
Sprite Replacement and Stylization

Aaron Eidelson∗

UC Berkeley, Computer Science
Dustin Shean†

UC Berkeley, Computer Science

Abstract

This paper is inspired by previous work on video sprites. A sprite
is a two-dimensional image or animation that is integrated into a
larger scene. We want to explore methods of creating sprites of a
player, and inserting them into an already existing video game. The
problem of video game sprite replacement can be split into both a
user interface problem and a stylizing problem. We hope to address
both of these problems with our system.

1 Introduction

In recent years video games have become a major source of enter-
tainment. A survey released this year showed that the number of
video gamers has surpassed the number of movie goers in Amer-
ica. “Almost 64 percent of Americans have played a video game in
the past six months versus only 53 percent who have gone out to
see a movie, according to a report from market research firm NPD
Group.” 1 One might ask what makes gamers want to spend ex-
tended amount of time in a virtual world? Many would say it is
to escape into another world, yet films are also able to capture this
theme. We, along with many others, believe the ability to reach an
achievement in games is what makes them more entertaining than
movies. This fact leaves us trying to answer the question of what
can make gamers more enticed to play the already popular games?

Our approach is motivated by the lack of personalization in most
games. Games based on virtual items and in-game character cus-
tomization have become increasingly popular in recent years. But
despite market trends and the increasing quality, reliability, and
prevalence of capture devices (such as microphones and cameras),
there is surprisingly little in the way of automatically customizing
games to fit the player. We think that using these capture devices
to insert the player into the game is a natural next step for the gam-
ing industry, and will keep players more interested and emotionally
engaged.

For exploring possible user interfaces and methods, we chose to
build off of the Open Sonic game (or Sonic for short). Sonic is
a platform side-scrolling game in a pixel art sprite style. While a
sprite can be just about any image that is part of a larger scene,
pixel art refers to a specific type of sprite typical of most games
from the late 80’s and early 90’s, where the sprite is drawn by hand.
This style originates from hardware limitations of the early gaming
industry imposing low resolutions for sprites, but has since been
adopted by game makers seeking a retro style, or indie games look-
ing to set themselves apart. An important part of our approach is
stylizing the image so that it looks as if it were drawn by an artist
for placement in a pixel art sprite game.

(Note: Throughout the rest of this paper, sprite will be used inter-
changeably with pixel art sprite)

2 System Overview

This paper provides a system for inserting images of a user into a
sprite game. The system is formed by five stages:

∗aeidelson@gmail.com
†shean.dustin@gmail.com
1http://news.cnet.com/8301-10797 3-10245437-235.html

Input The user captures images of him or herself performing a pre-
set list of actions.

Template replacement Images of actions being performed are
mapped by the user to the pre-defined actions.

Preprocessing Images are prepared for stylization and insertion
into the game. This includes matting, image fitting, and color ad-
justments.

Stylization Images of the user performing actions are scaled to the
correct size and stylized to fit the look of the game.

Image transfer The modified images of the user are inserted into
the correct sprite file, replacing the original game content.

3 Input

In our system, the user is able to choose from using either images,
videos, or a combination of the two as input (see Figure 1). For
ease during the pre-processing stage of the pipeline, we tried to act
in accordance with the following recommendations:

• Images and videos should be taken against a solid background

• Images and videos should be taken at the same time of day or
lighting

• The user should not wear any clothing that is the same color
of the background

• Videos should be short in length

Good results will be more difficuilt to produce if the above recom-
mendations are not followed.

Figure 1: Example input photo



A limitation of our current implementation is that the user interface
only works with images as input. However, video can be easily
converted into a sequence of images for input into our system.

4 Template Replacement

Figure 2: Template replacement interface. On the top is a list of
selectable actions. After the action is selected, the Sonic reference
images appear on the right and possible replacement images ap-
pear on the left. Entering the file indicies in the text fields creates a
mapping from the user’s images to the Sonic images to be replaced.
Pressing the “Apply” button creates the mapping, and pressing the
“Run game exporter” button begins the stylization and image trans-
fer steps.

