#### Dynamically Reparameterized Light Fields Aaron Isaksen, Leonard McMillan, Steven J. Gortler

#### Light field rendering



- Fast reconstruction of arbitrary scene views
- Parameterized to make sampling practical

**Two-parallel-plane** Parameterization



- Two-parallel-plane parameterization is only suitable for shallow scenes, because only parts of the scene near the exit plane can be reconstructed in focus.
- Lumigraphs can reconstruct deeper scenes by using depth correction. Approximate geometry is used to remap rays to more suitable exit coordinates.

#### **Proposed Parameterization**



#### **Proposed Parameterization**



#### **Proposed Parameterization**

- We define a mapping<sub>F</sub> $M_{D}$  : (f,g) (u,v)
- Given that we know the projection mapping for each of our cameras P (X,Y,Z) (u,v) (s,t)
- And we have a mappiniting T ( $\overline{f}$ ,g) (X,Y,Z) •  $M = P^{t} T$



- Find intersection of ray r with C and F
- Using cameras near (s,t), apply mapping
  M to recover pixels (u,v)
- Filter pixels to combine rays

## Variable Focus



- Changing the shape of the focal surface controls which data cameras contribute to the reconstructed ray.
- This allows refocusing of images!





# Variable Aperture

#### Aperture size influences depth of field



Can emulate a large aperture using post processing by combining several smaller ones.

Same depth blurring as real aperture! big assembled aperture



- Center synthetic aperture around each desired ray
- Sample light field for each data camera that falls within aperture
- Combine pixels using some weighted function to reconstruct final ray





Varying the size and shape of the synthetic aperture changes the depth of field.

### Questions



# How do you choose focal surface F?



# Finding the focal plane

- Lytro <u>http://www.lytro.com/picture\_gallery</u>
- How do we find the target focal plane?

- Multiple target focal planes?
- Whole image in focus?

# Focus Stacking



<u>http://en.wikipedia.org/wiki/Focus\_stacking</u>



• Using light field cameras for focus stacking?

# **Camera Calibration**

- For each Ds,t we define a mapping function:
- Ms,t (F  $\rightarrow$  D): (f, g)F  $\rightarrow$  (u, v)
  - $\mathsf{Ps,t}:(\mathsf{X,Y,Z})\to(\mathsf{u,v})$
- How do we autocalibrate the camera?