
User Directed Parameter Variation Applied To Images

Eileen Bai Philip Ly

University of California, Berkeley

Figure 1 An image progression of a landscape using our method.

Abstract:

This paper describes a new approach for user interaction with
image manipulation that incorporates a variation of genetic
programming. The approach involves an implementation of a new
type of interface for generating pictures with variable parameter
changes as well as introducing a new take on the creative process
for image manipulation. The main features of our interface
include various filters to apply to images, side-by-side comparison
of multiple images, and a way to choose the best image that will
survive to the next round of manipulation. The idea of “best”
images and “survivors” is based on the idea of genetic
programming work done by previous researchers where images
that the user favors will continue in the progression thereby
spawning new generations of what would appear to be even better
images. Using this interface, it becomes easier to experiment with
different outcomes which we then analyze along with user
experience.

Keywords: Genetic programming, evolutionary algorithms,
comparisons, user interface, photo manipulation.

1 Introduction:

The definition of a "good" image depends on many factors.
These factors can range from color, subject matter,
mathematical rules of composition, as well as being
subjective to the particular user. But perhaps one of the
most principal ideas a user uses when deciding whether or
not an image is good, is by using the process of
comparison. Most people will decide whether or not they
like an image by consciously or subconsciously comparing it
to other images they have seen before. In this paper, we
hone in on this comparison process to try and improve the
efficiency as well as have the user generate good images
that constantly evolve.

Problem: There is a user who wants to use a
photo manipulation tool to alter an image but
does not necessarily have an exact idea of
what he wants to change in terms of the filter
and parameter values he want to apply. In
addition, this user is not a photo manipulation
expert which means that their options can be
pretty limited as the learning curve for good
parameter input can be difficult. This process
of changing parameter values also takes a
lengthy amount of time since it involves multiple
iterations of trying new values and choosing the
values that produce the most appealing results.
The user's goal is to generate the best looking
image using his limited knowledge of photo
manipulation tools.

This is a problem that we came across based on our own
experiences with using image manipulation tools and
software. We focused on the idea that users would
appreciate a tool to generate an assortment of images all
with slight parameter variations in order to choose which
one they liked the most and progress from there.

Our idea is based upon the evolutionary algorithm in
computer science called “genetic programming.”

Genetic programming is an automated method
for creating a working computer program from a
high-level problem statement of a problem.
Genetic programming starts from a high-level
statement of “what needs to be done” and
automatically creates a computer program to
solve the problem.

--Genetic-programming.org

In our case, the “high-level problem statement” is described
as how to have a user generate good images efficiently
while incorporating a computer algorithm to produce
randomness. Random variation is necessary to our
approach because in order for images—as well as subjects
in nature in general—to evolve, there must be a constant
production of feature variation that forces each of the
images to compete against each other and therefore
enforce the Darwinian concept of “survival of the fittest.”

Currently, the leading photo manipulation tools only allow
one image to be seen at a time. In this way, it restricts
progress and reduces efficiency because a user cannot
view many different options in one single window. That
being said, it is still possible for a user to compare images,
but the process would involve tedious manual manipulations
to generate different variations of images and then
reposition all the windows in order to see everything in one
screen. This is one of the main problems our approach
aims to improve upon.

Our approach consists of two parts. The first is the interface
that the user uses to load images, apply filters and
variations, choose their favorite output, and repeat the
process until they reach a final image they are satisfied with.
We incorporate the idea of interactive evolution since while
the computer generates the randomness, the user is the
one that drives the creativity and final direction. The image
variations that are produced per round can be considered
the current generation while the one picture the user
chooses out of all of them can be considered the “fittest”
that spawns new children by moving onto the next round.
The interface was created using the Matlab user interface
creation program as shown in Figure 2.

Figure 2 Snapshot of our user interface in action.

The second part of our research involves analyzing the
different results generated and testing the experience of
users with various photo manipulation backgrounds to see if
this is a technique worth more investigation.

Further into this paper we will provide a more detailed
discussion of our particular algorithm along with an
explanation of the filters we chose and how we calculated
random parameter variations.

2 Related Work and Background

The general idea of genetic programming is an idea that has
its roots much further back in other computer science fields
such as artificial intelligence. The overall idea involves an
algorithm that takes as input a very large amount of random
variations of which only the strongest variants survive to
produce more and more children.

Specifically, genetic programming and its applications to
image processing has already been explored by previous
researchers such as Karl Sims and Ken Musgrave. A
general method of finding the best parameter values to
apply to images is also an area that has been researched by
the Siggraph submission “Design Galleries: A General
Approach to Setting Parameters for Computer Graphics and
Animation.”

Although our work was heavily inspired by previous genetic
programming and parameter variation research, the end
result has many different qualities and accomplishes quite a
different goal.