Template replacement is a manual stage of the pipeline that occurs
in the user interface. In this stage, the user clicks through the known
actions (12 actions in the case of Sonic), and matches their input im-
ages with the static reference images (see Figrue 2). This step has
the most effect on the end output of our system, so it is important
to keep the interface as simple and clear as possible to avoid user
errors.

A user-facing optimization that we found was neccesary in our in-
terface was to allow users to replace images by just referencing
the images through numbered indexes instead of typing the entire
filename. Once we added this feature we saw a decrease in the am-
mount of time for more willing users to find the best match. When
trying to find the best match, the system is programed to allow the
user to replace an already replaced image with a better match. In
order to provide this functionality the static Sonic action images are
always going to be displayed even if it was already replaced.

In our “Future Work” section, we note ways that we can still allow
for the creative input of the user, while speeding up the matching
process.

5 Preprocessing

This stage requires the most work from the user, but we believe
there are many ways we can automate the most time consuming
tasks. Please see the “Future Work” section for details.

5.1 Alpha Matting

Alpha matting is when there is a construction of an alpha channel,
which is used to decipher what part of an image is in the foreground

versus the background. During this stage the user must input infor-
mation depicting this foreground and background difference, thus
defining an alpha channel, for each image that was chosen by the
user during the Template Replacement stage. Currently the user
uses Adobe PhotoShop to construct the alpha channel, producing
an image similar to Figure 3.

Figure 3: An alpha matted picture of Aaron performing the
“falling” action for replacement of the Sonic sprite. The check-
ered background represents areas of the image with an alpha of 0,
whereas colored parts of the image have an alpha of 1.

5.2 Image Fitting

After the image is matted, it must be scaled and cropped to the
correct proportions. In the case of the Sonic game, the image must
be proportional to 40x45, and the person should take up almost the
entire height of the image while standing.

5.3 Gamma, Contrast, and Brightness Adjustment

Images taken, even in the same location with the same camera, can
exhibit very different lighting effects. This isn’t especially notice-
able when just viewing the images, but it becomes a problem when
sprites are played in rapid succession throughout the playing of a
game. Manually adjusting the gamma, contrast, and brightness of
each sprite image to match a benchmark image produced better.

6 Stylization

We will rely on a number of stylization heuristics observed across
all game sprites to automate the process of converting a high reso-
lution true color image to match the style of a game sprite.

6.1 Properties of a Sprite

When examining sprites (Figure 4)XXXXXXXXX, it is apparent
they share a number of attributes.

• First, they look very pixelated. This is a byproduct of up-
scaling from a very low resolution. But despite their low-
resolution nature, it is still very clear what the pictures depict.



Figure 4

• Second, each sprite is made up of a relatively small number of
colors. This keeps the sprite from looking too busy and gives
it more of a cartoon appearance

• Third, authentic sprite games operate in the 8 bit color space.

6.2 Scaling

Figure 5: The result of scaling a test image from full-size to 40x45,
using a nearest-neighbor scale.

As previously stated, sprites generally have a very low resolution.
In the case of Sonic, this resolution is 40x45pixels. As a first step,
the input images are scaled to the correct sprite size (Figure 5).
This is done as a nearest-neighbor scale, as we want to preserve
hard edges and color regions.

6.3 Clustering Algorithm

While our image is the correct size, it contains too much detail. In
our experience, an image looks odd and out of place when inserted
into Sonic after only a scale. To remedy this, we will return to our
second property of sprites; we must reduce the number of colors
that make up the sprite. One of the most well-studied ways of doing
this is through a clustering algorithm, and we decided to use k-
means clustering. Our application of the k-means algorithm is as
follows:

We define the distance between two colors as the least squares dif-
ference in LAB space.

