
Window Detection in Frontal Facades

Viraj Kulkarni

Department of Computer Science

University of California, Berkeley

Rohan Nagesh

Department of Computer Science

University of California, Berkeley

ABSTRACT

In this paper, we describe a novel technique to identify and

extract windows from a building’s frontal facade. Feature

detection in buildings has long been an area of research

interest for its applications in 3D city modeling and scene

visualization. We utilize a combination of projection

profiles, mutual information, and a feature extraction

technique (Snake Algorithm). We have found this approach

to work quite well on regular facade structures, and we

conclude with a more detailed discussion of our results.

Keywords

Window detection, feature extraction, building facades,

urban reconstruction, Snake Algorithm

1. INTRODUCTION

This paper addresses the research question of

computationally extracting windows from rectified, frontal

facade structures. With many applications ranging from 3D

geometric modeling of facades to urban landscape

reconstruction, there has been considerable interest and

innovation in this space.

There exist numerous computer vision challenges with the

task of extracting windows from such facade structures.

First, the method of rectifying input images, which are

usually satellite or aerial shots, into ground-view images is

pivotal. Second, the facade may contain non-interesting

artifacts—occlusion by vegetation and transparency of glass

windows. Shadows and lighting issues can significantly

impact extraction quality as well. Lastly, due to the vast

array of building structures, classification algorithms must

be versatile enough to handle a variety of geometries.

Broadly speaking, there have been two main approaches to

addressing this research question. First, there are machine

learning approaches that operate on a training set of images

to generate feature weights for future analysis. Second,

there are approaches that focus on a particular input image

for the duration of the algorithm, exploiting geometrical

properties of the image for extraction. We will focus on the

latter approach in this paper.

Additionally, we restrict our domain to purely frontal

facades. What we mean by this is that aerial or satellite

images have been rectified to provide straight, ground-view

shots of the facade in interest (as in Figure 1). In particular,

we do not analyze angular shot.

2. RELATED WORK

As discussed earlier, there has been much related work in

the field, spanning both machine learning and single-image

analysis approaches. Cech and Sara discuss Windowpane

Detection based on Maximum Aposteriori Labelling

(2007)
1
, a segmentation technique that offers a stronger

structure model than traditional Markov Random Fields. Ali

et al
2
 devises a machine learning approach that utilizes Haar

feature model in conjunction with a Gentle Adaboost-driven

cascaded decision tree. While both techniques are quite

intriguing, we focus on techniques less heavy on machine

learning due to significantly faster completion times and

similar accuracy.

In the array of non-machine learning approaches, we focus

on two papers in particular. Lee and Nevatia
3
 employ a

projection profile geometry technique to quickly obtain a

fairly accurate grid consisting of a facade’s windows.

Muller et al.
4
 discuss a similarity detection technique

known as mutual information to obtain their grid

segmentation.

While Lee and Nevatia’s approach is quick to implement

and quite fast to complete, we observed that the resulting

window grid segmentation was not as polished as that of

Muller’s mutual information approach. High levels of

gradient in both the vertical and horizontal directions can

exist outside the areas containing windows. Muller’s mutual

information algorithm conducts an exhaustive search on the

facade while comparing adjacent regions of the image for

similarity; their approach is significantly slower than that of

Lee and Nevatia.

While we draw heavily from both of these papers, we

believe our approach produces similar results with

significantly faster completion times.

Figure 1: Process of extracting ground view image

from aerial view image

Hong Wu

Department of Computer Science

University of California, Berkeley

3. METHOD

The input images can be obtained from ground-based

imagery. Rectified facade textures can be easily extracted

from photogrammetric urban models. However, there are

also various public tools for rectification for cases where

such rectification is still needed.

Our proposed solution consists of using a three staged

pipeline to segment out windows from a single frontal

image of a facade. Figure 2 shows the pipeline We work by

subdividing the facade into a grid of horizontal and vertical

lines. Ideally, each rectangle in this grid should have one

window. We refer to this rectangle as a tile. The first two

stages of our pipeline work towards obtaining this grid.

