Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination

S.K.Nayar, G.Krishnan, M.D.Grossberg, R.Raskar SIGGRAPH 2006

> Presented by Vasily Volkov UC Berkeley CS294-69

The problem: separate direct illumination

Idea: cancel it using a small occluder

Canceling direct illumination

Stick

Stick Shadow

No direct illumination inside shadow About same global illumination (but dimmer) Locally extracted global illumination

Move shadow around, collect images

Global illumination for entire image Composite of many shadow images

Get direct illumination by subtraction

Direct illumination = total – global illumination

The shadow must be small enough

C: subsurface scattering in marbleD: subsurface scattering in waxF: diffuse scattering in diluted milk

Big but high frequency shadow is also OK

mesh

projector pattern

Key insight: global illumination is usually diffusive Thus, any high-frequency shadow doesn't change it Except it loses intensity by some factor

Only 25 images required for entire capture

Take min, max per pixel. Min=global illumination, max = total illumination

Example

Mesh Shadow

direct illumination

Separation using a single image Instead of collecting images, use pixel windows Take min or max in a window around pixel Lose resolution, but OK in input is very high-res

direct, 4x4 window

More examples

original

direct illumination

More examples

direct illumination

Application: new images

original

amplified global component

original

altered global component hue $_{14}$

Application: shape from image

original image

direct illumination

Improved accuracy

Limitation: non-diffusive surfaces

scene

global illumination

If surfaces are non-diffusive, even highfrequency shadows compromise global illumination

Do finer splitting?

- Direct illumination = 1-bounce
- Global illumination = n-bounce, n >= 2. (Split?)

A Theory of Inverse Light Transport S.M. Seitz, Y. Matsushita, and K. Kutulakos *CVPR 2005*

Presented by Vasily Volkov UC Berkeley CS294-69

Rendering equation

Use direct illumination, not emission

Discrete rendering equation

$$\boldsymbol{l} = \boldsymbol{l}_1 + A \boldsymbol{l}$$

- *l* given discrete 4D light field (vector)
- A given discrete interreflection operator (matrix)

Solve for direct light l_1 :

$$\boldsymbol{l}_1 = \boldsymbol{l} - A\boldsymbol{l} = (I - A)\boldsymbol{l}$$

interreflection cancellation operator C_1

N-bounce light fields

Solving
$$l = l_1 + Al$$
 for l we have
 $l = (l - A)^{-1} l_1$
 $= l_1 + Al_1 + A^2 l_1 + A^3 l_1 + \cdots$
 l_2 l_3 l_4

Where $l_n \equiv A^{n-1}l_1$ is *n*-bounce light field, i.e. light that bounced *n* times off surfaces.

Since $\boldsymbol{l}_1 = (I - A)\boldsymbol{l}$, we have:

$$\boldsymbol{l}_n = A^{n-1}(I-A)\boldsymbol{l} \equiv C_n\boldsymbol{l}$$

From 4D light field to 2D illumination field

Using 4D light field *l* (≈lumigraph) is costly

Assume Lambertian reflection!

- Same radiance in all directions reduces problem to 2D
- Much less expensive, but approximate

2D radiance – can capture using a single image

- Must ensure all scene points are visible
- Otherwise, bounces off occluded points are not counted

Capturing 2D illumination field

scene and sample points

captured image *l*

$\textbf{Capturing matrix}\,A$

Where to get A? Get it from $\boldsymbol{l}_1 = (I - A)\boldsymbol{l}$

Capture many independent light fields $t_1, t_2, ...$ Build square matrix $T = [t_1, t_2, ..., t_m]$ Now, $T_1 = (I - A)T$ and $I - A = T_1T^{-1}$

How to get T_1 ? (Capture?) Here is a workaround:

- Note that I A has 1s on the diagonal
- Use impulse illumination to get diagonal T_1

Impulse illumination using laser

Highlight single pixel – direct light is zero elsewhere

Dealing with T_1

Why I - A has 1s on the diagonal?

