A2 Lights Fields/HDR/Tone-Mapping Due Mon Oct 10

Implement Light Fields or HDR/Tone-Mapping

Adequate to implement, best solutions go beyond:

Every technique has some limitations (well written papers usually describe some of them). Develop techniques to address one or more limitations?

Sometimes different papers present different techniques for addressing the same problem Implement competing techniques and compare their strengths and weaknesses.

It may be possible to combine ideas from multiple papers to produce a new hybrid technique that addresses a new problem. Develop a new way to combine the texture synthesis techniques you have read about to solve a new problem.

1 person = 1 paper,
2 people = 1 paper + issue from list above or 2 papers,
3 people = 2 papers + issue from list above
Problem: Dynamic Range

The real world is high dynamic range.

Long Exposure

Real world

High dynamic range

Picture

0 to 255
Real world

High dynamic range

Picture

0 to 255

pixel (312, 284) = 42

42 photons?
Camera Calibration

Geometric
 How pixel coordinates relate to directions in the world

Photometric
 How pixel values relate to radiance amounts in the world

Camera Calibration

Geometric
 How pixel coordinates relate to directions in the world in other images

Photometric
 How pixel values relate to radiance amounts in the world in other images
Image Acquisition Pipeline

Scene radiance (W/sr/m)

Lens

Shutter

sensor irradiance

sensor exposure

Δt

CCD

ADC

Remapping

analog voltages
digital values

Pixel values

Raw Image

JPEG Image

Imaging System Response Function

log Exposure = log (Radiance * Δt)

(CCD photon count)
Camera is Not a Photometer!

Limited dynamic range
 Perhaps use multiple exposures?

Unknown, nonlinear response
 Not possible to convert pixel values to radiance

Solution:
 Recover response curve from multiple exposures, then reconstruct the radiance map

Varying Exposure
How to Vary Exposure?

Shutter speed
- Range: ~30 sec to 1/4000sec (6 orders of magnitude)
- Pros: reliable, linear
- Cons: sometimes noise for long exposure

Aperture
- Range: ~f/1.4 to f/22 (2.5 orders of magnitude)
- Cons: changes depth of field
- Useful when desperate

ISO
- Range: ~100 to 1600 (1.5 orders of magnitude)
- Cons: noise
- Useful when desperate

Neutral density filter
- Range: up to 4 densities (4 orders of magnitude) & can be stacked
- Cons: not perfectly neutral (color shift), not very precise, need to touch camera (shake)
- Pros: works with strobe/flash, good complement when desperate

Tradeoffs

Shutter speed
- Range: ~30 sec to 1/4000sec (6 orders of magnitude)
- Pros: reliable, linear
- Cons: sometimes noise for long exposure

Aperture
- Range: ~f/1.4 to f/22 (2.5 orders of magnitude)
- Cons: changes depth of field
- Useful when desperate

ISO
- Range: ~100 to 1600 (1.5 orders of magnitude)
- Cons: noise
- Useful when desperate

Neutral density filter
- Range: up to 4 densities (4 orders of magnitude) & can be stacked
- Cons: not perfectly neutral (color shift), not very precise, need to touch camera (shake)
- Pros: works with strobe/flash, good complement when desperate

Slide inspired by Siggraph 2005 course on HDR
Sequentially measure all segments of the range.

Multiple Exposure Photography

Real world

10^{-6} \quad 10^{6}

High dynamic range

Picture

10^{-6} \quad 10^{6}

Low contrast

Low contrast picture

High dynamic range range

Sequentially measure all segments of the range.
Multiple Exposure Photography

Sequentially measure all segments of the range

Real world

High dynamic range

Picture

Low contrast

Low contrast
Multiple Exposure Photography

Sequentially measure all segments of the range

Real world 10^{-6} High dynamic range 10^{6}

Picture 10^{-6} Low contrast

Problem:

Given N photos at different exposure
Recover a HDR color for each pixel
If We Know Camera Response Curve

Just look up the inverse of the response curve
But how do we get the curve?

Calibrating Response Curve

Two basic solutions
- Vary scene luminance and see pixel values
 - Assumes we control and know scene luminance
- Vary exposure and see pixel value for one scene luminance
 - But note that we can usually not vary exposure more finely than by 1/3 stop

Best of both:
- Vary exposure
- Exploit the large number of pixels
Recovering High Dynamic Range Radiance Maps from Photographs

Paul Debevec
Jitendra Malik

Computer Science Division
University of California at Berkeley

August 1997

The Algorithm

Image series

Pixel Value $Z = f(\text{Exposure})$

Exposure = Radiance $\times \Delta t$

$log \text{ Exposu}r = log \text{ Radiance} + log \Delta t$
Response Curve

Assuming unit radiance for each pixel

After adjusting radiances to obtain a smooth response

Pixel value

\[\ln \text{Exposure} \]

Pixel value

\[\ln \text{Exposure} \]

The Math

• Let \(g(z) \) be the discrete inverse response function
• For each pixel site \(i \) in each image \(j \), want:

\[\ln \text{Radiance}_i + \ln \Delta t_j = g(Z_{ij}) \]

