Using Blur to Affect Perceived Distance and Size

Authors:
Held, Robert T
Cooper, Emily a
O'Brien, James F
Banks, Martin S

Presentation by Armin Samii
Discussion with Dustin Shean

Some slides copied from the authors.
How do we sense depth?

- **Blur**
 - Naturally in our eyes
 - More blurry = further (from focal plane)
- **Perspective**, e.g.
 - Converging parallel lines
 - Occlusion
How do we sense depth?

- Blur
 - Naturally in our eyes
 - More blurry = further (from focal plane)
Basic Lens Optics: In focus

Focal Distance z_0

Imaging Plane

S_0
Basic Lens Optics: Out of Focus

Target Distance z_1

Focal Distance z_0

Imaging Plane

c

s_1

s_0
How do we sense depth?

- **Blur**
 - Naturally in our eyes
 - More blurry = further (from focal plane)
- **Perspective**, e.g.
 - Converging parallel lines
 - Occlusion
How do we sense depth?

- Perspective, e.g.
 - Converging parallel lines
 - Occlusion
What does perspective tell us?

Diameter of Retinal Blur (°) vs. Relative Distance

focal distance (m):
- 0.10
- 1.0
- 10
- 100
Knowing relative distance and desired focal distance, how much to blur?
Image Perception

Knowing *relative distance* and *blur diameter*,

What is the focal distance?
Blur amount is inversely proportional to the relative distance

\[
\hat{c}_1 = \left| A \frac{s_0}{\hat{z}_0} \left(1 - \frac{1}{d}\right) \right| = \left| A \frac{s_0}{mz_0} \left(1 - \frac{1}{d}\right) \right|
\]

\[
= \left| \left(\frac{A}{m} \right) \left(\frac{s_0}{z_0} \right) \left(1 - \frac{1}{d}\right) \right|
\]
Example: ++blur
Examples that don't work

- Horizontal blur gradient
- Vertical blur gradient
- Linear blur / tilt-shift optics
Horizontal/Vertical Blur

Consistent Blur

Vertical Blur Gradient

Horizontal Blur Gradient

Simulated Focal Distance = 0.15m

Simulated Focal Distance = 0.06m
Normal Optics

[Diagram showing a lens and focal plane with an image of a landscape in the background.]
Tilt-Shift Optics
Simulating tilt & shift
DISCUSSION TIME!
Taking height into account
Semi-Automated

Slant-estimation Technique: Parallel Lines
Intended Focal Distance: 0.06m

Slant-estimation Technique: Manual Grid Alignment
Intended Focal Distance: 0.50m
In Black & White