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Figure 1: A montage of two light fields creates a novel scene. The left two images are representative images from two source light fields, and
the righ-most image is representative of the final light field montage in which two plants from the first plant box have been removed.

Abstract

This paper presents an algorithm for creating a light field montage
from two source light fields with user interaction. The ability to
generate new scenes from static light fields could be useful for both
personal and commercial uses including scenarios such as creating
an ideal scene containing multiple people or removing unwanted
objects. This work also provides a starting point for a variety of
possible extensions that may build a valuable toolbox for those in-
terested in manipulating light fields.
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1 Introduction

Light fields as presented in this paper have been in use academi-
cally since their development in 1996 [Levoy and Hanrahan 1996].
They provide an interesting area of research due to their rich infor-
mation content, containing a 4-dimensional sample of the plenop-
tic function which allows many interesting manipulations beyond
those possible with single images. Due to their relative scarcity,
few tools exist to manipulate light fields in comparison to the num-
ber of tools available to manipulate images.

However, recently interest in light fields has been growing as re-
searchers and enthusiasts anticipate a new wider availability of light
fields. In 2005, researchers at Stanford developed a way to sample
light fields with a single hand-held plenoptic camera shot [Ng et al.
2005]. A camera based on this idea has been developed commer-
cially and may be available by next year for purchase, promising
the existence of many light fields that will need light field-specific
tools to achieve their full potential.

Like pictures, light fields often hold memories or ideas in addition
to pixels, and due to the ephemeral nature of the world, light fields
will fail to capture the ideal scene desired by the photographer. This
desire to improve upon existing scenes is the motivation for devel-
oping an algorithm to create a montage from multiple light fields.

Consider the top two images in Figure 2, one contains a woman
looking away from the camera, and the other lacks the amusing
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symmetry between the poses of the other two people. To achieve
an ideal picture a montage was created, which is displayed in the
third image. This particular situation has rarely occurred for light
fields due to the slow speed of capture and portability issues when
using traditional measurement devices. However, with a single-shot
hand-held camera, imperfect images will become commonplace.

Light fields are challenging for users to manipulate using current
commercial programs designed for photographs due to their large
sizes and formatting. In this paper we investigate manipulations
to light fields formatted as a large array of images taken at differ-
ent coordinates. Regardless of the storage format, looking at light
fields a single image at a time would be too time consuming for the
average user, not to mention extremely tedious due to the redundant
nature of images extracted from a light field.

Additionally, it is challenging for a user to keep track of relevant
geometries and work through a large array of images while keep-
ing track of how the final light field will look when the images are
composed. For these reasons, it is essential that interactive tools for
manipulating light fields be developed.

Although automatic tools are needed, their development is not triv-
ial. Due to the large file sizes and high dimensionality of light fields,
thoughtful decisions must be made about how to process automatic
tasks. Additionally, due to the nonintuitive nature of light fields for
many users, the user interface and user interactions must be devel-
oped carefully to allow the user to control automatic tools without
confusion or frustration.

This work presents a method of interactively combining two light
fields taken from the same viewpoint to create a novel light field
scene. Currently, the method is only applied to two light fields, but
is extendable to multiple inputs via an interactive loop.

2 Related Work

The original name of light field originated in the early 1900s but
its modern meaning was created when Marc Levoy and Pat Hanra-
han wrote the paper ”Light Field Rendering” [Levoy and Hanrahan
1996]. Since then, many techniques have been developed to manip-
ulate the lighting, geometry, and other properties of light fields.



Figure 2: Motivation

Of particular relevance are papers that deal with compositing and
light field warping. These papers include [Chen et al. ], which
shows several manipulation techniques including compositing and
warping. A work by some of the same authors, [Chen et al. 2005]
demonstrates light field warping and deformation under user inter-
action. In both of these papers the focus is more on operations
for animation, on real-time interactions for speed, on on making a
framework of binary operations on light fields that can manipulate
light fields in more complex ways. In contrast, this work is more
application based, focused on combing elements from two similar
scenes in a simple user environment. Also, this approach is aimed
at more complex geometries that aren’t as clean or well known as
animated geometries and manipulating full scenes rather than scene
elements.

Seam carving has been tested on light fields in [Birklbauer and Bim-
ber 2011], interestingly, the light fields are treated as a depth stack.
Finally, [Cossairt et al. 2008] has a more mechanical approach to
combining a real and synthetic light fields using a constructed stage.

There is a significant amount of research related to creating mon-
tages and mosaics from images but this work was primarily inspired
by one paper in particular, [Agarwala et al. 2004]. Closely related
work includes matting and compositing, and seam carving. The
scope of this work does not include a thorough review of these top-
ics.

