Texture Synthesis

For every ω from 0 to ∞, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A\sin(\omega x + \phi)$.

How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

We can always go back:

$$F(\omega) \rightarrow \text{Inverse Fourier Transform} \rightarrow f(x)$$
Frequency Spectra

\[f(x) = \cos(x) \]

Signum spatial domain

Real part of signal in frequency domain (imaginary part is all 0)

Mouse over to chop off tails

Reconstructed signal spatial domain

http://madebyevan.com/dft/
Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))))

Due: A0 Hybrid Images

Robin Gaestel
Weather Forecasting for Dummies™

Let’s predict weather:
- Given today’s weather only, we want to know tomorrow’s
- Suppose weather can only be {Sunny, Cloudy, Raining}

The “Weather Channel” algorithm:
- Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
- Compute percentages for each state:
 - \(P(R|S) \), \(P(S|S) \), etc.
- Predict the state with highest probability!
- It’s a Markov Chain

Markov Chain

What if we know today and yesterday’s weather?
Text Synthesis

[Shannon, ’48] proposed a way to generate English-looking text using N-grams:
• Assume a generalized Markov model
• Use a large text to compute prob. distributions of each letter given N-1 previous letters
• Starting from a seed repeatedly sample this Markov chain to generate new letters
• Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

Results (using \texttt{alt.singles} corpus):
• “As I’ve commented before, really relating to someone involves standing next to impossible.”
• “One morning I shot an elephant in my arms and kissed him.”
• “I spent an interesting evening recently with a grain of salt”
Topics

Video Texture
Synthesizing Image Textures

Video Textures

Arno Schödl
Richard Szeliski
David Salesin
Irfan Essa

Microsoft Research, Georgia Tech
Video textures

Problem statement

video clip video texture
Our approach

How do we find good transitions?

Finding good transitions

Compute L_2 distance $D_{i,j}$ between all frames

Similar frames make good transitions
Markov chain representation

Similar frames make good transitions

Transition costs

Transition from i to j if successor of i is similar to j

Cost function: $C_{i \rightarrow j} = D_{i+1,j}$
Transition probabilities

Probability for transition $P_{i \rightarrow j}$ inversely related to cost:

$$P_{i \rightarrow j} \sim \exp \left(- \frac{C_{i \rightarrow j}}{\sigma^2} \right)$$

Preserving dynamics
Preserving dynamics

Cost for transition $i \rightarrow j$

$$C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}$$
Preserving dynamics – effect

Cost for transition $i \rightarrow j$

$$C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}$$

Dead ends

No good transition at the end of sequence
Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

\[F_{i\rightarrow j} = C_{i\rightarrow j} + \alpha \min_k F_{j\rightarrow k} \]
Future cost

• Propagate future transition costs backward
• Iteratively compute new cost

\[F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_k F_{j \rightarrow k} \]
Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
 \[F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_k F_{j \rightarrow k} \]
- Q-learning

Future cost – effect
Video portrait

Useful for web pages

Region-based analysis

• Divide video up into regions

• Generate a video texture for each region
Automatic region analysis

User-controlled video textures

User selects target frame range
Video-based animation

- Like sprites in computer games
- Extract sprites from real video
- Interactively control desired motion

Video sprite extraction

blue screen matting and velocity estimation
Video sprite control

- Augmented transition cost:

\[C_{i \rightarrow j}^{\text{Animation}} = \alpha C_{i \rightarrow j} + \beta \text{ angle} \]

- Similarity term
- Control term

vector to mouse pointer
velocity vector

Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [GIT-GVU-00-11]
Interactive fish

Summary

• Video clips → video textures
 • define Markov process
 • preserve dynamics
 • avoid dead-ends
 • disguise visual discontinuities
Discussion

• Some are hard

Panoramic Video Textures
Agarwala et al. SIGGRAPH 05

http://www.youtube.com/watch?v=vS6Dz-8_NjY
“Amateur” by Lasse Gjertsen

http://www.youtube.com/watch?v=JzqumbhfxRo

Michel Gondry train video

http://www.youtube.com/watch?v=ssJutXkpSlY
Image Texture

Texture depicts spatially repeating patterns
Many natural phenomena are textures

- radishes
- rocks
- yogurt

Texture Synthesis

Goal: create new samples of a given texture

Applications: virtual environments, hole-filling, texturing surfaces, …
The Challenge

