Perceptually Based Tone Mapping for Low-Light Conditions

Adam G. Kirk James F. O'Brien

Yin-Chia Yeh (Presenter)
Nancy Wang (Discussant)

Purkinje Effect

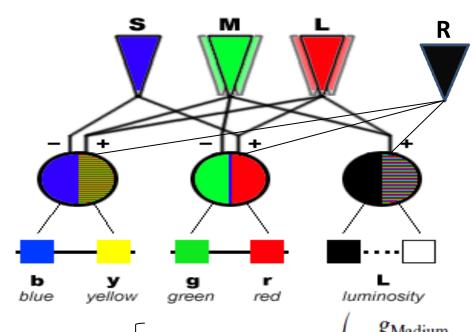
Bright scene

Low-light => bluish

Key idea



Match human vision in low-light conditions


Human vision

- Bright scene: dominated by cones (photonic vision)
- Dark scene: dominated by rod (scotopic vision)
- In between? Low-light vision (mesopic vision)
 - rod and cones all contributes (4D-> 3D)
 - This is why we perceived color change in low-light
 - Cameras do not have this mechanism!

Opponent color model in photopic vison

Low light vision

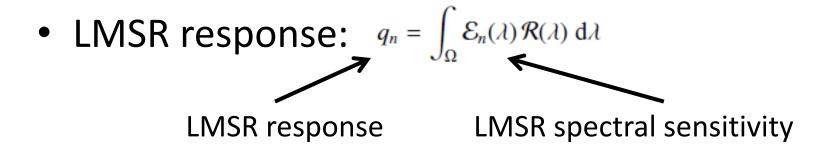
Cones and Rod

Neural stimuli

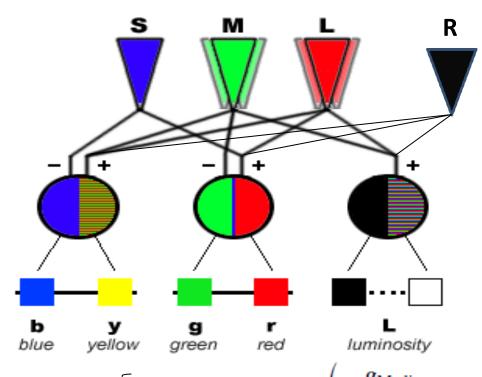
Human perception

$$\Delta o_{\text{Red/Green}} = x \, \kappa_1 \left(\rho_1 \frac{g_{\text{Medium}}}{m_{\text{max}}} - \rho_2 \frac{g_{\text{Long}}}{l_{\text{max}}} \right) q_{\text{Rod}}$$

Neural stimuli diffs


$$\Delta o_{\text{Blue/Yellow}} = y \left(\rho_3 \frac{g_{\text{Short}}}{s_{\text{max}}} - \rho_4 \left(\alpha \frac{g_{\text{Long}}}{l_{\text{max}}} + (1 - \alpha) \frac{g_{\text{Medium}}}{m_{\text{max}}} \right) \right) q_{\text{Rod}}$$

$$\Delta o_{\text{Luminance}} = z \left(\alpha \frac{g_{\text{Long}}}{l_{\text{max}}} + (1 - \alpha) \frac{g_{\text{Medium}}}{m_{\text{max}}} \right) q_{\text{Rod}}$$


Method Overview

- The only work apply human vision model to deal with Purkinje effect in images
- Flow
 - Acquiring Spectral Images to estimate LMSR response
 - Compute nerual stimuli difference due to rod
 - Convert neural stimuli back to RGB

Acquiring Spectral Images

- Each pixel is represented by a spectral function R(λ)
- Take snapshot of the same scene with 10 band pass filters
- Cubic B-spline curve fitting to get R(λ)