3 Methods

Following the philosophy of [Agarwala et al. 2004], which presents
an interactive environment for image montages, montages of light
fields are considered from the perspective of graph cuts. Consider
a montage created from two light fields: in this formulation, all el-
ements (pixels for the format used in this work) of the light field
montage are derived from either the first or second source light
field. The question then is simply how to choose which pixel comes
from which source light field?

Note that this current methodology is limited somewhat by its state-
ment: we are making several assumptions in this formulation of the
problem. First of all, we are assuming that the two source light
fields are comparable in both size and geometry, or can be rescaled
in some way to have matching elements (pixels). This could be a
limitation when solving more general montage problems, but this
exploration is motivated by the idea of composing a novel scene
from a series of captured light fields taken from a single scene un-
dergoing changes between each capture.

The format of the light fields used in this work is a set of im-
ages of a scene taken at different (u, v) coordinates. Essentially,
this is a 2-d array of 2-d images, and one of the most straight-
forward ways to store light fields. Any pixel in a light field can
be identified with a 4-vector (u, v, x, y) identifying an image at
(u, v) coordinates and the (x, y) position within the image. New
views can be interpolated or calculated from this light field, but
for now we consider the storage data format, which is the foun-
dation of any transformation. For more information on the for-
matting of the light fields and to learn how these were gener-
ated, please see Stanford’s New Light Field Archive at http:
//lightfield.stanford.edu/. The light fields used in this
work are from this archive.

From two source arrays of images, a montage with the same dimen-
sions is created using a graph-cut algorithm which labels each pixel
in the montage array of images as coming from a specific source.
Consider pixel p in the final montage, its value, F (p), will be de-
rived from either source 1, S1 or source 2, S2 at pixel p. Thus,
the algorithm must discover a labeling L for every pixel in the final
light field montage F , identifying each pixel as originating from S1

or S2. With this labeling, it is simple to construct the final montage
F .

3.1 User interaction

Any choice of labeling would create a viewable light field, but our
goal is to allow the user to specify properties of the resulting light
field F by identifying which sections of the input sources must be
present in the final montage. Then the algorithm creates a light
field that looks good to the human eye under these requirements.
The user interface now provides two windows, each containing four
images from the (u, v) corners of the light field, one set of corners
from each source. On these 8 images, the user selects pixels which
are required to be present in the final light field. Essentially, the
user selects parts of each source light field to ‘keep’.

Then these source-fixed pixels defined at the corner are linearly in-
terpolated for every other image located at a (u, v) between the four
(u, v)-corners, defining for these inner images a set of pixels with
a fixed final labeling.

The user can also select what cost function to use in the graph cut
optimization by selecting in the code what smoothness function to
use. Currently, the code uses the seam objectives described as in
[Agarwala et al. 2004], however for most of the images present in
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this paper, the Color smoothness function has been used for sim-
plicity.

3.2 Graph Cut

Graph cut chooses a labeling that minimizes a cost function com-
prised of a data term and a smoothness term. The data term contains
the fixed-pixel-source information defined through user interaction
with the light field images. It is augmented in this implementation
with a inverse square law around the selected pixels to create an
area of pixel preference rather than points. This data term is de-
fined for every pixel. Different data terms and objectives can be
developed in the future as more light fields to manipulate become
available.

The smoothness term is a function defined for the edges between
adjacent pixels in the light field. Its cost represents the cost of
breaking a connection between two pixels; that is the cost of la-
beling two adjacent pixels with two different labels rather than
the same. The smoothness functions mentioned above are differ-
ent ways to define this cost depending on the goal of the montage.
For more details on the effects of these different cost functions, see
[Agarwala et al. 2004]. Equation 1 is the Color smoothness cost
Cc(p, q) between two pixels p and q.

Cc(p, q) = ||S1(p)− S2(p)||+ ||S1(q)− S2(q)|| (1)

3.3 Implementation

In this interactive platform, the user may choose between 3 different
graph cut algorithms: a 2-, 3-, or 4-dimensional graph-cut. In this
choice there is a tradeoff between computation time and the pres-
ence of artifacts in the resulting light field. The general algorithm
for implementation is as follows:

1. Input: select 2 source lightfields

2. User interaction phase: select pixels from each source

3. Graph-cut optimization: generate L via n-d graph-cut

4. Construction: Build montage from labeling L

The graph cut algorithm used is a MATLAB wrapper described
in [Bagon 2006], which uses tools and algorithms from [Boykov
and Kolmogorov 2004], [Boykov et al. 2001], and [Kolmogorov
and Zabih 2004]. It is available for download at http://www.
wisdom.weizmann.ac.il/˜bagon/matlab.html.

