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ABSTRACT 

In this paper, we describe a novel technique to identify and 

extract windows from a building’s frontal facade. Feature 

detection in buildings has long been an area of research 

interest for its applications in 3D city modeling and scene 

visualization. We utilize a combination of projection 

profiles, mutual information, and a feature extraction 

technique (Snake Algorithm). We have found this approach 

to work quite well on regular facade structures, and we 

conclude with a more detailed discussion of our results.   
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1. INTRODUCTION 

This paper addresses the research question of 

computationally extracting windows from rectified, frontal 

facade structures. With many applications ranging from 3D 

geometric modeling of facades to urban landscape 

reconstruction, there has been considerable interest and 

innovation in this space.  

There exist numerous computer vision challenges with the 

task of extracting windows from such facade structures. 

First, the method of rectifying input images, which are 

usually satellite or aerial shots, into ground-view images is 

pivotal. Second, the facade may contain non-interesting 

artifacts—occlusion by vegetation and transparency of glass 

windows. Shadows and lighting issues can significantly 

impact extraction quality as well. Lastly, due to the vast 

array of building structures, classification algorithms must 

be versatile enough to handle a variety of geometries.  

Broadly speaking, there have been two main approaches to 

addressing this research question. First, there are machine 

learning approaches that operate on a training set of images 

to generate feature weights for future analysis. Second, 

there are approaches that focus on a particular input image 

for the duration of the algorithm, exploiting geometrical 

properties of the image for extraction. We will focus on the 

latter approach in this paper.  

Additionally, we restrict our domain to purely frontal 

facades. What we mean by this is that aerial or satellite 

images have been rectified to provide straight, ground-view 

shots of the facade in interest (as in Figure 1). In particular, 

we do not analyze angular shot. 

2. RELATED WORK 

As discussed earlier, there has been much related work in 

the field, spanning both machine learning and single-image 

analysis approaches. Cech and Sara discuss Windowpane 

Detection based on Maximum Aposteriori Labelling 

(2007)
1
, a segmentation technique that offers a stronger 

structure model than traditional Markov Random Fields. Ali 

et al
2
 devises a machine learning approach that utilizes Haar 

feature model in conjunction with a Gentle Adaboost-driven 

cascaded decision tree. While both techniques are quite 

intriguing, we focus on techniques less heavy on machine 

learning due to significantly faster completion times and 

similar accuracy.  

In the array of non-machine learning approaches, we focus 

on two papers in particular. Lee and Nevatia
3
 employ a 

projection profile geometry technique to quickly obtain a 

fairly accurate grid consisting of a facade’s windows. 

Muller et al.
4
 discuss a similarity detection technique 

known as mutual information to obtain their grid 

segmentation.  

While Lee and Nevatia’s approach is quick to implement 

and quite fast to complete, we observed that the resulting 

window grid segmentation was not as polished as that of 

Muller’s mutual information approach. High levels of 

gradient in both the vertical and horizontal directions can 

exist outside the areas containing windows. Muller’s mutual 

information algorithm conducts an exhaustive search on the 

facade while comparing adjacent regions of the image for 

similarity; their approach is significantly slower than that of 

Lee and Nevatia. 

While we draw heavily from both of these papers, we 

believe our approach produces similar results with 

significantly faster completion times.  

 

 

Figure 1:  Process of extracting ground view image 

from aerial view image 
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3. METHOD 

The input images can be obtained from ground-based 

imagery. Rectified facade textures can be easily extracted 

from photogrammetric urban models. However, there are 

also various public tools for rectification for cases where 

such rectification is still needed. 

Our proposed solution consists of using a three staged 

pipeline to segment out windows from a single frontal 

image of a facade. Figure 2 shows the pipeline We work by 

subdividing the facade into a grid of horizontal and vertical 

lines. Ideally, each rectangle in this grid should have one 

window. We refer to this rectangle as a tile. The first two 

stages of our pipeline work towards obtaining this grid. 

Once we get the grid, we use an object segmentation 

algorithm to segment out the window inside the tile.  

 

 

Figure 2: The three stages of our algorithm along with thumbnails 

showing the outputs at each stage. 

 

In the following subsections, we give a description of each 

individual stage of our algorithm. 

 

3.1 Projection profile based approach to detect 

approximate height 

A key component of our algorithm is the determination of 

the dimensions of the grid. In the first stage, we use a 

projection profile based approach to extract 2D rectangles 

by exploiting the geometric property of 2D rectangles and 

alignment of the building windows. This is similar to the 

method proposed by Lee and Nevatia.
3
 The goal of this 

stage is to get an approximate height of each floor and the 

width of each window tile in the façade. We use this 

information in the second stage to formulate a grid which 

separates out all window tiles. 

We project horizontal and vertical image edges to give a 

total of two projection profiles: a horizontal projection 

profile of the horizontal edges and a vertical projection 

profile of the vertical edges as shown in Figure 3. Each 

projection profile is obtained by summing up the gradients 

in every row and column. 

Because the building windows are horizontally or vertically 

aligned, the image edges within the windows of the same 

column or row are accumulated at the same location of the 

projection profile histograms.  