Once we get the grid, we use an object segmentation

algorithm to segment out the window inside the tile.

Figure 2: The three stages of our algorithm along with thumbnails

showing the outputs at each stage.

In the following subsections, we give a description of each

individual stage of our algorithm.

3.1 Projection profile based approach to detect

approximate height

A key component of our algorithm is the determination of

the dimensions of the grid. In the first stage, we use a

projection profile based approach to extract 2D rectangles

by exploiting the geometric property of 2D rectangles and

alignment of the building windows. This is similar to the

method proposed by Lee and Nevatia.
3
 The goal of this

stage is to get an approximate height of each floor and the

width of each window tile in the façade. We use this

information in the second stage to formulate a grid which

separates out all window tiles.

We project horizontal and vertical image edges to give a

total of two projection profiles: a horizontal projection

profile of the horizontal edges and a vertical projection

profile of the vertical edges as shown in Figure 3. Each

projection profile is obtained by summing up the gradients

in every row and column.

Because the building windows are horizontally or vertically

aligned, the image edges within the windows of the same

column or row are accumulated at the same location of the

projection profile histograms.

Figure 3: Horizontal and vertical projections of the input image

We select the valleys of these profiles as indicators for

approximating the height and width of the window tiles. We

select a percentile threshold value of 25 and use it to cut the

profile. Basically, we cut the profiles by a straight line such

that 25% of the values in the profile would like below this

line. The profile wave intersects this line twice for every

cycle – once when rising and once when falling. The

average of these two points gives us an approximate height

(for vertical profiles) and width (for horizontal profiles) of

the individual tiles.

Due to noise, these values are only approximations and we

do not use them directly for plotting the grid. Instead, we

use them to derive a plausible range of values which we use

to compute the actual heights and widths in the next stage.

3.2 Determination of Façade Structure

The goal of this stage is to detect the structure in the façade

and to subdivide it into floors and tiles as shown in Figure

4. We detect similar regions in the image using mutual

information as a measure of similarity as proposed by

Muller et al.
4

Figure 4: Input image split into a grid after the second stage

3.2.1 Mutual Information

In probability theory and information theory, the Mutual

Information (M.I.) of two random variables is a quantity

that measures the mutual dependence of the two variables.

It quantifies the Kullback-Leibler distance (Kullback)
6

between the joint distribution, P(A = a, B = b), and the

product of their marginal distributions, P(A = a) and P(B =

b), that is

where A and B are two random variables. MI was proposed

as a similarity measure on image intensities for 3D rigid

registration in medical imaging by Wells et al.
7

It does not

assume any simple or one-to-one relationship between the

intensities. The MI-based similarity MI(I(R1), I(R2))

measures the statistical dependence between intensities at

corresponding positions in regions R1 and R2. Accordingly,

I(R1) and I(R2) are the intensities at corresponding image

locations in R1 and R2. Next we describe how MI is used to

find similar image regions.

3.2.2 Symmetry Detection

In this step, we use mutual information to find similar floors

and tiles in the image. We expect similarity between various

floors although the top and the bottom floors often differ.

Each floor consists of repeating patterns in the form of

windows and each tile is roughly similar to another tile of

the same floor. Our algorithm searches first for symmetry in

the vertical and then in the horizontal direction. We

describe in this section our method for computing the height

of the floors in the vertical direction. After this is done, the

next step to find the width of each tile is very similar to this.

Let Ry,h denote the rectangular image region with a lower

left corner of (0, y) and upper right corner of (image width,

y+h). For detecting similarity in the vertical direction, we

need to analyze regions which can be denoted by Ry1,h and

Ry2,h. for all possible values of y and h. Such an exhaustive

search takes a very long time to complete.

We simplify this problem by analyzing only vertically

adjacent regions Ry,h and Ry-h, h where h can take a range of

values which is obtained from the previous stage.

