting a reasonable linear model,
assume some sparsity of the parameter vectorβ. Here, sparsity
refers to a lot of components being small or even zero which cor-
respond to the feature selection task we described above. In the
following, we go into more detail of the regression task at hand
and describe techniques that lead to sparse linear models. We also
explored non-linear models such as neural networks, Gaussian pro-
cess regression, and support vector regression. In our experiments,
while being computationally more expensive, we did not observer
any improvement in performance.

5.2.1 Relevant Regression Techniques

Mathematically, our parametere learning task is a simple regression
problem where the dependent variabley is the parameter that we
are predicting (the response) andxi = (xi1, . . . , xip), i = 1, . . . , n
are thep-dimensional feature vectors. In linear regression, data are
modeled using linear functions, and unknown model parameters are
estimated from the data. In particular, the linear regression problem
can be written asy = Xβ + ǫ, where y is ann-vector of random
responses, X ann×p design matrix containing then stacked feature
vectors,β ap-vector of parameters or weights, andǫ ann-vector of
iid random error [Fu 1998].

Ordinary Least-Squares regression (OLS) minimizes the Resid-
ual Sum of Squares (RSS) between the observed responses in the
dataset, and the responses predicted by the linear approximation

β̂ = min
β

‖y −Xβ‖22

which yields an unbiased estimator

β̂ = (X ′
X)−1

X
′
y.

Figure 4: The current interface. As the user moves the slider to the right, successive iterations are displayed. The text above the slider
describes the adjustment that brought the user from the previous state to the one shown.

one key assumption is that the design matrixX must have
full column rank p. For this property to hold it is nec-
essary (but not sufficient) thatn > p. If this condi-
tion fails this is called the multicollinearity in the regres-
sors. Methods for fitting linear models with multicollinearity
have been developed [Tibshirani 1996; Hoerl and Kennard 1970a;
Efron et al. 2004; Zou and Hastie 2005] based on additional as-
sumptions such as sparsity of the parameter vector. De-
tailed discussions can be found in [Hoerl and Kennard 1970a;
Hoerl and Kennard 1970b]. We use these techniques because we
expect the adjustment parameter to depend only on a small subset
of features such that sparsity constraints should help in finding the
right paramaters. The rest of this section presents some of these
techniques in more detail.

ridge regression [Hoerl and Kennard 1970a] imposes a penalty on
the size of coefficients, i.e. the ridge coefficients minimize a penal-
ized residual sum of squares:

β̂ = min
β

‖y −Xβ‖22 + α‖β‖22.

here, α is a complexity parameter that controls theL2-
regularization. The larger the value ofα the greater the amount
of “shrinkage” and thus the coefficients become more robust to
collinearity.

the Lasso is a linear model that estimates sparse coefficients
[Tibshirani 1996]. It is useful in some contexts due to its tendency
to prefer solutions with fewer parameter values, effectively reduc-
ing the number of variables upon which the given solution is de-
pendent. Mathematically, it minimizes the residual sum of squares
with L1-regularization:

β̂ = min
β

‖y −Xβ‖22 + α‖β‖1

with α controlling the amount of regularization again.

although the Lasso has shown success in many situations, it has
been empirically observed that the prediction performance of the
Lasso is dominated by ridge regression if there are high correlations
between predictors [Tibshirani 1996]. Therefore, the Elastic Net
combines theL2 penalty of ridge regression with theL1 penalty
of the Lasso that essentially does variable selection and produces

sparse represenations [Zou and Hastie 2005]. The objective func-
tion for the Elastic Net is:

β̂ = min
β

‖y −Xβ‖22 + α‖β‖22 + γ‖β‖1.

least Angle Regression (LARS) [Efron et al. 2004] is a forward se-
lection algorithm or a “forward stepwise regression”. It was shown
that a simple modification of this variant of linear regression imple-
ments the Lasso in a very efficient way.

we also explored Gaussian Process Regression (GPR)
[Williams and Rasmussen 1996; Rasmussen 2004] which is a
powerful but computationally more expensive method where
the prediction interpolates the observations, and the prediction
is probabilistic (Gaussian) so that one can compute empirical
confidence intervals that can be used to refit the prediction in
regions of interest.

related work uses a subset of these regression techniques,
namely OLS, Lasso, GPR, and LARS [Bychkovsky et al. 2011;
Berthouzoz et al. 2011]. We compare the prediction performance
of the presented regression techniques in Section7.2.