 

Figure 3: Horizontal and vertical projections of the input image 

 

We select the valleys of these profiles as indicators for 

approximating the height and width of the window tiles. We 

select a percentile threshold value of 25 and use it to cut the 

profile. Basically, we cut the profiles by a straight line such 

that 25% of the values in the profile would like below this 

line. The profile wave intersects this line twice for every 

cycle – once when rising and once when falling. The 

average of these two points gives us an approximate height 

(for vertical profiles) and width (for horizontal profiles) of 

the individual tiles. 

Due to noise, these values are only approximations and we 

do not use them directly for plotting the grid. Instead, we 

use them to derive a plausible range of values which we use 

to compute the actual heights and widths in the next stage. 

 

3.2 Determination of Façade Structure 

The goal of this stage is to detect the structure in the façade 

and to subdivide it into floors and tiles as shown in Figure 

4. We detect similar regions in the image using mutual 

information as a measure of similarity as proposed by 

Muller et al.
4 

 



 

Figure 4: Input image split into a grid after the second stage 

 

3.2.1 Mutual Information 

In probability theory and information theory, the Mutual 

Information (M.I.) of two random variables is a quantity 

that measures the mutual dependence of the two variables. 

It quantifies the Kullback-Leibler distance (Kullback)
6
 

between the joint distribution, P(A = a, B = b), and the 

product of their marginal  distributions, P(A = a) and P(B = 

b), that is 

  

where A and B are two random variables. MI was proposed 

as a similarity measure on image intensities for 3D rigid 

registration in medical imaging by Wells et al.
7 

It does not 

assume any simple or one-to-one relationship between the 

intensities. The MI-based similarity MI(I(R1), I(R2)) 

measures the statistical dependence between intensities at 

corresponding positions in regions R1 and R2. Accordingly, 

I(R1) and I(R2) are the intensities at corresponding image 

locations in R1 and R2. Next we describe how MI is used to 

find similar image regions. 

 

3.2.2 Symmetry Detection 

In this step, we use mutual information to find similar floors 

and tiles in the image. We expect similarity between various 

floors although the top and the bottom floors often differ. 

Each floor consists of repeating patterns in the form of 

windows and each tile is roughly similar to another tile of 

the same floor. Our algorithm searches first for symmetry in 

the vertical and then in the horizontal direction. We 

describe in this section our method for computing the height 

of the floors in the vertical direction. After this is done, the 

next step to find the width of each tile is very similar to this.  

Let Ry,h denote the rectangular image region with a lower 

left corner of (0, y) and upper right corner of (image width, 

y+h). For detecting similarity in the vertical direction, we 

need to analyze regions which can be denoted by Ry1,h and 

Ry2,h. for all possible values of y and h. Such an exhaustive 

search takes a very long time to complete.  

We simplify this problem by analyzing only vertically 

adjacent regions Ry,h and Ry-h, h where h can take a range of 

values which is obtained from the previous stage.  

The similarity between two adjacent regions with height h is 

computed by: 

 

We use an exhaustive search strategy to compute S(y,h) for 

all positions y, and a range of parameters for h. We use the 

approximate height we obtained in the first stage to derive 

the range of parameters for h. 

 

The same strategy is applied in both vertical and horizontal 

directions. At the end of this second stage, we get a grid of 

lines that divide the façade into tiles such as shown in 

Figure 4. 

 

3.3 Snake Algorithm 

In this third and final stage, we segment out individual 

windows from the grid we obtain in stage two. We use the 

snake active contours model as proposed by Kass
5
 for this 

purpose. 

A snake is an energy minimizing, deformable spline 

influenced by constraint and image forces that pull it 

towards object contours. One may visualize the snake as a 

rubber band of arbitrary shape that is deforming with time 

trying to get as close as possible to the object contour. 

The following formula represents the energy function which 

we try to minimize. It consists of three energy terms: snake 

or image energy, constraint energy and internal energy. 

 

The snake and constraint energies are together referred to 

as the external energy. The internal energy is the part that 

depends on intrinsic properties of the snake, such as its 

length or curvature. The external energy depends on factors 

such as image structure, and particular constraints the user 

has imposed. 

We run this algorithm on each tile to segment out the 

windows. The final output of this stage is a single window 

for each tile as shown in Figure 5. We operate on each tile 

independently and this turns out to be a time consuming and 

more error prone method. This can be optimized by using 

the notion of an irreducible façade as described by Muller 



et al.
4
 However, this remains as future work. We describe 

details of this in the future work section of this paper. 

 

Figure 5: The active contours start from the boundary of the tile 

and segment the window from the tile 

 

4. RESULTS 

Our algorithm is implemented in MATLAB. The results are 

run on an Intel 2.67GHz Core i5 processor with 2GB RAM.  

Figure 3 and 4 show the projection profile and mutual 

information results. Figure 6 shows the final window 

detection. 

 

Figure 6: Output shows the individual windows marked out in 

red. 

 

Figure 7 and 10 are the input images. Figure 8 and 11 are 

the grid of tiles. In figure 9 and 12, the boundaries of the 

windows are marked as red contours.  