• Solve the overdetermined linear system:

\[
\sum_{i=1}^{N} \sum_{j=1}^{P} \left[\ln \text{Radiance}_i + \ln \Delta t_j - g(Z_{ij}) \right] + \lambda \sum_{z = Z_{\text{min}}}^{Z_{\text{max}}} g''(z)^2
\]

fitting term

smoothness term
Matlab Code

function [g,lE]=gsolve(Z,B,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
k = 1; % Include the data-fitting equations
for i=1:size(Z,1)
 for j=1:size(Z,2)
 wij = w(Z(i,j)+1):
 A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
 k=k+1;
 end
end
A(k,129) = 1; % Fix the curve by setting its middle value to 0
k=k+1;
for i=1:n-2 % Include the smoothness equations
 A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
 k=k+1;
end
x = A; % Solve the system using SVD

g = x(1:n);
lE = x(n+1:size(x,1));

Results: Digital Camera

Kodak DCS460
1/30 to 30 sec

Recovered response curve

Pixel value

log Exposure
Reconstructed radiance map

Results: Color Film

• Kodak Gold ASA 100, PhotoCD
Recovered Response Curves

The Radiance Map
HDR Image Processing

Motion blur applied to low-dynamic-range picture
Motion blur applied to high-dynamic-range picture
Real motion-blurred picture

Important also for depth of field post-process

Available in HDRShop

www.debevec.org/HDRShop

High Dynamic Range Image Processing and Manipulation

Chris Tchou et al. HDR Shop. S2001 Technical Sketch
The Radiance Map

Linearly scaled to display device

Tone-Mapping

How can we do this remapping?

Real world

High dynamic range

Picture

Low contrast
Tone-Mapping Input

Input: high-dynamic-range image
(floating point per pixel)

Naïve Technique

Scene has 1:10,000 contrast, display has 1:100
Simplest contrast reduction?
Naïve: Gamma Compression

\[X \rightarrow X^\gamma \] (where \(\gamma = 0.5 \) in our case)

But… colors are washed-out. Why?

Gamma Compression on Intensity

Colors are OK, but details (intensity high-frequency) are blurred
Oppenheim 1968, Chiu et al. 1993

Reduce contrast of low-frequencies
Keep high frequencies

The Halo Nightmare

For strong edges
Because they contain high frequency
Durand & Dorsey 02

Do not blur across edges
Non-linear filtering

Large-scale Output

Detail

Color

Bilateral Filter

Tomasi and Manduci 1998
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Related to
SUSAN filter [Smith and Brady 95]
http://citeseer.ist.psu.edu/smith95susan.html

Digital-TV [Chan, Osher and Chen 2001]
http://citeseer.ist.psu.edu/chan01digital.html

Start with Gaussian Filter

Here, input is a step function + noise

\[J = f \otimes I \]

Start with Gaussian Filter

Spatial Gaussian \(f \)

\[J = f \otimes I \]
Start with Gaussian Filter

Output is blurred

\[J = f \otimes I \]

Gaussian Filter as Weighted Average

Weight of \(\xi \) depends on distance to \(x \)

\[J(x) = \sum_{\xi} f(x,\xi) I(\xi) \]
The Problem of Edges

Here, $I(\xi)$ “pollutes” our estimate $J(x)$.
It is too different.

$$J(x) = \sum_\xi f(x, \xi) I(\xi)$$

Principle of Bilateral Filter

[Tomasi and Manduchi 1998]

Penalty g on the intensity difference

$$J(x) = \frac{1}{k(x)} \sum_\xi f(x, \xi) g(I(\xi) - I(x)) I(\xi)$$
Bilateral Filter

[Tomasi and Manduchi 1998]

Spatial Gaussian f

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x, \xi) g(I(\xi) - I(x)) I(\xi)$$

Bilateral filtering

[Tomasi and Manduchi 1998]

Spatial Gaussian f

Gaussian g on the intensity difference

$$J(x) = \frac{1}{k(x)} \sum_{\xi} f(x, \xi) g(I(\xi) - I(x)) I(\xi)$$
Normalization Factor

[Tomasi and Manduchi 1998]

\[k(x) = \sum_{\xi} f(x, \xi) \cdot g(I(\xi) - I(x)) \]

\[J(x) = \frac{1}{k(x)} \sum_{\xi} f(x, \xi) \cdot g(I(\xi) - I(x)) \cdot I(\xi) \]

Bilateral Filter is Non-Linear

[Tomasi and Manduchi 1998]

The weights are different for each output pixel

\[J(x) = \frac{1}{k(x)} \sum_{\xi} f(x, \xi) \cdot g(I(\xi) - I(x)) \cdot I(\xi) \]
Contrast Reduction

Input HDR image

Contrast too high!

Contrast Reduction

Input HDR image

Intensity

Color
Contrast Reduction

Input HDR image

Intensity

Fast Bilateral Filter

Large scale

Reduce contrast

Large scale

Detail

Color

Preserve!

Large scale

Detail
Contrast Reduction

Input HDR image

Intensity

Fast Bilateral Filter

Large scale Detail

Reduce contrast Preserve!

Large scale Detail

Color

Durand & Dorsey 02

Do not blur across edges

Non-linear filtering

Large-scale Output

Detail

Color