6 User Interface

Our goal is to create an interface that allows the user to “ask an
expert” for advice. Since our machine learning models have been
trained on data extracted from expert photographer’s Adobe Light-
room image metadata, showing the decisions of our algorithm mod-
els what an expert would advise. Although it is not our goal, this
approach also allows a user to accept the ILA’s final result without
viewing the history. Further, it allows users to explore various ad-
justment options for creative inspiration, similar to Design Galleries
[Marks et al. 1997]. This allows our approach to be used as both an
automatic retouching tool and a tool to aid the creative process.

Current interface Through our interface (Figure4), a novice
photographer can get assistance manipulating an image by asking
our trained model of an expert artist for help. Our current inter-
face allows users to view the adjustments made at each iteration.
The user can select an image and view the adjustment made at each
timestep. If the result is acceptable, the user can apply the same
adjustment in Lightroom.

Figure 5: The planned interface. The History window shows the series of adjustmentsin chronological order, from bottom to top. After the
user chooses to get suggestions from the ILA (shown with a blue background in the History window), a series of new adjustments will be
displayed (typeset in blue). The user can then click through each adjustment to see what was changed, or accept the final result and ignore
the intermediate steps.

Planned interface Although the current interface successfully
shows the user each decision of the ILA, it does not integrate well
with a photographer’s workflow. In light of this, we propose an in-
terface with the same benefits but also integrated with Adobe Light-
room (see Figure5). This interface will display suggested adjust-
ments in the History window of Adobe Lightroom. When the user
selects an option to get suggestions from the ILA, a series of sug-
gested adjustments is displayed. From there, the user can see how
each iteration affects the image.

7 Results

In this section, we present an evaluation of the proposed iterative
learning approach. We provide empirical results for sequence and
parameter learning as well as qualitative results. Because Light-
room does not have an interface for using their adjustments, and
they do not advertise the algorithms they use for each type of adjust-
ment, we have implemented our best approximation of them. Since
they are not equivalent to Lightroom’s adjustment, our feature vec-
tors are not fully accurate. For example, the image we generate after
the adjustment ”Exposure +1” is different than the one Lightroom
generates, so the feature vector is slightly different. Therefore, until
we can use the same algorithm that Lightroom uses, our results on
real-world data are accompanied with proof-of-concept results on
synthetic datasets.

7.1 Sequence Learning

To evaluate sequence learning, we used several adjustment se-
quencesA1, . . . , AN from an expert artist and tried to predict the
next adjustment given previous adjustment steps and current image
features. Note that the adjustments do not always have to be in the
same order as given by ground truth to produce good results. If
we predict an adjustment̂Ai but the artist did another adjustment
Ai 6= Âi then we still countÂi as a true positives if the artist ap-
plied this adjustment at some later point in his adjustment sequence
Ai+1, . . . , AN . Under this constraint, we measure the prediction
accuracy for varying “lookahead”l (i.e. looking whetherÂi ap-

pears inAi, . . . , Ai+l). Formally, we define accuracy as:

ACC(l) =
1

N

N
∑

i=1

⌊Âi ∈ {Ai, . . . , Ai+l}⌋

Under this definition,ACC(0) corresponds to the fraction of pre-
dictions that are correctly made at the same point in the sequence
as in the ground truth.

7.1.1 Proof of Concept

To evaluate our feature-augmentedn-gram model as well, we cre-
ated an synthetic dataset containing 1000 adjustment sequences
(750 for training, 250 for testing) using the scitkit-learn package
for machine learning [Pedregosa et al. 2011]. We tried to replicate
properties that we expect from our real dataset, i.e. we have 20
different adjustment possibilities and 20-dimensional features that
are modelled by “overlapping” multivariate Gaussians with a large
standard deviations (we assume a very cluttered feature space). The
adjustment sequences themselves were sampled from a first-order
Markov model with random transition parameters. In this case,
we compare our proposed feature-augmentedn-gram model (for
n = 2, 3 to different baselines, i.e. only using features to pre-
dict the next adjustment, using only then-gram models (without
feature-dependence), and a random baseline as before. We compare
these methods for different lookaheads by averaging the accuracy
metric defined above over the 250 adjustment sequences for test-
ing. The other 750 sequences were used to estimate the parameters
described in Section5.1.

