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Figure 1: Our data-driven approach for automating crops.

Abstract

In this work, we take a data-driven approach to automate image
cropping. We first gather data of real people’s cropping tendencies
by posting image cropping tasks on Mechanical Turk. Next, we ex-
plore this data and identify four features that captures both global
and local aspects of people’s cropping patterns: center-surround
histogram, multi-scale contrast, brightness, and saturation-value
product. We then train a model to learn the weights of these fea-
tures on our data. Finally, we this model to automatically generate
crops for other input images.
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1 Introduction

Image cropping is a frequent and relatively simple form of image
manipulation that can become a tedious task for large sets of pho-
tos. Users crop images for a variety of reasons: to resize an im-
age, emphasize a subject, remove distractions/unwanted elements
from the image, improve the overall composition of the image, etc.
Moreover, research based on user studies as well as the human vi-
sual system has shown that a strong correlation exists between the
composition of an image and the aesthetic value perceived for that
image [Savakis et al. 2000; Peters 2007; Obrador et al. 2010; Ceros-
aletti et al. 2011]. Many retargeting methods ([Suh et al. 2003; San-
tella et al. 2006; Luo 2007]) address these issues. However, while it
is true that cropping can be an intermediate step in a retargeting al-
gorithm, there are several distinctions that sets cropping apart from
a retargeting subproblem. The main distinction is that the main con-



straints of the retargeting problem is defined in terms of the output
image dimensions, i.e. we want to resize the image while preserv-
ing salient regions of the image. By this formulation, the problem
cannot be solved by cropping alone and various methods of image
manipulation [Rubinstein et al. 2008; Wang et al. 2008; Rubinstein
et al. 2009] are introduced to overcome the limitations of simple
cropping or rescaling.

Often times, however, the user is less concerned about the exact
dimensions of the final image, and more interested in emphasiz-
ing a subject or removing extraneous/undesired parts of an image
without altering the remaining content of the image. For exam-
ple, photographs for ads may need to be cropped to emphasize the
subject while preserving the integrity of the resulting photograph.
Thus, we are interested in analyzing the underlying psychology of
people’s cropping behavior and to automate the task of cropping.

2 Related Work

There has been much previous work in automated cropping algo-
rithms. Suh et al. [2003] uses low-level saliency detection to au-
tomatically create thumbnail croppings. Such methods evaluate re-
gions of photographs based on low-level features such as bright-
ness, color, etc. As we mentioned earlier, such features often miss
regions in the photograph that are of semantic importance. In an-
other approach, Santella et al.[2006] finds ”regions of interest” in
the photograph by following the users’ gaze for that photograph.
This overcomes the loss of semantic information, but it places bur-
den on the user by requiring inputs of their gazing pattern. Luo et
al. [2007] presents a method for detecting the main subject, which
it uses to create a belief map about the photograph content, and then
finds the optimal window for that subject. However, this method re-
quires a distinct subject, and many photographs, such as landscapes,
lack a single subject.

In the field of psychology, there has been recent research on spatial
aesthetics, which reveals that general composition “rules” like the
golden rule of thirds–which many automated algorithms incorpo-
rate into their computation–lack scientific data supporting its claims
on visual appeal [Palmer and Gardner 2008]. Their experiments
with human subjects show that deeper principles such as “inward”
and “center” bias provides a different and more accurate model of
people’s preferences in composition [Palmer and Gardner 2008].
Such findings inspired us to investigate whether we can gain better
measures for evaluating the composition of a photograph by ana-
lyzing real humans’ cropping patterns.

3 Methods

3.1 Collecting Data for Cropping Preferences

We gathered all of our data through Mechanical Turk, where we
posted many independent cropping tasks. These tasks presented
the worker with an embedded cropping interface and asked them
to “crop the image...so that it looks the most visually appealing.”
Samples of photographs that croppers were asked to modify are
shown in Figure 2.