Figure 6: A visual representation of k-means clustering. From left
to right, Image one: Initial means are chosen, Image two: Pixels
are assigned to the closest cluster, Image three: Cluster mean, Im-
age four: The process is repeated

1. Pick an initial mean color for each cluster

2. Assign each pixel to the cluster with the closest mean color

3. Re-calculate color means of each cluster based on the pixels
belonging to that cluster

4. Repeat 2 and 3 until convergence

(see Figure 6)

There are two items we must supply to this algorithm: the number
of clusters and an initial mean for each cluster. We decided that
the number of initial clusters should be supplied by the user. As
for the initial means, we wanted to pick means which encouraged
clusters with commonly occurring colors, but discouraged making
the initial means of any two clusters too similar. We feared that if
two initial colors are too similar then most of the detail that humans
deem important (i.e. facial features) would be averaged out.

To try and solve this problem, we first tallied up every color occur-
ing in the image, and then applied a scoring equation to produce a
score for each color:

d = minimum distance from clusters chosen so far (1)
score = log(# of occurrences + 1) + c · log(d+ 1) (2)

c is a user-defined constant, and the logs serve to mitigate the effects
of a large number of occurrences or minimum distance. At each
iteration of picking a new cluster mean, the scores of the remaining
colors to be considered are re-scored and the color with the highest
score is chosen and removed.

In practice, because we are dealing with such low resolution im-
ages, varying c gave unpredictable (but different) results. Please
see the “Future Work” section for ideas on helping the user pick
appropriate values for the number of clusters and c.

After the clustering algorithm is done, we re-color each pixel to the
mean color of the cluster it belongs to.

6.4 8-Bitification

Most RGB images today are represented in 24 bits (8 for red, 8
for green, and 8 for blue), producing over 16 million colors. But
as mentioned earlier, authentic game sprites use 8 bits for color,
making 256 colors. We scale and round each pixel’s color to using
3 bits for red, 3 bits for green, and 2 bits for blue, and then re-scale
the values back up to using all 24 bits for display. This has the effect
of snapping each color to its closest 8 bit color.

After stylization is complete, we reach a sprite similar to the one in
Figure 7



Figure 7: The result of scaling, color clustering, and 8-bitification
on a test image.

7 Image Transfer

During this stage, all of the stylized images are imported into the
desired location in the sprite file. It is the only direct interaction
between the interface and the game. Thus if we wanted to extend
our approach to a different game, the inner workings of this step
would need to be change. However we would want the user to
still follow the same approach and therefore have made this step an
automated black box to the user.

8 Results

Although our approach works for both videos and images, we orig-
inally had the plan of using only videos in order to allow an easier
interface for the user. However through experimenting fully with
images, and fully with videos, we found that each implementation
had its pros and cons in the character output gameplay. We decided
that for our demonstration we would use a combination of both im-
ages and videos as input.

Figure 8: Sonic’s stopping sprite.

The majority of the video input was taken from actions that pro-
vided a very fluid motion. For example the walking and running
replacement was taken from videos. On the other hand, while us-
ing the Sonic Game, we discovered that some of the movements

Figure 9: Aaron’s imitation of Sonic’s stopping sprite. This picture
had to be captured overhead with Aaron on the ground, because it
was so difficuilt to balance.

made by Sonic are so overly exaggerated that they are not phys-
ically possible for a human user. One example of this was when
Sonic throws his arms back and also his legs forward in order to
stop his movement (Figure 8). In order to get a resembling result
we had to position the user on the ground and take an aerial view
(Figure 9).

We found that sprites which were made of fluid motion (such as
walking or running) were most easily replaced by video, whereas
sprites with just a few frames or where the player is in a specific
pose is more easily replaced by still images.

Overall, the end result is very satisfactory. The Sonic sprites are
successfully replaced by stylized versions of the input images. The
replacement is demonstrated in Figure 10 and Figure 11.

Figure 10



(a)

(b)

Figure 11: A picture of the final game after Sonic’s sprite is re-
placed by Aaron’s.

8.1 Efficiency

Efficiency was not our main concern in this project, but we did
make some notable high level optimizations. It takes around 15
seconds to stylize approximately 40 images (including clustering),
despite using straight Python for clustering and 8 bit conversion.
We credit this speed to downsizing the images to sprite size before
performing any stylization.