The results for this dataset are shown in Figure6. Our proposed
model outperforms all baselines showing that it can be beneficial
to predict the next adjustment based on the adjustment history as
well as current image features. Given that this evaluation was per-
formed on synthetic data, although the results look very promising,
it does not readily prove a good performance of our model on the
real world dataset.

0 1 2 3 4 5 6 7
Lookahead

0.0

0.1

0.2

0.3

0.4

0.5
A
cc
u
ra
cy

Sequence Learning

bigram+feat
trigram+feat
feature only
bigram
trigram
random

Figure 6: Proof of concept for our feature-augmentedn-gram
model. Our proposed model outperforms all baselines: only us-
ing features to predict the next adjustment, using only then-gram
models (without feature-dependence), and a random baseline.

0 2 4 6 8
Lookahead

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc
u
ra
cy

Sequence Learning

bigram
trigram
fourgram
only exposure
random

Figure 7: Results for sequence learning on the real-world dataset.
The bi- and trigram model consistently outperform the “always ex-
posure” baseline as well as the random baseline.

7.1.2 Real-world Data

Our real-world dataset contrains 270 adjustment sequences for
training and 100 sequences for testing. We compare our non-
feature-dependentn-gram models to two baselines, one always pre-
dicting exposure adjustments (because this was the most common
adjustment in our dataset), and another one doing random predic-
tions (uniformly over all possible adjustments. The results can be
found in Figure7. The bestn-gram model (forn = 2) consistently
outperforms the exposure-baseline as well as the random baseline.
For a lookahead of zero, the difference is about 16% accuracy.

7.2 Parameter Learning

We evaluated parameter learning using two common metrics in re-
gression analysis, the mean squared error (MSE) and the coefficient

of determinationr2 [Menard 2000]. MSE represents the amount
by which the predicted values differ from the quantities being esti-
mated. Formally, it is the value of the squared deviations of the pre-
dictions ŷi from the true valuesyi (usually over an out-of-sample
test space):

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2
.

In the case of linear regression, the coefficient of determinationr2

is the square of the sample correlation coefficient between the out-
comes and their predicted values. Also, its value can be seen as
the amount of variance explained by the data. Let againyi be the
values to be predicted,̄y = 1

n

∑n

i=1 yi their sample mean, and̂yi
the modelled or predicted values. Then, the coefficient of determi-
nation is defined by:

SStot =
∑

i

(yi − ȳ)2,

SSerr =
∑

i

(yi − ŷi)
2
,

r
2 = 1−

SSerr

SStot

,

whereSStot is the total sum of squares (proportional to the sample
variance), andSSerr the residual sum of squares.

7.2.1 Proof of Concept

To prove the concept of sparse linear models for regression, we cre-
ated and evaluated on an synthetic dataset that has higher dimen-
sionality than our current features but a and a low effective rank
(as motivated in Section5.2). We used the scitkit-learn package
for machine learning [Pedregosa et al. 2011] to create a synthetic
dataset that resembles some of the properties we expect our data
to have. The dataset has 200 samples and 200 features. However,
the effective rank (the approximate number of singular vectors re-
quired to explain most of the input data by linear combinations) is
only 20. This sparsity makes sense because we expect that for any
given adjustment, the adjustment strength only depends on a small
subset of features. Furthermore, we applied Gaussian noise with a
standard deviation of 3 to the output to create a more challenging re-
gression problem. The results from comparing all presented regres-
sion techniques on this dataset can be found in Figure8. Clearly,
methods that enforce sparsity on the parameter vectorβ, like Lasso
(L1-penalty) outperform the rest. We expect these methods to work
even better on the real world data once we are able to transform the
image using Adobe Lighroom’s adjustments (as noted in the begin-
ning of this section).

7.2.2 Real-world data

The results on the real-world dataset are shown in Figure9. Ob-
serve that all regression techniques perform similarly. The tech-
niques involving a regularization of the parameter vectorβ do not
have an advantage here because the feature dimension is rather
small (51). Because we plan to use a lot more features in the future,
we expect the regression techniques creating sparse linear models
to eventually outperform simpler techniques on real-world datasets
as well.

