

<section-header><section-header><section-header><section-header><section-header><text><text><text><text>

Camera Calibration

Geometric

How pixel coordinates relate to directions in the world

Photometric

How pixel values relate to radiance amounts in the world

Camera Calibration

Geometric

How pixel **coordinates** relate to **directions** in the world in other images

Photometric

How pixel **values** relate to **radiance** amounts in the world in other images

1

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Shutte	er speed	
•	Range: ~30 sec to 1/4000sec (6 orders of magnit	ude)
•	Pros: reliable, linear	
•	Cons: sometimes noise for long exposure	
Apert	ure	All and
•	Range: ~f/1.4 to f/22 (2.5 orders of magnitude)	
•	Cons: changes depth of field	A PLAN ST
•	Useful when desperate	
ISO	•	
•	Range: ~100 to 1600 (1.5 orders of magnitude)	Nikon D2X
•	Cons: noise	150 3200
•	Useful when desperate	
Neutr	al density filter	
•	Range: up to 4 densities (4 orders of magnitude) & can be stacked	16.67
•	Cons: not perfectly neutral (color shift),	13,33
	not very precise, need to touch camera (shake)	10.00 9.83 9.57 4.25 6.40 6.23
•	Pros: works with strobe/flash,	2 6.67 3.33
	good complement when desperate	0.00
after Siggr	aph 2005 course on HDR	swe Green Ked

Calibrating Response Curve Two basic solutions Vary scene luminance and see pixel values Assumes we control and know scene luminance Vary exposure and see pixel value for one scene luminance But note that we can usually not vary exposure more finely than by 1/3 stop Dest of both: Vary exposure Exploit the large number of pixels

Recovering High Dynamic Range Radiance Maps from Photographs

Paul Debevec Jitendra Malik

Computer Science Division University of California at Berkeley

August 1997

HDR Image Processing

Motion blur applied to **low**-dynamic-range picture

Motion blur applied to **high**-dynamic-range picture

Real motion-blurred picture

Important also for depth of field post-process

Tone-Mapping Input

Input: high-dynamic-range image (floating point per pixel)

Bilateral Filter

Tomasi and Manduci 1998

http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Related to

SUSAN filter [Smith and Brady 95] http://citeseer.ist.psu.edu/smith95susan.html

Digital-TV [Chan, Osher and Chen 2001] http://citeseer.ist.psu.edu/chan01digital.html

sigma filter http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

Informal ComparisonImage: Status of the status of th