Genetic images work by Karl Sims is similar to our work in
that it deals with user interactive evolution of images,
however the images that he started with are quite different
from ours and the algorithm he uses for evolution alters the
actual structure of the image instead of just the filters being
applied to it as in ours. Sims work was originally unveiled
as an art exhibit where images were placed generated on
multiple screens and users stood in front of the images they
liked the most. The computer would then take the
information from which images were the favorites and
spawn offspring off of those.

Sims eloquently describes the relationship between human
and machine in interactive evolution which strongly
motivated our work:

This interactive installation is an unusual
collaboration between humans and machine:
the humans supply decisions of visual
aesthetics, and the computer supplies the
mathematical ability for generating, mating, and
mutating complex textures and patterns. The
viewers are not required to understand the
technical equations involved. The computer can
only experiment at random with no sense of
aesthetics -- but the combination of human and
machine abilities permits the creation of results
that neither of the two could produce alone.

–Karl Sims

In addition, our work is also not as heavily based on finding
good parameter values for image manipulation as the
“Design Galleries” paper submitted to Siggraph in '97. We
do not focus on what the optimal values for parameter
modification are and we do not try and describe any
mathematical models or algorithms to learn these values.

4 Application

4.1 Procedure

1. Load up the original image to be
manipulated.

2. Pick the filter to apply.
3. The GUI then displays the “truth” image

along with a few variations. The user then
picks which variation they like the best to
save. This is the one they want to move
forward with.

4. The user then repeats the process of
applying filters until they reach an image
they are finally satisfied with.

Throughout the process of filter application, the user can
also keep applying the same filters to see more specific
variation. The important point to note is that even if the user
does not necessarily like the final picture, it is the process
they went through and the visual cues they absorbed along
the way that gives them a better idea of what direction they
want to go in if they choose to try and re-manipulate the
image.

4.2 Interface

Our interface was created using Matlab's graphical user
interface creator (GUIDE). An example can be seen in
Figure 2 of which the main features include:

1. Load Picture: loads the original picture that the
user wants to modify.

2. Filter List: list of filters to apply to the image.
3. Filter Arguments: parameters each filter takes as

input.
4. Image Outputs: four different variations of the filter

and parameter combination. The first output on the
left is the “truth” which has no variation.

5. Next Round: save the selected picture to use it in
the next round.

6. Most Recent Picture: the most recently selected
picture; consequently the one being manipulated.

7. Final Picture: displays the final image whenever
the user decides he wants to end the process.

8. Save Picture: save the “Most Recent Picture.”

4.3 Filters

We chose the filters based on a combination of what we
thought were the most common changes made to a picture,
the difficulty of writing the filter, as well as what we thought
would create interesting variations.

A complete list and explanation of our filters is as follows:

Scale RGB: Given 3 arguments for red, green, and blue
scaling factors, we can scale each color channel
accordingly in the picture. We varied each channel by a
fraction after the scaling occurs.

Scale HSV: Given 3 arguments for hue, saturation, and
brightness, we can alter the image from RGB space to HSV
coloring. We applied variance to the image after it is

converted to HSV space.

Bold Edges: Given a single argument, it is passed to the
threshold variable for the edges() command in MATLAB.
We then darken the pixels where edges are found in the
image and we vary the threshold argument only fractionally.

Blur: Given an argument in the first field, we can use that in
the sigma variable in MATLAB’s Gaussian filter function. We
can then run that low-pass filter on the image to blue the
image. We vary that sigma value to obtain different
magnitudes of blurring.

Highpass Filter: Similarly to the blurring filter, we take in an
argument for the sigma variable in MATLAB’s filter function
and then subtract the blurred image from the original image
to obtain the high-pass filtered image.

Pixelize: Taking in a single argument, we define a sampling
block size and gather color information from the pixels that
the sampling block covers. We then average those values
and apply them to the corresponding pixels in a new image.
We vary the input argument to get varying sample block
sizes.

Scale Contrast: Passing in one argument, ranging from -1 to
1, we are able to increase or decrease the contrast of the
image. We apply a fractional, random factor to the input to
obtain varying contrast levels close to the desired input.

Scale Brightness: Input one argument to adjust the
brightness of the most recent picture. We simply vary the
argument by a range of .4.

4.3 Parameter Variation

To decide on the amount of variance we would apply to
each filter, we ran several tests on different images. We
found that it was more relevant to have only minimal
alterations between variants to have more useful
comparisons. Thus we have specified ranges for each
filter’s arguments to adjust images accordingly.

5 Results

[see pictures]

For research, we had several people test our interface, both
familiar with image manipulation and not. We then had them
take a survey of what they liked and didn’t like about it.
Reviewing the answers, we found that people who had
more experience preferred it and wouldn’t mind seeing it
implemented better. They found it helpful and more efficient
as more pictures could be seen at once and they
appreciated the fact that they had several options to work
with.