7.3 Qualitative results

Figure10 shows successful example outputs of our method. Each
of the examples displayed are chosen for illustration purposes from
a sequence of five to fifteen adjustments. The first image (Fig-
ures10(a)-10(c)) slowly increases contrast and decreases exposure,

linear ridge ridgeCV lasso lassoCV lars larsCV elasticnet elasticnetCV gpr

Regression techniques

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r^
2

Parameter Learning

(a) r2 error on the synthetic regression dataset

linear ridge ridgeCV lasso lassoCV lars larsCV elasticnet elasticnetCV gpr

Regression techniques

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
S
E

Parameter Learning

(b) Mean squared error (MSE) on the synthetic regression dataset

Figure 8: Proof of concept for our sparse regression techniques
on synthetic data. The suffix “CV” indicates that the respective
parameter was selected using cross validation. Clearly, methods
that enforce sparsity on the parameter vectorβ, like Lasso (L1-
penalty) outperform the rest.

along with other minor adjustments in between. The second image
(Figures10(d)-10(f)) iterates several times, slowly decreasing ex-
posure and brightness, before adjusting the black level clipping and
saturation, which greatly improves the aesthetics.

Figure11 shows some failure cases for our system. Both images
have lost data through either clipped highlights or clipped shadows.
The first image (Figures11(a)-11(c)) oscillates between the original
image and a faded image. Each iteration attempts to fix the mistakes
of the previous, but is unable to, and thus our system loops through
the same set of adjustments. The second image is overexposed in
most of the image, so our system attempts to correct this by ad-
justing the exposure. However, this only affects the region of the
image with detail, and thus each iteration removes more detail from
the bridge until it has fully deteriorated. We expect that supporting
local edits will alleviate this problem (see Section8).

Furthermore, sometimes underexposed photographs are intention-
ally dark, such as as in low-key photography. We plan to identify
these photographs by unsupervised style modeling as described in
Section8.

We believe these failure cases occur because the training data is un-
familiar with the adjustments that would be needed for these photos.
Further analysis showed that the quality of photos in the training
corpus provided by the expert photographer was generelly much
better than these example images. We expect that a larger training
corpus will at least partially remedy this problem.

linear ridge ridgeCV lasso lassoCV lars larsCV elasticnet elasticnetCV gpr

Regression techniques

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r^
2

Parameter Learning

(a) r2 error on the real-world regression dataset

linear ridge ridgeCV lasso lassoCV lars larsCV elasticnet elasticnetCV gpr

Regression techniques

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
S
E

Parameter Learning

(b) Mean squared error (MSE) on the real-world regression dataset

Figure 9: Results on our regression dataset. The suffix “CV” indi-
cates that the respective parameter was selected using cross valida-
tion. One can observe that all regression techniques perform about
the same. The techniques involving a regularization of the param-
eter vectorβ do not have an advantage here because the feature
dimension is rather small (51).

8 Future Work

We have just touched the surface in the field of Iterative Learning.
There are many potential directions that this research can go. We
present some of these below.

Style Modeling Through Clustering We need a way to group
entire sequences together so that a training example that applies one
style (such as black-and-white) does not mix with one that applies
a different style (such as highly-saturated). Our current method
treats all sequences of adjustments the same, and thus averages to-
gether the various styles. This often leads to errors such as iter-
atively lowering saturation to near-grayscale, and a few iterations
later, increasing it to normal. One method is to take the difference in
feature-space between the original and final images in the training
set. This will result in a difference-feature-vector which describes
how the image was modified overall. We would then cluster data
points in this difference-feature-space, and would train independent
models on each cluster.

Cleaning Training Data The above clustering approach assumes
that each iteration in the training data has the same style in mind,
and each step gets closer to the final product. This is not the case
in real data. To partially remedy this, we would have to remove any
“loops” in the training data. A loop is a sequence of adjustments,
A1, ..., AN , such that the feature vector before applying adjustment
A1 is similar to the feature vector after applyingAN . Applying this
loop does not get us any closer to the desired result.

(a) Original Image (b) Intermediate Result (c) Final Result

(d) Original Image (e) Intermediate Result (f) Final Result

Figure 10: Some example results of our method. The first photograph in each row isthe input. The second photograph is an intermediate
result. The third is the final result. In our proposed Iterative Learning approach we keep adjusting the photograph until it the user is pleased
with the final result. The first image shows a progressive increase in quality. The second image changes very slightly at first (notice the
decreased exposure in the clouds), but the last several steps greatlyincrease the quality. See Section7.3for a discussion.

(a) Original Image (b) Intermediate Result (c) Final Result

(d) Original Image (e) Intermediate Result (f) Final Result

Figure 11: Some examplefailure cases of our method. Notice in the first image, our method slowly increases the brightness until the
photograph is washed out. In the second image, the brightness is decreased such that the bridge immediately deteriorates and remains in that
state. We show a border around the second image to illustrate the amount offully saturated pixels. See Section7.3for a discussion.

