
Structured-Cut: A Max-Margin Feature Selection Framework for Video
Segmentation

Nikhil S. Naikal∗

Berkeley EECS

Abstract

Segmenting a user-specified foreground object in video sequences
has received considerable attention over the past decade. State-of-
the-art methods propose the use of multiple cues other than color in
order to discriminate foreground from background. These multiple
features are combined within a graph-cut optimization framework
and segmentation is predominantly performed on a frame by frame
basis. An important problem that arises is the relative weighting of
each cue before optimizing the energy function. In this paper, I ad-
dress the problem of determining the weights of each feature for a
given video sequence. More specifically, the implicitly validated
segmentation at each frame is used to learn the feature weights
that reproduce that segmentation using structured learning. These
weights are propagated to the subsequent frame and used to obtain
its segmentation. This process is iterated over the entire video se-
quence. The effectiveness of Structured-Cut is qualitatively demon-
strated on sample images and video sequences.

Keywords: Segmentation, matting, feature weighting.

1 Introduction

Segmenting foreground objects has become an essential component
in many video applications. It is necessary for a number of tasks
including video editing and after effects for object removal, object
deletion, layered compositions, etc. It is also useful for computer
vision applications such as object recognition, 3D reconstruction
from video, and compression. In the past, industry heavily relied
on manual rotoscoping, and to this date there still is a need for an
effective, easy-to-use video segmentation tool. This need remains
due to the surprising difficulty of the problem. Video segmentation
shares the difficulties of image segmentation, such as overlapping
color distributions, weak edges, complex textures, and compression
artifacts. While user-strokes based image segmentation has been
well understood, the process of propagating user scribble specifica-
tions to successive video frames is a challenging problem.

These challenges arise because natural video generally contains
several erratic changes that are hard to model and compute. For
instance, large camera movement, motion blur, and occlusions can
cause a lack of object overlap between successive frames. Illumi-
nation changes and shadows can alter the color distributions mak-
ing the foreground indistinguishable from the background. Further,
non-rigid motion of objects in 3D space can lead to confusion in

∗e-mail: nnaikal@eecs.berkeley.edu

precisely tracking the contour of the object in the 2D image pro-
jections. A given video sequence can easily exhibit many of these
challenges. While a single cue might be insufficient, systematically
combining multiple cues might be more efficient at separating fore-
ground objects from background in video.

(a) (b)

Figure 1: Pitcher’s shirt can be separated from background wall (a) us-
ing color model, but separating his black shoe from a background player’s
helmet (b) requires other cues like motion, texture and blur.

Many different kinds of features are generally observed in succes-
sive video frames to aid object selection. Such features include
color, adjacent color relationships, texture, blur, shape, spatiotem-
poral coherence, etc. The relative importance of the features differs
depending on the particular video sequence, the frame, and even
the location within the frame. For example, in Fig 1.a. a simple
color model can be used to distinguish the baseball player from the
background wall, but in Fig 1. b, a different feature such as texture
or blur needs to be used to discriminate the pitcher’s shoe from an-
other player’s helmet. An algorithm that intelligently applies all of
these cues based on specific circumstances will perform better than
one relying only on a subset of these cues or on a static combination
of all of them.

2 Related Work

Many approaches have been taken in interactive video segmenta-
tion. Some approaches focus on either boundary or region infor-
mation only. Agarwala et al. [1] performs boundary tracking using
splines that follow object boundaries between keyframes using both
boundary color and shape-preserving terms. Bai and Sapiro [3] use
region color to compute a geodesic distance to each pixel to form
a selection. These approaches perform well when a single type of
cue is sufficient for selecting the desired object. Many current tech-
niques use graph cut to segment the video as a spatiotemporal vol-
ume. Graph cut, as formulated in [4], solves for a segmentation
by minimizing an energy function over a combination of both re-
gion and boundary terms. It has been shown to be effective in the
segmentation of images [5, 6] and volumes [2].