The similarity between two adjacent regions with height h is

computed by:

We use an exhaustive search strategy to compute S(y,h) for

all positions y, and a range of parameters for h. We use the

approximate height we obtained in the first stage to derive

the range of parameters for h.

The same strategy is applied in both vertical and horizontal

directions. At the end of this second stage, we get a grid of

lines that divide the façade into tiles such as shown in

Figure 4.

3.3 Snake Algorithm

In this third and final stage, we segment out individual

windows from the grid we obtain in stage two. We use the

snake active contours model as proposed by Kass
5
 for this

purpose.

A snake is an energy minimizing, deformable spline

influenced by constraint and image forces that pull it

towards object contours. One may visualize the snake as a

rubber band of arbitrary shape that is deforming with time

trying to get as close as possible to the object contour.

The following formula represents the energy function which

we try to minimize. It consists of three energy terms: snake

or image energy, constraint energy and internal energy.

The snake and constraint energies are together referred to

as the external energy. The internal energy is the part that

depends on intrinsic properties of the snake, such as its

length or curvature. The external energy depends on factors

such as image structure, and particular constraints the user

has imposed.

We run this algorithm on each tile to segment out the

windows. The final output of this stage is a single window

for each tile as shown in Figure 5. We operate on each tile

independently and this turns out to be a time consuming and

more error prone method. This can be optimized by using

the notion of an irreducible façade as described by Muller

et al.
4
 However, this remains as future work. We describe

details of this in the future work section of this paper.

Figure 5: The active contours start from the boundary of the tile

and segment the window from the tile

4. RESULTS

Our algorithm is implemented in MATLAB. The results are

run on an Intel 2.67GHz Core i5 processor with 2GB RAM.

Figure 3 and 4 show the projection profile and mutual

information results. Figure 6 shows the final window

detection.

Figure 6: Output shows the individual windows marked out in

red.

Figure 7 and 10 are the input images. Figure 8 and 11 are

the grid of tiles. In figure 9 and 12, the boundaries of the

windows are marked as red contours.

Figure 13 and 14 are the images which the algorithm cannot

detect the tiles correctly. The tile detection is quite

important to the whole process because Snake algorithm

does not work well on bad tiles.

Figure 7: Input image of a facade

Figure 8: The division of the façade into a grid using mutual

information to detect similarities

Figure 9: Output shows the individual windows marked out in

red.

Figure 10: Input image of a façade

Figure 11: The division of the façade into a grid using mutual

information to detect similarities

Figure 12: Output shows the individual windows marked out in

red.

Figure 13: The input facade on which our algorithm failed.

Figure 14: The tile segmentation is poor because of the

small margin between windows and the glare created

5. DISCUSSION

For each image group, we present the input image, the

image after the first two steps of our workflow (projection

profile followed by mutual information), and lastly the

image after executing our Snake algorithm. To recap, we

utilized projection profiles and mutual information to divide

the facade into a grid and thereby identify tiles containing

windows. From this, we execute our Snake algorithm to

extract the windows from the tiles.

In terms of efficiency improvements, our algorithm proved

to be significantly faster than Muller et al.’s pure Mutual

Information approach. Because we first utilize the gradient

projection method to obtain an approximation for the height

and width of each floor, we do not need to perform an

exhaustive search across all possible values of heights.

Although Muller et al. does mention assuming a range of 3

meters to 5.5 meters for the height, we found even this

approach to be limiting and slower. To provide some

concrete data, Muller et al. states his workflow completes

on the order of minutes. However, our first two steps

(gradient projection and mutual information) complete in

less than five seconds utilizing a Matlab implementation

and our Snake algorithm completes in 30 seconds to 1

minute.

In evaluating our Snake algorithm, we found the workflow

quite successful in extracting windows from tiles containing

one window or now windows at all. However, the algorithm

struggled to handle tiles that had not been properly

segmented and contained two windows as a result.