Personalization by Adapting Style Priors to User Preferences
Because aesthetics are very subjective, we need a way of taking into
account an individual user’s personal preferences. This shouldbe
more straightforward than the complicated approaches recently pro-
posed [Bychkovsky et al. 2011; Yeh et al. 2010] because we have
access to the user’s Lightroom data as well. We can leverage this
data by weighting each cluster (mentioned above) by the styles the
user has applied in the past. This approach requires no extra effort
for the user, unlike the other methods. It should also possible to per-
sonalize the parameter and sequence models that were described in
Section5.

Features Our feature vector is missing local data. By segmenting
the foreground and background, we can extract more useful fea-
tures. For example, we currently calculate global contrast on the
entire image, but if the background is artistically out of focus, this
feature is averaged between a sharp foreground and blurry back-
ground. Treating the two areas of the image separately alleviates
this problem. We can also leverage the photograph metadata such
as shutter speed, ISO, and f-stop. In general, more features will be
useful, especially because each regression model selects the most
useful features for the type of adjustment it is modeling.

Lightroom Connection We are currently using our own imple-
mentations of the Lightroom adjustments. They are similar but not
equivalent to Lightroom’s own implementation (which they do not
specify). This makes our training data noisy: we read the Light-
room adjustment history and apply each successive transformation
onto the original image, and use that to calculate the feature vector.
Further, having everything cleanly inside of Lightroom will greatly
simplify the interface, as described in Section6 and shown in Fig-
ure5.

Terminating Condition Currently, our algorithm asks the user
when to stop iterating. Our system would be more robust if we
could automatically decide when to terminate, and allow the user
to ask the iteration to continue. One method would be to determine
when there is little change between adjustments, or if the adjust-
ments oscillate (e.g. increase in brightness, followed by an equiva-
lent decrease in brightness).

Local Adjustments Many photographers apply adjustments only
to specific parts of the image, such as skin or sky. To model this, we
should be able to identify the region on which a local adjustment is
made. We can then decide whether to make a local adjustment (and
which type of local edit) or a global adjustment during another step
of Sequence Learning.

Results Comparison To prove that our results are comparable to
recent work, we will need a formal comparison of our application’s
final output. We plan to do this with a crowdsourced rating system,
where participants rank our output compared to other methods. We
also plan to evaluate the usefulness of the ILA to a novice photog-
rapher by conducting a controlled user study.

Applying to other datasets Iterative Learning will be applicable
to many more datasets if we are able to incorporate the time domain.
As an example, for videos, each iteration would need to also predict
the frames on which to apply the adjustment.

9 Conclusion

We have presented a method to train a model of an expert artist.
Through a combination of a sequence learning model and a set of
parameter learning models, we are able to present a user with a step-
by-step demonstration of how to improve an image. Our dataset is
easy to gather and robust against noise. Learning the underlying
model is easier using our dataset as opposed to datasets containing
only input/output image pairs. We show promising results using
only a very limited amount of training data, and describe a user
interface that facilitates a efficient and educational workflow for
novice photographers using Adobe Lightroom.

Acknowledgements

We would like to thank Igor Proskurin for his work on connecting
this application to Adobe Lightroom and Jennifer Gross for collect-
ing test data.

References

AKERS, D., LOSASSO, F., KLINGNER, J., AGRAWALA , M.,
RICK , J., AND HANRAHAN , P. 2003. Conveying shape and
features with image-based relighting.IEEE Transactions on Ul-
trasonics, Ferroelectrics and Frequency Control, 349–354.

BERTHOUZOZ, F., LI , W., DONTCHEVA, M., AND AGRAWALA ,
M. 2011. A framework for content-adaptive photo manipulation
macros: Application to face, landscape, and global manipula-
tions. ACM Transactions on Graphics (TOG) 30, 5, 120.

BRADSKI, G. 2000. The OpenCV Library.Dr. Dobb’s Journal of
Software Tools.

BROWN, P., DESOUZA, P., MERCER, R., PIETRA, V., AND LAI ,
J. 1992. Class-based n-gram models of natural language.Com-
putational linguistics 18, 4, 467–479.