Figure 13 and 14 are the images which the algorithm cannot 

detect the tiles correctly. The tile detection is quite 

important to the whole process because Snake algorithm 

does not work well on bad tiles. 

 

 

 

Figure 7: Input image of a facade 

 

 

Figure 8: The division of the façade into a grid using mutual 

information to detect similarities 

 

 

Figure 9: Output shows the individual windows marked out in 

red. 



 
Figure 10: Input image of a façade 

 

 
Figure 11: The division of the façade into a grid using mutual 

information to detect similarities 

 

 
Figure 12: Output shows the individual windows marked out in 

red. 

 

Figure 13: The input facade on which our algorithm failed. 

 

 

Figure 14: The tile segmentation is poor because of the 

small margin between windows and the glare created  

 

 



5. DISCUSSION 

For each image group, we present the input image, the 

image after the first two steps of our workflow (projection 

profile followed by mutual information), and lastly the 

image after executing our Snake algorithm. To recap, we 

utilized projection profiles and mutual information to divide 

the facade into a grid and thereby identify tiles containing 

windows. From this, we execute our Snake algorithm to 

extract the windows from the tiles.  

In terms of efficiency improvements, our algorithm proved 

to be significantly faster than Muller et al.’s pure Mutual 

Information approach. Because we first utilize the gradient 

projection method to obtain an approximation for the height 

and width of each floor, we do not need to perform an 

exhaustive search across all possible values of heights. 

Although Muller et al. does mention assuming a range of 3 

meters to 5.5 meters for the height, we found even this 

approach to be limiting and slower. To provide some 

concrete data, Muller et al. states his workflow completes 

on the order of minutes. However, our first two steps 

(gradient projection and mutual information) complete in 

less than five seconds utilizing a Matlab implementation 

and our Snake algorithm completes in 30 seconds to 1 

minute.  

In evaluating our Snake algorithm, we found the workflow 

quite successful in extracting windows from tiles containing 

one window or now windows at all. However, the algorithm 

struggled to handle tiles that had not been properly 

segmented and contained two windows as a result.  

As observed from our results, our algorithm performs quite 

well on regular patterns and geometries as in Figures 7 and 

10 but lacks the versatility to handle harder images, those 

with significant occlusion or internal reflection as in Figure 

13.  

We suspect this behavior was the result of two main 

obstacles. First, in input images with no clear windowpanes 

or dividers between sets of windows, our algorithm 

struggled to produce a clear line in both directions. Figure 

13 is a good example of an input image with unclear and 

faint demarcations between windows, which was a 

contributing factor to its high difficulty for the algorithm. 

Second, input images with significant glare or internal 

reflection created drastic complications for our algorithm. 

While some glare with clearly demarcated windows fared 

reasonably well (as in Figure 10), Figure 13 once again 

illustrates the difficulty, even for humans, to detect location 

and quantity of windows. Additionally, reflections of 

images across the facade in the space of the scene will 

further exacerbate the challenges. We believe our gradient 

projection step of the workflow itself failed to handle such 

images, which in turn produced poor results in each of the 

last two steps.  

Overall, we are quite satisfied with our efficiency 

improvement with our algorithm but will look to address 

the aforementioned challenges in future iterations.   

6. FUTURE WORK 

Within the scope of our approach itself, there is ample room 

for improvement. In particular, there is one element from 

Muller et al.’s paper, an irreducible facade that would 

integrate quite nicely with our methodology.  

To provide some context, there is often significant 

similarity in building facades. Entire columns or rows may 

exhibit similar geometries to the point where executing an 

algorithm such as mutual information on each cell would 

simply be redundant. The notion of an irreducible facade is 

to compress a frontal facade vertically and horizontally into 

an indivisible, smallest facade that preserves all the unique 

geometries in the larger input image. By implementing this 

notion of an irreducible facade, our algorithm need only 

operate on this irreducible facade and not have to execute 

duplicate work on the entire image.  

From a technical standpoint, the irreducible facade is a data 

structure that stores a list of pixels instead of a single pixel 

at every (x,y) location. This list of pixels corresponds to a 

―stack‖ of original similar image fragments, which when 

unrolled can produce the original image. Once no more 

similarity can be detected, the irreducible facade is 

complete.  

 

 

Figure : (a) Original input image      (b) Irreducible Facade 

 

Outside of our approach, there is considerable room for 

improvement in terms of the varieties of input images our 

algorithm can accurately segment. More specifically, given 

our limiting assumption of dealing solely with frontal 

facades, our approach lacks the versatility to handle angular 

shots of scenes, oblique shapes, and other irregular 

geometries in both the facade and windows.  

For instance, arch windows can be modeled through 

parametric equations and a Hough Transform in 3 

dimensions. Angular shots can be handled either directly or 

can be converted to rectified frontal facades similar to those 

we have used as inputs in this paper.  

In summary, the approach we have presented in this paper 

shows tremendous promise in handling the difficult 

problem of extracting windows from building facades. 

There is tremendous scope for innovation, and we aim to 



address many of the aforementioned limitations of our 

approach in future iterations.  
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