We also posted corresponding voting tasks for each crop because
Little [2010] and Bernstein [2010] showed that incorporating such
peer evaluation yield more reliable data from Mechanical Turk.
When a worker submitted his crop, our application automatically
posted five voting tasks for that particular crop. Each of these five
tasks displayed the original photograph and the cropped photograph
(the order that these two images were presented was randomized)
and asked the worker to select the “most visually pleasing” image.

We removed the crops that were rejected by a majority of the vot-
ers; this allowed us to filter out “bad” crops from lazy or malicious
workers. We ran two batches of this experiment on Mechanical
Turk. At the end of our second experiment, we had cropping data
for 65 different images, with about 25 crops per image. To aggre-
gate the crops for an image, we superimposed the cropped regions
and visualized them as a normalized heat map as shown in Figure
2.

Figure 2: Sample original photos (left) and their aggregated crops
(right).

3.2 Automatic Cropping

Using the crops obtained from Mechanical Turk, we use a data-
driven model for automating cropping for an arbitrary image. We
first needed to reduce the image to a set of features that covers
both global and local information of the image in order to capture
the “cropping function” well. We explored several features repre-
sented as a grayscale image normalized to [0,1] and compared to
the ground-truth crop maps. Features that showed little or no corre-
lation to the crop maps were discarded. We trained our final model
with four features, which we describe below.

3.2.1 Center Surround Histogram

Liu et al. [Liu et al. 2007] introduces the center surround histogram
feature that describes the saliency of an image region. It captures
the values of the surrounding region of a pixel and can be viewed
as a global feature in which each pixel depends on a large number
of neighboring pixels. To derive a center surround histogram map,
we first find the chi-square distance between the RGB histograms
of a rectangle centered at the pixel, and a surrounding rectangular



contour of an equal area, for every pixel. We calculate these dis-
tances for different aspect ratios and scales of rectangles and select
those that maximize the chi-square distance. The distance values of
the selected rectangles are then summed and normalized to produce
the final map. Although we saw some correspondence between this
feature and our crop data, there were conflicting cases as well. Ex-
amples of these maps are shown in 3.

Figure 3: From top to bottom, Original Image, its center surround
histogram and its crop map. Left: Strong correlation with crops,
Right: Weak correlation with crops

3.2.2 Multi-Scale Contrast

By summing the contrast of the image at multiple scales, we capture
more global information about the image. Our multi-scale contrast
map is the sum over an image-pyramid of 5 images. Examples are
shown in Figure 4.

3.2.3 Brightness and Saturation-Value Product

Our brightness map is simply a normalized grayscale image of the
input image. For saturation, we chose to multiply the saturation
channel with the value channel to remove noise from photos taken
at low-light conditions. Examples of the latter are shown in Figure
5.

3.3 Learning Feature Weights

The task of the machine learning framework is to determine the rel-
ative importance of the four features discussed above in cropping.

Since each of the training images has a different set of feature maps,
we use a Conditional Random Field (CRF) to model the depen-
dence of the optimal crop on the features. We refer to [Murphy
2001] and [Klinger and Tomanek 2007] for the theory of CRFs.
The underlying graph for the CRF is an Ising model-like grid of
pixels, with edges only between adjacent pixels in the image.

Figure 4: From top to bottom, Original Image, its multi-scale con-
trast and its crop map. Left: Strong correlation with crops, Right:
Weak correlation with crops

Figure 5: From top to bottom, Original Image, its saturation and
value product and its crop map. Left: Strong correlation with crops,
Right: Weak correlation with crops
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k=1 are the weights for the features. The primary goal is to
estimate these weights.