On the other hand, users with less photo editing experience
were relatively confused by the interface. They didn’t feel
comfortable with the many filters at first and had a harder
time learning the functionality.

6 Limitations

A big factor in this project was utilizing better computing
power from the original project, Genetic Images by Karl
Sims, from 1993 to generate several variations of images
per generation. Not requiring what 1993 called
supercomputers, we are able to apply filters to several
images, but processing power and RAM still prove to be an
issue. Running on smaller-sized images works rather
instantaneously. However, once applying filters on images
of 14 megapixels, the runtime becomes unreasonable.
Especially for a machine without enough RAM. 4 image
variations at 14 megapixels each quickly took up 5-6GB of
memory.

Another limitation we felt we had was screen real estate. To
compare several photos next to each other, displaying them
at a lower resolution doesn’t allow the user to check for all
the minute details on every variation. This also does not
allow the user to completely determine whether a specific
variant is better than the other. With more screen space,
larger previews of images would be possible as well as
more than just four variant selections.

Developing filters also proved to be quite a limitation
because with a limited selection of tools to apply to images,
we could only get so many variations. Implementing
Photoshop API could’ve helped here.

7 Future Work

Our prototype interface opens up possibilities in several
areas of image editing. A lot of improvements can be
implemented into program as well. Taking plenty of
feedback from our tested users, we realize how much the
design can play a role in how appealing the interface can
be. The users we tested seemed to be interested in the
many options they could see at the same time and compare
to get the best result.

On the current interface itself, there are several
improvements we could do to provide a better overall
experience for the user. The most obvious would be to
generate more variations with one click to allow the user to
see more images and compare them. Ideally, we can
optimize the processing and memory usage by distributing
each variant job to a machine on the cloud. That way we
aren’t limited by CPU and RAM. Not only would applying
filters be parallelized, but the user wouldn’t have almost
infinite memory to generate as many variants as they
desired. With more images to compare with, the selection
process becomes even more efficient. We know we won’t
be showing the full resolution of each image. To increase
the performance of this, we can down-sample the images of
the variant previews, which will decrease runtime and save
memory space.

If we develop more filters to work with the interface, we
should be able to gather more variations. More of these
functions will allow the images to grow and evolve into
possibly, more interesting images. It would open up the
computer and the user to more creativity. Within these filter
functions, we could also implement a feature to pass in
default arguments without user input. This would enforce
our purpose of reducing precise argument knowledge even
more and make image manipulation seem more user
friendly. Of course we should also add the actual arguments

that are used for each variant to encourage the user to learn
what arguments cause what effect.

Another feature we could have this implemented on is giving
several variations on local manipulations. Applying to
content-fill aware, which uses the Patch Matching algorithm
and doesn’t give the same result every time, we can
generate several different results of patch matching all at
once to compare among each other. This could even work
for selection tools where the area of selection slightly varies.
Much like what we have already, the user could just select a
generated result and continue from there.

Another interesting feature to add would be real-time
variation. To have variance applied to real-time tools such a
the brush or eraser. In this case, we would vary the path of
the stroke a little. With several different strokes generated,
the user can continue on from a selected option.

By applying a machine learning algorithm, we can train the
program to apply arguments other users have found
aesthetically pleasing depending on the type of photo used

as the input.

More feedback on the advantages and disadvantages of the
process would be helpful as well which can be easily
gathered through more research and surveying.

8 Conclusion

Our method can be effective if executed correctly. As seen
in the amount of future work there is, this project can be
very expansive and applied to various techniques. However,
the central idea remains. Users Enjoy the fact that they can
quickly compare photos next to each other and generate
more images closer to the desired result. It seems to apply
mostly to people who already have photo manipulation
experience. Although, the many, generated results can
inspire many new users to start using image manipulation
software. Allowing the computer to be “creative” as well
saves time and can make editing images more efficient.

Figure 3 Two different variations by two different users of a manipulated image.

Figure 4 Three different variations by three different users of a manipulated image of a flower.

Figure 5: Two different variations by two different users of a manipulated image of a landscape.

Figure 6: One variation of a manipulated image of a building.

Figure 7: Image evolution

References

[1] MARKS, J., ANDALMAN, B., BEARDSLEY, P.A.,
 FREEMAN, J., GIBSON, S., HODGINS, J., KANG, T.
 Design Galleries: A General Approach to
 Setting Parameters for Computer Graphics and

 Animation. SIGGRAPH '97 proceedings, 1997,
ACM
 Press/Addison-Wesley Publishing Co. New York, NY,
 USA.

[2] MUSGRAVE, KEN. Genetic Programming, Genetic Art.

http://www.kenmusgrave.com/mutatis.html

[3] SIMS, KARL, Computer Graphics (SIGGRAPH '91
 proceedings), July 1991, pp.319-328.