Figure 3 shows a visual representation of some of the internal terms
of a 2-d graph-cut for an image from a light field with jellybeans.
The ‘Hsmooth’ and ‘Vsmooth’ terms are smoothness terms based
on the Color smoothness function. These terms are zero every-
where except for in the vicinity of certain jellybeans because the
images are the same in all other areas (see ‘Image 1 - Image 2’
plot). The log of the data term is shown to show the spread of
the data term from the user-selected 4 pixels. This term obeys an
inverse distance squared law and decays rapidly. The ‘Labels’ im-
age shows the final labeling chosen, which achieved the user-goal
of setting a green jellybean next to a maroon jellybean in the final
montage. This example is somewhat contrived but demonstrates
well the operations of the graph cut algorithm.

3.4 Viewer Software

To view the light field montages, one needs viewer software. For
the light fields formatted in the supplementary material, one must

use a modified version of the Stanford light field viewer avail-
able at http://lightfield.stanford.edu/aperture.
html. This software also uses a version of FZip (https:
//github.com/claus/fzip/). Unfortunately, the original
viewer does not read all .zip files, and thus changes were neces-
sary. The modified version works with a combination of zipped
and unzipped files, and is currently set up in a website without any
downloading necessary.

4 Results

Light fields are difficult to present in a two-dimensional format, so
a few results are currently posted at http://me.berkeley.
edu/˜vdadok/LightFieldProject/ for closer inspection.
The source light fields used in to produce these results were ob-
tained from Stanford’s light field repository, located at http:
//lightfield.stanford.edu/, and thus the credit for all
original light fields goes to Stanford Computer Graphics Labora-
tory.

The algorithms developed in this paper work well in some cases
and poorly in others. Often more careful user interactions result in
a large change in results which implies that the user interface may
need to be extended with additional tools or displays. Figures 7 and
8 show several sample images from a light field in which 2-d, 3-d,
and 4-d graph cut were used to optimize the cost function. Each
set of four images displayed corresponds to one of the graph cut
algorithms and the four images within the set are from adjacent u
and v coordinates in the light field. Thus these images are neighbors
in the (u, v) plane and ideally switching between them will appear
to the human eye as a small change in perspective. By looking at
the portions highlighted in Figure 8 and comparing that portion to
same region in the neighboring 3 images, one can see artifacts that
appear when using the 2-d and 3-d graph-cut algorithms.

In the image set created with 2-d graph-cut, the consistency from
image to image is only enforced by the interpolated data term,
which provides a global smoothness to the result. However, at a
local level, artifacts begin to appear. Note that between the top
left and bottom left images, a half-leaf clearly disappears, only to
reappear again in the bottom right corner. This kind of artifact is
expected for a 2-d graph cut since there is no cost on such single-
image artifacts.

In the middle set of images created with the 3-d graph-cut algo-
rithm, the additional dimension in which the graph-cut operated
was in the v-dimension, which is the horizontal direction in these
images. Note that unlike the previous case, the discontinuity from
left to right is minimal. However, from top to bottom there are some
artifacts clearly visible in the discontinuities between the leaves.

Finally the set of images created with 4-d graph-cut optimization
has a much smoother look and fewer artifacts in this portion of the
light field.

Although the 4-d graph-cut algorithm is superior in this example,
the difference in computation time is extreme and the amount of
memory required is large enough to make larger light fields impos-
sible to run on a typical laptop using this implementation of the
graph-cut algorithm. Also, the 4-d graph cut can create different
types of artifacts, which are demonstrated in Figure 4. Here, it be-
comes obvious that the smoothness term across neighbors is too
strong compared to the smoothness term within images, as you can
see that a certain pattern of pixels persists along the border in spite
of the changing content at each view. This could be fixed by chang-
ing the weights of the terms between (u, v)-neighbors as compared
with the internal image neighbors, but adds another parameter to
the algorithm.
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Figure 4: Some artifacts in 4d graph cut

Finally in many cases, 2-d graph-cut algorithms can work quite
well given a reasonable user interaction module. For instance, the
jellybean light field shown in Figure 5 and available to view online,
was constructed using a 2-d graph cut. There are artifacts under
closer inspection (see Figure 6), but these are not immediately
obvious, and may be fixed mostly with a different edge cost
function (the color cost function was applied in this case). Addi-
tionally, online at http://me.berkeley.edu/˜vdadok/
LightFieldProject/lightfieldViewer2.html, a
larger plant montage was made with more careful user interaction,
and the results are quite reasonable from just the smoothness of the
data term.