Boykov and Jolly [4] introduced a basic approach to segmenting
video as a spatiotemporal volume. Their graph connects pixels in
a volume, which implicitly includes spatiotemporal coherence in-
formation. Graph cut is applied using a region term based on a
color model of the pixels under the user strokes and a boundary
term based on gradient. Wang et al. [8] builds on this approach

by allowing users to segment video by drawing strokes on arbitrary
slices of the spatiotemporal volume. While this permits a user to
mark several frames at once, it requires a steep learning curve to
know how to carve the volume so that the right pixels are visible
along the slice. The method uses a global color model based on the
user strokes as well as a local color model for static backgrounds in
addition to gradient values.

In Li et al. [7], users segment every tenth frame, and graph cut com-
putes the selection between the frames using global color models
from the key-frames, gradient, and coherence as its primary cues.
The user may also manually indicate areas to which local color
models are applied. While this method performs well, it requires
the manual segmentation of many frames in addition to corrections.
In methods where the video is treated as a spatiotemporal volume
[2, 3, 4, 8], the only information known for certain about the ob-
ject and background are in the user-marked pixels. This provides
very limited knowledge about the object interior and no knowledge
about the boundary. While [7] is an exception to this, it requires the
user to manually segment many frames.

The approach that closest resembles my method is Video SnapCut
proposed by Bai et. al. [9]. They propose that multiple cues
should be used for extracting the foreground, such as color, tex-
ture, shape and motion. Among these, shape plays an important
role in their method. Further, they evaluate multiple cues both lo-
cally and globally, rather than just globally to maximize discrimi-
nant powers. Inspired by these principals, they propose a video seg-
mentation model of overlapping localized classifiers which contains
features that include color, shape and motion. However, their adap-
tive integration of these features is based on some naive assump-
tions that generally break down in complicated video sequences.
For instance, they highly weight the shape feature which can cause
an overfit and deteriorate the tracking performance when there are
large topological changes in the object’s shape.

2.1 Overview

Similar to Video SnapCut, I present a foreground object segmenta-
tion approach based on overlapping localized classifiers. It consists
of a group of overlapping windows around the foreground object
boundary, each associated with a local classifier which only seg-
ments a local piece of the foreground boundary. Assuming that the
foreground object does not undergo any significant motion, the spa-
tial locations of these classifiers is preserved across the subsequent
frame. The segmentation of this new frame is achieved by aggre-
gating local classification results together. Furthermore, each local
classifier carries local image features that includes two color mod-
els, three texture models and one blur model. The weights of these
features are adaptively learned using structured prediction, with the
positive learning example provided by the implicitly validated cur-
rent segmentation. This process of segmenting and then learning
weights is then iterated over the entire video sequence. In Section
3, I present the framework for segmenting with localized classifiers.
Each classifier includes multiple models for separating foreground
from background, details of which are presented in Section 4. Sec-
tion 5 presents the structured learning method for feature weight-
ing. The method is tested on multiple images and a video sequence
as presented in section 6. I conclude and discuss the approach in
section 7.

3 Video Segmentation Framework

Given an input video sequence, the segmentation process starts by
having the user provide a relatively accurate mask for the desired
object on the first (key) frame, using image-based object selection
approaches. I have implemented a simple GUI that is similar to

Figure 2: GrabCut based GUI for selecting foreground mask. User draws
a box around the foreground object to obtain initial segmentation. Refine-
ment is done via user-scribbles with red representing foreground and blue
representing background.

Figure 3: The red boxes represent the overlapping local classifiers along
the foreground boundary.

Grab Cut to achieve this task, as shown in Fig.2. It only differs from
GrabCut in that I use color histogram models instead of Gaussian
Mixture Models (GMMs) as histogram computation is faster than
Expectation Maximization (EM). Once the initial mask is created,
a group of local classifiers are constructed around the foreground
boundary, which are then propagated onto successive frames to seg-
ment the object. In this section I describe how the classifiers are
initialized and propagated to the next frame for segmentation.