We can also model the edge potentials as functions of the features
at the two pixels, but it is not clear exactly how this can be mod-
eled, especially since the crop boundaries (where the pixels change
states) do not correspond well to the existing features. Hence, we
simply modeled homogenous edge potentials of the form:
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We did not implement estimation of {p1, p2} due to time limita-
tions. Instead, we chose these to be empirical estimates from the
ground truth, with p

n

1 equal to the fraction of edges with same val-
ues of the end pixels (since the ground truth image is a normalized
gray scale map, we threshold it first to a binary image for this pur-
pose) and p

n

2 to be the fraction of edges with differing values of end
pixels.
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We implemented a simple gradient descent scheme to estimate w.

w

⇤ = argmax

w

L(w, D)

For each step of the gradient descent we need to compute the node
marginals P (c

i

|I; w) under the current model for each image. This
was done using a loopy belief propagation algorithm from open-
source Matlab Toolbox UGM [Schmidt 2007].

3.4 Predicting the best crop

Given a new image I we would like to predict the best crop of this
image using the previously learned weights w. The problem is now

C

⇤ = argmax

c

P (C|I; w)

This is a very high dimensional (equal to number of pixels in the im-
age) optimization problem. We resized the image, as in the learning
phase, to 80x60. For maximum likelihood decoding we used Loopy
decoding from the UGM toolbox.

The obtained most likely crop map (see Figures 6b, 6f, and 6j) is
generally a connected white region of irregular shape. We can find a
simple bounding box for this region, but it may be arbitrarily large,
which is not useful. Hence, we try to find a small enough bounding
box that covers about 90% of the pixels with c

⇤
x

= 1. We first find
the centroid of the raw crop map, and then in each iteration grow
the current bounding box in one of four directions (by adding a row
to the top or bottom or a column to the left or right) depending on
which addition gives the maximum number of white pixels.

4 Results

Our resulting crops are shown in Figure 6. To evaluate, we define a
“goodness” metric as follows the mean of ground truth values in the
cropped region. This is reasonable because if a crop is larger than
the most bright region in the ground truth map, then the resulting
“goodness” score is small. With this definition, the scores for our
images shown in 6 are shown in Table 1.

Input Image Crop Goodness Score

Eiffel Tower (Figure 6a) 0.77
Flower (Figure 6e) 0.27
Fish (Figure 6i) 0.71

Table 1: “Goodness” scores of our generated crops.

We resized the images to 80x60 for a reasonable computation time.
This size has 4800 nodes. The convergence was extremely slow,
and the derivative reduced by one order of magnitude after 10 iter-
ations. The learned (normalized) weights for one training set of 60
images are tabulated in Table 2.

Features Weights

Center-Surround Histogram 0.36
Multi-Scale Contrast 0.22
Saturation-Value Product 0.24
Brightness 0.18

Table 2: The learned (normalized) weights for one training set of
60 images

5 Discussion

In summary, we collected cropping data for a number of images
using a public domain crowd-sourcing platform. We devised a CRF
model for image cropping based on four image features, both local
and global. We trained our model with the obtained data, and tested
it with new images. We obtained reasonable results.

We found that identifying features that apply to an arbitrary photo-
graph to be extremely difficult. As we explain with the figures in
the previous sections, for every feature we explored, there seemed



to be some correlation with people’s cropping patterns, but some
cases directly contracted the general trends. This suggests that we
may need to classify photographs into categories that reduce some
of the variance of such features. Moreover, Our model assumes a
linear relationship among the features, which may be an oversim-
plification of the relationships among the features in the real world.

6 Future Work

For future work, we will be working on finding more robust image
features for the model. Specifically, we will need to devise features
that capture not only the salient object but also the region around
it. Further, we expect the weights of the features to be slightly
different for different categories of images. Therefore, we need to
train the model separately for these categories. Some categories to
explore are landscapes and subject vs. no subject. Also, we will
be working on improving the model itself, by trying different forms
of dependence of the node and edge potentials on the features. We
intend to follow an approach similar to [Pietra et al. 1997].
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Figure 6: Results. From left to right: original photograph (a,e,i), our crop mask (b,f,j), final crop (c,g,k), ground truth aggregated crops
(d,h,l)