5 Discussion

Applications for this method are similar to those of other montage
algorithms. Creating novel or physically impossible but breathtak-
ing scenes out of an array of light fields is one of the goals of this
line of work.

In conclusion, both the 2-d and 4-d graph cut optimization algo-
rithms are very promising methods for creating light field mon-
tages. The tradeoff between speed, user interaction, and artifacts
will evolve with improvements in the user interface and graph-cut
algorithm. For the average user, a faster algorithm such as the 2-d
algorithm with an iterative user interface that allows tweaks may be
the most viable for the short-term. Finally, the 3-d algorithm could
be useful in certain cases in which the artifacts occur only along
one dimension, but this is a rare case, and thus 2-d and 4-d graph
cut algorithms are likely the best for future directions.

6 Future Work

There is a tremendous amount of future work possible in this area.
Within the scope of this particular approach, significantly more
work could be done on improving the user interactions. This in-
cludes tasks such as creating a wider array of tools that are intu-
itive for the user, running user studies on the most effective way
to edit light fields, speeding up the algorithm to make the software
run interactively and iteratively, allowing multiple light fields in a
montage rather than just two, and adding additional montage modes
such as those presented in [Agarwala et al. 2004].

Figure 5: An example image from a light field montage in which
2-d graph cut worked well

In addition, the hidden tasks used during user interaction must be
improved upon. For instance, developing automatic reality checks
for the user selections by using the depth map or other geometry
information could be invaluable. Also, the current method of in-
terpolating between corners to find the source-fixed pixels is rea-
sonable as a first attempt, however, knowledge of the geometry and
depth and limits on the user’s choice of points (for instance ask-
ing if the points are on the same object) could be used to improve
the interpolation of interior points. As-is there is certainly room
for spectacular failure if an unknowing user chose points fixed to
one source across an occlusion containing points fixed to the other
source.

Also, with this method there is room to develop new montage tools
that are specific to light fields. For instance, cost functions for
smoothness terms could include a function based on the depth map
of pixels or on other geometries extracted from the scene. Also,
in the graph cut algorithm, we currently use pixels at the same co-
ordinates (x, y) in adjacent (u, v) as neighbors in the smoothness
function, but there may be a better way to calculate neighbors based
on the depth map or geometry rather than pixel distance. In addition
to this, there may be a transformation from this pixel-based format
other elements that would lend themselves even more naturally to
graph-cut.

Additionally, since part of the motivation for this research is
the advent of public availability of light field cameras, this
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Figure 6: Some artifacts in 2d graph cut

type of tool should be developed for the format used by hand-
held light field cameras. From the Lytro website’s posted light
fields, located at lytro.com, one can see that the viewing
format is a depth stack (a fact verified by tools developed in
https://github.com/nrpatel/lfptools and http:
//eclecti.cc/computervision). From the documenta-
tion online, it seems that the light fields may originally be a dif-
ferent format that is changed to a depth stack as they are uploaded
to Lytro’s home page, thus the format is unknown. Algorithms to
handle various file types and format styles should be investigated
for more wide applicability. Interestingly enough, it has been sug-
gested in [?] that for certain types of light fields, a depth stack is a
more concise representation which can be converted to and from a
full 4-d light field. Thus further work should investigate operating
a montage algorithm on a depth stack as an internal step or as the
entire algorithm for some light fields.

Finally, there are a number of other small details that should be
investigated in the future as this algorithm evolves–is there a sim-
ple way to develop a Poisson step to use gradient methods to make
graph edges less noticeable? How can we leverage the depth map
and any geometry knowledge to improve this method? How diffi-
cult would it be to rescale and align completely different light field
scenes to montages? It will be exciting to see what tools are devel-
oped for light fields in the coming years.
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Figure 7: These are several adjacent images from a montaged im-
age using different graph cut dimensions. Each set of four are taken
from adjacent (u,v) pairs. The top set of images was created using a
2d graph cut algorithm, the second set of images was created using
a 3d graph cut algorithm which linked adjacent (u,v) images in the
v dimension (here the horizontal direction), and the bottom set of
four images was created using a 4d graph cut algorithm

Figure 8: These are several adjacent images from a montaged im-
age using different graph cut dimensions. Each set of four are taken
from adjacent (u,v) pairs. The top set of images was created using a
2d graph cut algorithm, the second set of images was created using
a 3d graph cut algorithm which linked adjacent (u,v) images in the
v dimension (here the horizontal direction), and the bottom set of
four images was created using a 4d graph cut algorithm. Note the
highlighted regions
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Figure 3: Terms in a 2-d graph cut algorithm