3.1 Local Classifiers for Segmentation

As shown in Fig. 3, given the initial mask Lj for the j’th keyframe
Ij , I uniformly sample a set of overlapping windows W1

j . . .Wn
j

along its contour. The method is general enough to handle multi-
ple contours but for now we assume a single contour exists around
the foreground object. The size of the windows can vary according
to the size of the object, and it is usually 15x15 to 40x40 pixels.
Each window defines the application range of a local classifier, and
the classifier will assign to every pixel inside the window a fore-
ground (object) probability, based on the local statistics it gathers.
Neighboring windows overlap for about 1/3rd of the window size to
allow for topological changes in the object’s contour in subsequent
frames. Each classifier inside the window Wk

j consists of two lo-
cal color modelsMc1 ,Mc2 , three texture modelsM t1 ,M t2 ,M t3 ,
and a blur model Mb each of which are explained in detail in Sec-
tion 4.

It is well known that such segmentation problems can be formulated
using a Markov Random Field (MRF) framework. This framework
is typically used with a single unary and a single pairwise term as

shown below.

E(s) =
∑
i

Ψu(xi) + λ
∑

i,j∈N

Ψp(xi, xj), (1)

where Ψu,Ψp are the unary and pairwise potentials, xi is the i’th
image pixel, and s is the segmentation. Given separable mod-
els and sufficient weighting λ for the pairwise potential, mini-
mizing the energy function E(s) will produce the desired fore-
ground/background segmentation. Thus, foreground and back-
ground sub-models need to be constructed for each local window.

Since each classifier is centered on a boundary pixel, the local win-
dow will contain both foreground and background pixels. These are
used to construct foreground and background sub-models for each
feature type mentioned above. For instance, the foreground sub-
model for the first color model is represented by Mc1(F), and the
corresponding background model is given by Mc1(B). For a pixel
x in the window, its foreground probability generated from the first
color model is computed as:

pc1(x) = pc1(x|F)/(pc1(x|F) + pc1(x|B)), (2)

where pc1(x|F) and pc1(x|B) are the corresponding probabili-
ties computed from the first foreground and background color sub-
models. Similarly, foreground and background pixel probabilities
are computed for all the other feature models. These probabilities
from the generative models are used to construct unary potentials
in the MRF framework (1). The pairwise potentials for each feature
type are constructed using a weighted smoothness function that is
presented in section 4.

By dropping the pixel variable x and with slight abuse of notation,
the segmentation energy function (1) can be augmented with these
multiple unary and pairwise potentials.

E(s) =
∑
i

Ψu +
∑

i,j∈N

Ψp = wTΘ(s), (3)

where w is the relative feature wighting for the composite unary
and pairwise potentials, Ψu and Ψp respectively which are grouped
into Θ(s). These terms are expanded in what follows:

Ψu = λc1Ψu
c1(xi) + λc2Ψu

c2(xi) + . . .+ λbΨu
b(xi),

Ψp = µc1Ψp
c1(xi, xj) + µc2Ψp

c2(xi, xj)+
. . . +µbΨp

b(xi, xj),
w = [λc1 , λc2 , . . . λb, µc1 , µc2 , . . . µb]T.

Since the energy function (3) is still sub-modular and linear in the
combination of multiple unary and pairwise potentials, it can be
minimized using standard graph-cuts. Since window’s overlap, a
few pixels are segmented multiple times. The final labeling deci-
sion on whether such a pixel belong to foreground or background
is taken by counting the number of times the pixel was assigned
the associated label. If this foreground label count is higher than
the background label count, then the pixel is assigned a foreground
label, and vice-versa.

4 Multiple Features

The use of multiple features can help in discriminating foreground
pixels from the background more accurately. The segmentation
framework presented in the previous section allows for multiple
features, and is not restrictive in the number of features used. I
propose the use of six features to construct unary and pairwise po-
tentials. These features are explained in what follows:

Figure 4: Energy of ground truth segmentation is lower than energy of all
incorrect segmentations.