Need to model the whole spectrum: from repeated to stochastic texture

Heeger Bergen 1995

Seminal paper that introduced texture synthesis to the graphics community

Algorithm:
- Initialize J to noise
- Create multiresolution pyramids for I and J
- Match the histograms of J’s pyramid levels with I’s pyramid levels
- Loop until convergence
- Can be generalized to 3D
Heeger Bergen 1995 - Algorithm

- Image pyramids
 - Gaussian
 - Laplacian
- Steerable pyramids
 [SimoncelliFreeman95]
 - b): multiple scales of oriented filters
 - c): a sample image
 - d): results of filters in b) applied to c)

Heeger Bergen 1995 - Results

Successes

Failures

I J

I J
Heeger Bergen 1995 - Results

- Texture model:
 - Histograms of responses to various filters
- Avoiding copying:
 - Inherent in algorithm
- No user intervention required
- Captures stochastic textures well
- Does not capture structure
 - Lack of inter-scale constraints

Heeger Bergen 1995 - Verdict
De Bonet 1997

Propagate constraints downwards by matching statistics all the way up the pyramid

Feature vector: multiscale collection of filter responses for a given pixel

Algorithm:
- Initialize J to empty image
- Create multiresolution pyramids for I and J
- For each pixel in level of J, randomly choose pixel from corresponding level of I that has **similar** feature vector

De Bonet 1997 - Algorithm

6 feature vectors shown
Notice how they share parent information
De Bonet 1997 - Results

Texture model:
 – Feature vector containing multiscale responses to various filters

Avoiding copying:
 – Random choice of pixels with ‘close’ feature vectors, but copying still frequent on small scale

Individual per-filter thresholds cumbersome
Feature vectors used in later synthesis work

De Bonet 1997 - Verdict
Efros & Leung 1999 - Algorithm

Assuming Markov property, compute $P(p|N(p))$

Building explicit probability tables infeasible

Instead, search the input image for all similar neighborhoods — that’s the pdf for p

To sample from this pdf, just pick one match at random

Some Details

Growing is in “onion skin” order

– Pixels with most neighbors synthesized first
– If no close match found, the pixel is not synthesized until later

Using Gaussian-weighted SSD is very important

– to make sure the new pixel agrees with its closest neighbors
– Approximates reduction to a smaller neighborhood window if data is too sparse
Neighborhood Window

Varying Window Size

Increasing window size
Synthesis Results

french canvas

rafia weave

More Results

white bread

brick wall
Homage to Shannon

Hole Filling
Extrapolation

Texture model:
 MRF
Avoiding copying:
 MRF
Neighborhood size = largest feature size
Markov model is surprisingly good
 “I spent an interesting evening recently with a grain of salt.”
Search is very slow with large neighborhoods

Efros Leung 1999 – Verdict
Image Quilting [Efros & Freeman]

Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block

Exactly the same but now we want $P(B|N(B))$

Much faster: synthesize all pixels in a block at once

Not the same as multi-scale!
Philosophy

The “Corrupt Professor’s Algorithm”:
 Plagiarize as much of the source image as you can
 Then try to cover up the evidence

Rationale:
 Texture blocks are by definition correct samples of
 texture so problem only connecting them together
Efros Freeman 2001 - Verdict

Texture model:
- MRF

Avoiding copying:
- Randomized patch selection, but still noticeable

Patch size is a hard parameter to understand

Results are surprisingly good given algorithm

Multiscale goes on a brief hiatus
A1 Texture Synthesis Due Mon Sep 26

Implement application of texture synthesis
Image analogies, Hole-filling, Patchmatch Structured hybrids ….

Adequate to implement, best solutions go beyond:
Every technique has some limitations (well written papers usually describe some of them). Develop techniques to address one or more limitations?
Sometimes different papers present different techniques for addressing the same problem. Implement competing techniques and compare their strengths and weaknesses.
It may be possible to combine ideas from multiple papers to produce a new hybrid technique that addresses a new problem. Develop a new way to combine the texture synthesis techniques you have read about to solve a new problem.

1 person = 1 paper,
2 people = 1 paper + issue from list above or 2 papers,
3 people = 2 papers + issue from list above