9 Future Work

One possible improvement to our input stage would be to automate
all inputs to work with our interface. Currently the user must man-
ually convert videos to image sequences using an application such
as VLC. We could provide an extra button on the interface labeled
“Convert Videos”, which would automate this process. This would
hopefully speed up and simplify our user interaction steps.

We believe that our “template replacement” stage would benefit by
making use of the Microsoft Kinect and its API. The Kinect would
allow this stage to become fully automated. Since the Kinect can
provide applications with approximate human skeletons, our appli-
cation would only need to compare the Kinect-provided skeletons
with known sprite skeletons to replace all necessary action images
(see Figure 12). As a fail-safe, there could be an optional correc-
tion phase to deal with failed matches.

Since the alpha matting portion of the preprocessing stage is one
of our worst time bottlenecks for the user, we think it would be
beneficial to have a matting implementation built into the interface.
It would be relatively easy to implement, given the large number

Figure 12: Possible bone structure generated by the Kinect. Green
dots are joints and black lines are bones.

of well-developed algorithms. Integrating it it into the the interface
could also allow the user to itteratively improve the matting, seeing
the end result in real-time (see Figure 13).

A different approach would be to use optical flow on video in-
put. This approach would allow us to combine improvements in
the “Template Replacement” and “Alpha Matting” steps. In this
scenario the user would draw a skeleton on the first frame of the
video (or we would use the Kinect skeleton) and color in them-
selves in order to be labeled as foreground (see Figure 14). Using
a method similar to this one, we could close-to-automate both the
“Template Replacement” and the “Alpha Matting” steps. However,
the method might end up incurrng some user adjustments (due to
the limitations of optical flow), as well as drastically increasing the
computation time.

Our system would provide more fluid transitions in sprite anima-
tions if there was consistent color between sprite images. The prob-
lem is that while a shirt’s color may not change, the lighting condi-
tions or the point of the image used by the camera for white balance
might change. This can result in very different lighting conditions
for sprites in the same sprite animation sequence (see Figure 15).
To deal with this we propose two modifications to our system: first,
the scaled images should be automatically adjusted to have a sim-
ilar color range as some baseline image. It may be helpful to try
and fit the image’s color histogram. After the colors of the images
are as close as possible, we then perform the clustering algorithm
across all of them at the same time. If we use the same cluster
means acrosss all the sprites at the same time, the final sprites will
all be made up of the exact same colors. We believe these changes
will provide a kind of temperal coherence between sprite frames.

We believe there is also a lot more potential for more stylization
of the user before insertion into the game. Our initial attempt was
to directly replicate the player in the game, but we have noticed
that virtually every cartoon and sprite character has much more ex-
aggerated features (hands, shoes, head) than humans normally do.
Skeletal information could allow us to isolate these features and



Figure 13: Possible alpha matting interface. Blue strokes identify
background and red strokes identify foreground.

increase their size.

Currently, picking values for the number of clusters and the c term
in the scoring equation requires the user to guess and check. The
user would benefit from seeing a few options for each term and
being able to pick the best.

10 Conclusion

We have demonstrated an interactive system for mapping and styl-
izing an alpha matted real-world object for placement into an 8-bit
game.

Although our system is fully functional, the implementation of our
“Future Work” section would greatly improve the user experience.
While in its current incarnation the system requires a good amount
of user input, we believe our approach gives an example of how
a simple and intuitive user interface in combination with powerful
algorithms can open the door to a more personalized gaming expe-
rience.

11 Acknowledgements

The authors would like to thank our testing users for their contri-
bution of providing ample feedback on the stylization of the sprite
replacing gameplay. The authors would also like to thank the mak-
ers of Grapefruit (color space converter), PMW, and Python Image
Library for providing the authors with valuable tools. Lastly the au-
thors would like to thank the developers of Open Sonic for creating
a fun virtual world to test our approach.

Figure 14: A possible interface for using optical flow. Green dots
represent joints and red/blue strokes identify the foreground and
background.

(a)

(b)

Figure 15: Two images of the same person performing different
actions, exhibiting very different final colors.