4.1 Color

I have used two color models. The first model is mixture of Gaus-
sians (GMM) for foreground and background respectively. I have
used only 3 Gaussians for each window as the local windows have
a small number of pixels and this number was empirically found to
be sufficient. The associated pairwise term for the color is given by

Ψp
c1(xi, xj) = exp(−βc1

∑
r

‖xi(r)− xj(r)‖), (4)

where β is empirically set and r represents the number of color
channels.

The second model is a color histogram model. In Lab space I over-
segment the local window and construct histogram models for fore-
ground and background. For any given pixel in the window, the
probability of belonging to a foreground or background is based on
the χ2 distance of the pixel’s local color histogram from the cor-
responding histogram models. The pairwise histogram potential is
also constructed using an equation similar to (4).

4.2 Texture

I construct three texture models for each window. The texture re-
sponse of the local image window is found using three texton filter
banks namely: LM, RFS and S filter banks. These texture responses
are then used to construct associated GMM’s for generating the tex-
ture unary potentials. The three pairwise texture potentials are de-
rived again for neighboring pixels using an equation similar to (4).

4.3 Blur

To generate the blur unary and pairwise potentials I use the defocus
map based approach presented in [ref:defocus magnification].

5 Feature Weighting via Structured Learning

Structured learning[10] has become very popular in cases where
there isn’t a single class label for each training instance, but instead
a set of labels. If such labels are independent, then a simple multi-
class SVM can be used for each label, but a more complex case
occurs when the elements of the output vector are dependent. The
binary segmentation problem I have described so far falls into this
category.

As presented in Section 3.1, for any local window Wk, the corre-
sponding user specified segmentation mask sk acts as the single
training instance. Since the associated energy for the k’th win-
dow is minimized with the correct segmentation, the minimizer

Figure 5: The max-margin framework can be used to learn the feature
weights the separate the ground truth segmentation from multiple incorrect
instances.

s∗ = arg maxs E(s) should be equal to the user specified segmen-
tation, i.e, s∗ = sk. Thus, given this ground-truth segmentation,
the constraint on all incorrect segmentations can be given by,

E(sk) < E(sincorrect)⇒ wTΘ(sk) < wTΘ(sincorrect), (5)

as seen in Fig. 4.

Thus, we need to learn weights w that generate at least as low an
energy as that generated by the label configuration in the training
example, sk. However, the inequalities in (5) may have multiple or
no solutions. This is resolved by finding the parameters that satisfy
the inequality with the largest possible energy margin γ, so that the
ground truth labeling has the lowest energy relative to other label-
ings. This max-margin concept serves to regularize the problem and
provide generalization to unseen test data. The margin may be neg-
ative if the original inequality has no solutions. Thus the solution
to the optimization problem,

max
w

γ

s.t. wT(Θ(sk) − Θ(s)) ≥ γ ∀s, (6)

is the necessary weighting needed to separate the ground truth seg-
mentation from all incorrect segmentations as seen in Fig. 5.

6 Experiments

In order to validate the feature learning scheme, I began by testing
the method on the two image windows presented in Fig. 1. For
the window in Fig 6. a., since the color of the background pixels
was uniquely different from the foreground color, it was reasonable
to expect the learning framework to give high weights to the color
models. I reduced the number of features in this case to one GMM
based color model, the LM texture model and the blur model. With
these unary and pairwise terms, the weights learned for the win-
dow are presented in Fig 6. b.. As can be seen in the figure, high
weighting is given to the color unary term as expected.

Now, for the window in Fig 7.a., the foreground shoe of the pitcher
is very hard to discriminate from the background helmet of a differ-
ent player. Thus, color by itself was not sufficient for segmentation.
The weights learned by the algorithm are presented in Fig 7. b. As

Figure 8: Segmentation of the first 10 frames of the gymnast sequence with
the first frame segmented by user using my GrabCut implementation.

can be seen in this figure, a negative weight was learned for the
unary blur potential as the model was very bad at discrimination.
This is contrary to any existing feature weighting scheme that can
not provide appropriate negative weighting for bad models. The
combined unary and pairwise potentials for both cases were mini-
mized using graph-cuts. I have used the max-flow implementation
by Boykov [4]. The ground truth segmentation and the segmenta-
tion on the composite unary and pairwise potential are juxtaposed
in Figs. 6. c. and 7. c. It is clear that the two segmentations are
qualitatively very close.