- A is interreflection matrix
- Point x doesn't reflect light from x
- So, A has 0 on diagonal and $I A = T_1 T^{-1}$ has 1s

Since T_1 is diagonal, T_1T^{-1} is row-scaling of T^{-1}

• Since T_1T^{-1} has 1s on diagonal, this defines I - A

Results

Results

Summary

- If we know both the lightfield and the interreflection operator, we can compute all N-bounce light fields
- If scene is Lambertian, the lightfield can be described with a single image – it is sufficient to compute all N-bounce light fields
- 3. They use explicit interreflection operator prohibitive cost unless using low resolution

Optical Computing for Fast Light Transport Analysis

M. O'Tool and K. Kutulakos

SIGGRAPH Asia 2010

Presented by Vasily Volkov UC Berkeley CS294-69

Problem statement

Scene is lit using light lScene's photo is read as pLinear connection: p = Tl

Relighting:

• Given projector light *l*, estimate resulting image *p*

Inverse light transport:

• Given image *p*, find what light *l* produces it

The approach

The *transport matrix T* can be very large

• Capturing it explicitly has prohibiting cost

Solution: capture a low-rank approximation

- E.g. rank-10: $T \approx p_1 l_1^T + p_2 l_2^T + \dots + p_{10} l_{10}^T$
- Inexpensive and might be accurate enough

Products $p_1 l_1^T$, ... are never computed explicitly

• Instead, use $T l \approx p_1(l_1^T l) + \dots + p_{10}(l_{10}^T l)$

Closer look into low-rank approximations

Take an arbitrary matrix A, e.g. this one:

matrix columns

matrix rows

Matrix entries a_{ij} are shown as color intensities (These are 3 independent matrices for R,G,B)

Rank-1 approximation

matrix A

rank-1 approximation $A \approx l_1 r_1^T$

vector \boldsymbol{l}_1^T

Higher rank = better approximation

rank-5

rank-10

Rank-5 approximation: $A \approx l_1 r_1^T + l_2 r_2^T \dots + l_5 r_5^T$
Stop when accuracy is sufficient

rank-25

rank-50

How to compute it? These were done using SVD:

• Most accurate, but requires explicit matrix

Efficient solution: Krylov methods

- Take random vector r_1
- Compute $[r_1, Ar_1, A^2r_1, ..., A^{k-1}r_1]$
- Orthonormalize them these are [*r*₁, *r*₂, ..., *r*_k]
 Interleave these two steps if in finite precision
- Take $[Ar_1, Ar_2, ..., Ar_k]$ for $[l_1, l_2, ..., l_k]$
- Now $A \approx l_1 r_1^T + l_2 r_2^T + \dots + l_k r_k^T$
- No explicit A needed, only function $A \cdot x$

SVD

rank-5

rank-10

rank-25

Faster convergence: use $A^T\!A$

Use A^TA when building Krylov subspace

 I.e. compute r₁, A^TAr₁, (A^TA)²r₁, ...
 A^TA is s.p.d. – much better numerical properties

• This requires additional function $A^T \cdot x$

SVD

rank-5

Use same idea for transport matrix

rank-10 approximation

rank-50 approximation

Optical matrix-vector multiply

 $T^T x$: same arrangement as T x, but swap camera and projector

• Or use two of each with beam splitters

Optical matrix-vector multiply

Project x using left projector, read Tx in right camera Project x using right projector, read T^Tx in left camera

Intricacies

Might not work with high-rank ${\cal T}$

• Use diffusive light: shoot it through a screen

Some vectors have negative pixel values

- Process positive and negative separately
- Doubles number of photos

Convergence of matrix approximation

Acquire low-resolution transport matrices explicitly Compare Krylov with SVD and brute-force

Relighting results

Build rank-10 approximation of T

Requires 40 photos, 3 seconds per photo
 Use it to compute Tl for any given l, in 3 seconds

Inverse light transport results

- Use given image p to initiate the Krylov method
 - The resulting approximation is tuned to p
 - Might even work well with a high-rank matrix
- Use rank-k approximation to solve p = Tl for l

Inverse problem for high-rank matrix

No light diffusers this time

The input image

Ground truth

The solution found (20 iterations)

Video

http://www.youtube.com/watch?v=fVBICVBEGVU#t=2m12s