BYCHKOVSKY, V., PARIS, S., CHAN , E., AND DURAND, F.
2011. Learning Photographic Global Tonal Adjustment with a
Database of Input / Output Image Pairs.IEEE Computer Vision
and Pattern Recognition (CVPR).

CHEN, S., AND GOODMAN, J. 1996. An empirical study of
smoothing techniques for language modeling. InProceedings of
the 34th annual meeting on Association for Computational Lin-
guistics, Association for Computational Linguistics, 310–318.

DURAND, F., AND DORSEY, J. 2002. Fast bilateral filtering for
the display of high-dynamic-range images.ACM Transactions
on Graphics.

EFRON, B., HASTIE, T., JOHNSTONE, I., AND TIBSHIRANI , R.
2004. Least angle regression.The Annals of statistics 32, 2,
407–499.

FATTAL , R., AND L ISCHINSKI, D. 2002. Gradient domain high
dynamic range compression.ACM Transactions on Graphics.

FU, W. 1998. Penalized regressions: the bridge versus the lasso.
Journal of computational and graphical statistics, 397–416.

GOOD, I. 1953. The population frequencies of species and the
estimation of population parameters.Biometrika 40, 3-4, 237–
264.

HOERL, A., AND KENNARD, R. 1970. Ridge regression: applica-
tions to nonorthogonal problems.Technometrics, 69–82.

HOERL, A., AND KENNARD, R. 1970. Ridge regression: Biased
estimation for nonorthogonal problems.Technometrics, 55–67.

KANG, S. B., ASHISH, K., AND DANI , K. 2010. Personalization
of Image Enhancement.CVPR, 1799–1806.

KATZ , S. 1987. Estimation of probabilities from sparse data for the
language model component of a speech recognizer.Acoustics,
Speech and Signal Processing, IEEE Transactions on 35, 3, 400–
401.

KNESER, R., AND NEY, H. 1995. Improved backing-off for m-
gram language modeling. InAcoustics, Speech, and Signal Pro-
cessing, 1995. ICASSP-95., 1995 International Conference on,
vol. 1, IEEE, 181–184.

L IDSTONE, G. 1920. Note on the general case of the bayes-laplace
formula for inductive or a posteriori probabilities.Transactions
of the Faculty of Actuaries 8, 182-192, 13.

MARKS, J., ANDALMAN , B., AND BEARDSLEY, P. 1997. Design
galleries: A general approach to setting parameters for computer
graphics and animation.on Computer graphics, 389–400.

MENARD, S. 2000. Coefficients of determination for multiple
logistic regression analysis.American Statistician, 17–24.

MORENO-NOGUER, F., NAYAR , S. K., AND BELHUMEUR, P. N.
2005. Optimal illumination for image and video relighting.ACM
SIGGRAPH 2005 Sketches on - SIGGRAPH ’05, 75.

NEY, H., ESSEN, U., AND KNESER, R. 1994. On structuring prob-
abilistic dependences in stochastic language modelling.Com-
puter Speech and Language 8, 1, 1–38.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., M ICHEL,
V., THIRION, B., GRISEL, O., BLONDEL, M., PRETTEN-
HOFER, P., WEISS, R., DUBOURG, V., VANDERPLAS, J., PAS-
SOS, A., COURNAPEAU, D., BRUCHER, M., PERROT, M.,
AND E., D. 2011. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research 12, 2825–2830.

PELI , E. 1990. Contrast in complex images.J. Opt. Soc. Am. A 7,
10 (Oct), 2032–2040.

PETSCHNIGG, G., SZELISKI , R., AGRAWALA , M., COHEN, M.,
HOPPE, H., AND TOYAMA , K. 2004. Digital photography with
flash and no-flash image pairs.ACM Transactions on Graphics
23, 3 (Aug.), 664.

RASMUSSEN, C. 2004. Gaussian processes in machine learning.
Advanced Lectures on Machine Learning, 63–71.

TIBSHIRANI , R. 1996. Regression shrinkage and selection via the
lasso.Journal of the Royal Statistical Society. Series B (Method-
ological), 267–288.

WILLIAMS , C., AND RASMUSSEN, C. 1996. Gaussian processes
for regression.

YEH, C. H., HO, Y. C., BARSKY, B. A., AND OUHYOUNG, M.
2010. Personalized photograph ranking and selection system.
ACM, Firenze, Italy, MM ’10, 211–220.

ZOU, H., AND HASTIE, T. 2005. Regularization and variable
selection via the elastic net.Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology) 67, 2, 301–320.