Extending to Video: Before explaining the extension to video, I
start by presenting the assumptions. (1) In any given frame, the
size of the local windows is set to be large enough that they fully
encompass the object in the next frame, (2) The foreground and
background models learned in one frame can be propagated to the
next frame because the image statistics do not change drastically
in successive frames, and (3) Once the boundary pixels are deter-
mined from segmentation, the pixels within the contour are simply
filled and considered to belong to foreground. Although they seem
restrictive, these 3 assumptions hold in a large number of natural
videos. This method of learning the weights in the current frame
and propagating to the next frame is iterated over the first 10 frames
of the gymnast sequence as presented in Fig. 8. It can be seen that
the mask quite accurately covers the gymnast even in hard to dis-
tinguish regions near her hair and shorts.

7 Conclusion and Future Work

In this paper I have presented a scheme for capturing user speci-
fications for foreground object segmentation in generic video se-
quences. A user specifies the foreground mask in the first frame
of the video using an interactive tool similar to GrabCut. The al-
gorithm then determines the right combination of feature weights
needed to reproduce the same segmentation using multiple features
other than color. Since foreground/background models do not dras-
tically change across successive frames, the weights learned in one
frame can be used to infer the segmentation in the next frame. This

(a) (b) (c)

Figure 6: (b)Feature weights and composite unary and pairwise potentials for window in (a). (c) left: Ground truth segmentation; right: Segmentation
obtained by minimizing composite unary and pairwise potentials with graph-cuts.

(a) (b) (c)

Figure 7: (b)Feature weights and composite unary and pairwise potentials for window in (a). (c) left: Ground truth segmentation; right: Segmentation
obtained by minimizing composite unary and pairwise potentials with graph-cuts.

process of segment-then-learn is iterated over the entire video se-
quence and has shown promise to be the basic algorithm to improve
foreground object segmentation.

In the future, I plan to improve the quality of the segmentation by
incorporating a contour tracker, and a shape feature that I suspect
will drastically improve the results. Currently the algorithm runs
at an average rate of 50 seconds per frame with a combined Mat-
lab/C++ interface. I plan to speed this up by porting local window
computations to parallel processors of a GPU. Finally, I plan to in-
corporate a matting algorithm such as the Baye’s matting approach
to cutout foreground objects from challenging videos and compos-
ite them on other backgrounds. This would fully demonstrate the
capabilities of the multiple feature selection scheme for accurate
foreground object segmentation in video sequences.

References

[1] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz.
Keyframe-based tracking for rotoscoping and animation. SIG-
GRAPH, 23(3):584591, 2004.

[2] C. Armstrong, B. Price, and W. Barrett. Interactive segmenta-
tion of image volumes with live surface. Computers and Graphics,
31(2), April 2007.

[3] X. Bai and G. Sapiro. A geodesic framework for fast interactive
image and video segmentation and matting. ICCV, pages 18, 2007.

[4] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images. In
IEEE ICCV, pages 105112, 2001.

[5] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping. In
ACM SIGGRAPH 2004, pages 303308, 2004.

[6] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interac-
tive foreground extraction using iterated graph cuts. In ACM SIG-
GRAPH 2004, pages 309314, 2004.

[7] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste. ACM
Trans. Graph., 24(3):595600, 2005.

[8] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen.
Interactive video cutout. ACM Trans. Graph., 24(3):585594, 2005.

[9] Xue Bai, Jue Wang, David Simons and Guillermo Sapiro. Video
SnapCut: robust video object cutout using localized classifiers. In
ACM SIGGRAPH 2009.

[10] Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y.
Support vector machine learning for interdependent and structured
output spaces. In Proceedings international conference on Machine
learning, 2004.