As observed from our results, our algorithm performs quite

well on regular patterns and geometries as in Figures 7 and

10 but lacks the versatility to handle harder images, those

with significant occlusion or internal reflection as in Figure

13.

We suspect this behavior was the result of two main

obstacles. First, in input images with no clear windowpanes

or dividers between sets of windows, our algorithm

struggled to produce a clear line in both directions. Figure

13 is a good example of an input image with unclear and

faint demarcations between windows, which was a

contributing factor to its high difficulty for the algorithm.

Second, input images with significant glare or internal

reflection created drastic complications for our algorithm.

While some glare with clearly demarcated windows fared

reasonably well (as in Figure 10), Figure 13 once again

illustrates the difficulty, even for humans, to detect location

and quantity of windows. Additionally, reflections of

images across the facade in the space of the scene will

further exacerbate the challenges. We believe our gradient

projection step of the workflow itself failed to handle such

images, which in turn produced poor results in each of the

last two steps.

Overall, we are quite satisfied with our efficiency

improvement with our algorithm but will look to address

the aforementioned challenges in future iterations.

6. FUTURE WORK

Within the scope of our approach itself, there is ample room

for improvement. In particular, there is one element from

Muller et al.’s paper, an irreducible facade that would

integrate quite nicely with our methodology.

To provide some context, there is often significant

similarity in building facades. Entire columns or rows may

exhibit similar geometries to the point where executing an

algorithm such as mutual information on each cell would

simply be redundant. The notion of an irreducible facade is

to compress a frontal facade vertically and horizontally into

an indivisible, smallest facade that preserves all the unique

geometries in the larger input image. By implementing this

notion of an irreducible facade, our algorithm need only

operate on this irreducible facade and not have to execute

duplicate work on the entire image.

From a technical standpoint, the irreducible facade is a data

structure that stores a list of pixels instead of a single pixel

at every (x,y) location. This list of pixels corresponds to a

―stack‖ of original similar image fragments, which when

unrolled can produce the original image. Once no more

similarity can be detected, the irreducible facade is

complete.

Figure : (a) Original input image (b) Irreducible Facade

Outside of our approach, there is considerable room for

improvement in terms of the varieties of input images our

algorithm can accurately segment. More specifically, given

our limiting assumption of dealing solely with frontal

facades, our approach lacks the versatility to handle angular

shots of scenes, oblique shapes, and other irregular

geometries in both the facade and windows.

For instance, arch windows can be modeled through

parametric equations and a Hough Transform in 3

dimensions. Angular shots can be handled either directly or

can be converted to rectified frontal facades similar to those

we have used as inputs in this paper.

In summary, the approach we have presented in this paper

shows tremendous promise in handling the difficult

problem of extracting windows from building facades.

There is tremendous scope for innovation, and we aim to

address many of the aforementioned limitations of our

approach in future iterations.

ACKNOWLEDGMENTS

We thank Professor Maneesh Agrawala and Graduate

Student Instructor Floraine Berthouzoz of UC Berkeley’s

graduate-level course in Image Manipulation and

Computational Photography (CS 294-69) for their valuable

input and guidance throughout our project.

REFERENCES

1. Cech et al. Windowpane Detection Based on Maximum

Aposteriori Labelling. IWCI. (2008).

2. Ali et al. Window Detection in Facades. ICIAP. (2007)

3. Lee, S. and Nevatia, R. Extraction and Integration of

Windows in 3D Building Models from Ground View

Images. CVPR. (2004).

4. Muller et al. Image-based Procedural Modeling of

Facades. ACM SIGGRAPH. (2007).

5. M. Kass, A. Witkin, and D. Terzopoulos, ―Snakes:

Active contour models,‖ Int. J. Comput. Vis., vol. 1, pp.

321–331, 1987.

6. Kullback, S. Information Theory and Statistics. John

Wiley and Sons., New York. (1959).

7. Wells et al. Multi-modal volume registration by

maximization of mutual information. (1996).