Cones and Rod

Neural stimuli

Human perception

$$\Delta o_{\rm Red/Green} = x \, \kappa_1 \left(\rho_1 \frac{g_{\rm Medium}}{m_{\rm max}} - \rho_2 \frac{g_{\rm Long}}{l_{\rm max}} \right) q_{\rm Rod}$$
 Neural stimuli diffs
$$\Delta o_{\rm Blue/Yellow} = y \left(\rho_3 \frac{g_{\rm Short}}{s_{\rm max}} - \rho_4 \left(\alpha \frac{g_{\rm Long}}{l_{\rm max}} + (1-\alpha) \frac{g_{\rm Medium}}{m_{\rm max}} \right) \right) q_{\rm Rod}$$

$$\Delta o_{\rm Luminance} = z \left(\alpha \frac{g_{\rm Long}}{l_{\rm max}} + (1-\alpha) \frac{g_{\rm Medium}}{m_{\rm max}} \right) q_{\rm Rod}$$

(12)

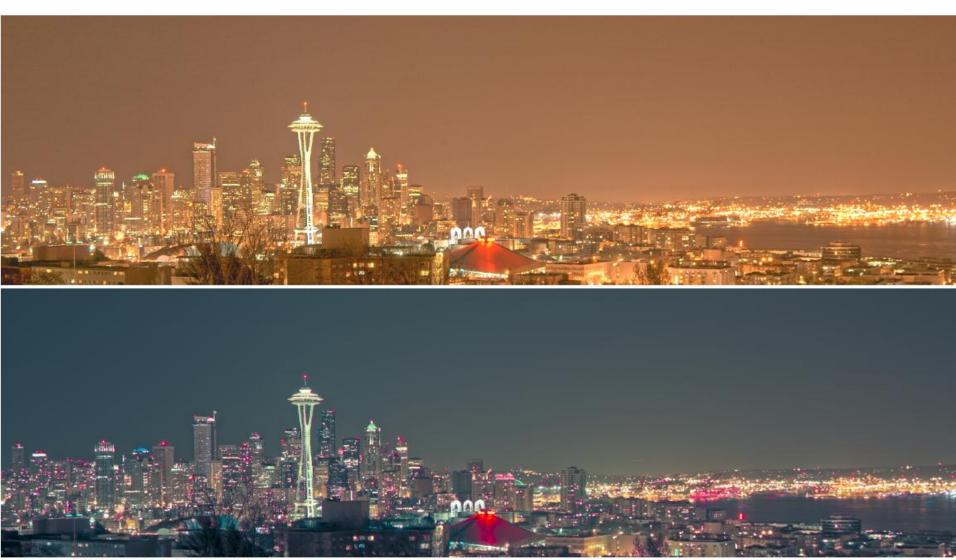
Convert back to RGB image

- Compute RGB values best represent the neural stimulus
- Apply standard HDR range compression first
- Looks weird (a low light image with full range)
- Suppress pixel value by mesopic factor w
 - w=0 -> fully photonic, w>1 -> fully scotopic

$$\dot{P} = P * \max(1 - w(1 - \gamma), \gamma), \qquad \gamma \in [0.25, 0.5]$$

Result (Range Compression)

Exposure _____



Results

Images copyright Adam Kirk and James O'Brien.

Results

Images copyright Adam Kirk and James O'Brien.

Results

Images copyright Adam Kirk and James O'Brien. Painting untitled by Susan Kim.

Approximation of Non-Spectral Images

- Spectral images are hard to acquired
- Build a RGB->LMSR mapping matrix by data trained from spectral images
- Apply that mapping to RGB images to create approximated LMSR value

Results (Non-Spectral Image)

Original image "Foggy Night" copyright Jack Tumblin, Northwestern University.

Results (Non-Spectral Image)

Thanks

Differences/Alternatives

-What happens when using RGB input images instead of multiple spectual images?

Spectral image tone-mapped

Non-spectral HDR image tone-mapped

– How do the two methods compare?

— Does the approximate work well?
Why or why not?

– Do the results fit your perception?

- Other techniques?

- Limitations?
 - Focus only on interplay between rods and cones in early stage of vision
 - Other adaptive mechanisms not incorporated
 - Additional effects not modeled

- Future works
 - Apply method to all sort of light intensities
 - Predict actual viewer experiences
 - Apply to videos