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Texture Synthesis 

Image Manipulation and Computational Photography 
CS294-69 Fall 2011 

 

Maneesh Agrawala 
 

[Some slides from James Hays , Derek Hoiem, Alexei Efros and Fredo Durand] 

 

For every ω from 0 to inf, F(ω) holds the amplitude A 
and phase φ of the corresponding sine   

 

How can F hold both?  Complex number trick! 

Fourier Transform 
To understand frequency ω let’s reparametrize the signal by ω: 
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We can always go back: 
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Frequency Spectra 

http://madebyevan.com/dft/	
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Extension to 2D 

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im))))); 

Due: A0 Hybrid Images 

Robin Gaestel 
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Weather Forecasting for Dummies™  
Let’s predict weather: 

•  Given today’s weather only, we want to know tomorrow’s 
•  Suppose weather can only be {Sunny, Cloudy, Raining} 

The “Weather Channel” algorithm: 
•  Over a long period of time, record: 

–  How often S followed by R 
–  How often S followed by S 
–  Etc.  

•  Compute percentages for each state:  
–  P(R|S), P(S|S), etc. 

•  Predict the state with highest probability! 
•  It’s a Markov Chain 
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Markov Chain 

What if we know today and yestarday’s weather? 
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Text Synthesis 
[Shannon,’48] proposed a way to generate English-

looking text using N-grams: 
•  Assume a generalized Markov model 
•  Use a large text to compute prob. distributions of 

each letter given N-1 previous letters  
•  Starting from a seed repeatedly sample this Markov 

chain to generate new letters  
•  Also works for whole words 

WE  NEED TO EAT CAKE 

Mark V. Shaney (Bell Labs) 

Results (using alt.singles corpus): 
•   “As I've commented before, really relating to 

someone involves standing next to impossible.” 
•  “One morning I shot an elephant in my arms 

and kissed him.” 
•  “I spent an interesting evening recently with a 

grain of salt” 

№  
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Topics 
Video Texture 
Synthesizing Image Textures 
 
 
 

Video Textures  
 
 

Arno Schödl 
Richard Szeliski 

David Salesin 
Irfan Essa 

Microsoft Research, Georgia Tech 



7 

Still photos 

Video clips 
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Video textures 

Problem statement 

video clip video texture 
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Our approach 

How do we find good transitions? 

Finding good transitions  

Compute L2 distance Di, j between all frames 

Similar frames make good transitions  

 

frame i vs. 

frame j 
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Markov chain representation 

2 3 41

Similar frames make good transitions  

 

Transition costs  

Transition from i to j if successor of i is similar to j 

Cost function: Ci→j = Di+1, j 

                                 
i

j

i+1

j-1

i j→ Di+1, j
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Transition probabilities 

Probability for transition Pi→j inversely related 
to cost: 

Pi→j ~ exp ( – Ci→j / σ2 ) 

high σ low σ 

Preserving dynamics 
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Preserving dynamics  

Preserving dynamics  

Cost for transition i→j 

Ci→j =         wk Di+k+1, j+k Σ
k = -N

N-1

i

j j+1

i+1 i+2

j-1j-2

i j→Di, j-1 D Di+1, j i+2, j+1

i-1

Di-1, j-2
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Preserving dynamics – effect  

Cost for transition i→j 

Ci→j =         wk Di+k+1, j+k Σ
k = -N

N-1

2 3 41

Dead ends 

No good transition at the end of sequence  
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2 3 41

Future cost 

•  Propagate future transition costs backward 

•  Iteratively compute new cost 

Fi→j = Ci→j + α mink Fj→k 

2 3 41

Future cost 

•  Propagate future transition costs backward 

•  Iteratively compute new cost 

Fi→j = Ci→j + α mink Fj→k 
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2 3 41

•  Propagate future transition costs backward 

•  Iteratively compute new cost 

Fi→j = Ci→j + α mink Fj→k 
 

•  Q-learning 

Future cost 

Future cost – effect 
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Video portrait 

Useful for web pages 

Region-based analysis 

•  Divide video up into regions 

•  Generate a video texture for each region 
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Automatic region analysis 

 

 

 

 

 

 

User selects target frame range 

User-controlled video textures 

slow variable fast 
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Video-based animation 

•  Like sprites 
computer games 

•  Extract sprites 
from real video 

•  Interactively control  
desired motion 

©1985 Nintendo of America Inc. 

 

Video sprite extraction 

blue screen matting
and velocity estimation
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Ci j   =   +  angle  α βCi j→ →

vector to
mouse pointer

Similarity term Control term

velocity vector

Animation

{ {

Video sprite control 

•  Augmented transition cost: 

Fi j→

Fi j→

Fi j→ Fi j→

Fi j→

Fi j→
Fi j→

SW

W

NW
N

NE

E

SE
S

Goal

Video sprite control 

•  Need future cost computation 

•  Precompute future costs for a few angles. 

•  Switch between precomputed angles 
according to user input 

•  [GIT-GVU-00-11] 



21 

Interactive fish 

Summary  

•  Video clips → video textures 
•  define Markov process 
•  preserve dynamics 
•  avoid dead-ends 
•  disguise visual discontinuities 
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Discussion  

•  Some are hard 

Panoramic Video Textures 
Agarwala et al. SIGGRAPH 05 

http://www.youtube.com/watch?v=vS6Dz-8_NjY 
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“Amateur” by Lasse Gjertsen 

http://www.youtube.com/watch?v=JzqumbhfxRo 

Michel Gondry train video 

http://www.youtube.com/watch?v=ssJutXkpSlY 
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Image Texture 

Texture depicts spatially repeating patterns 
Many natural phenomena are textures 

radishes rocks yogurt 

Texture Synthesis 

Goal: create new samples of a given texture 
Applications: virtual environments, hole-filling, 
texturing surfaces, …  
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The Challenge 

Need to model the whole spectrum: 
from repeated to stochastic texture 

repeated 

stochastic 

Both? 

Heeger Bergen 1995 

Seminal paper that introduced texture 
synthesis to the graphics community 
 

Algorithm: 
–  Initialize J to noise 
– Create multiresolution pyramids for I and J 
– Match the histograms of J’s pyramid levels 

with I’s pyramid levels 
– Loop until convergence 
– Can be generalized to 3D 
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Heeger Bergen 1995 - Algorithm 

•  Image pyramids 
–  Gaussian 
–  Laplacian 

•  Steerable pyramids 
[SimoncelliFreeman95] 
–  b): multiple scales of 

oriented filters 
–  c): a sample image 
–  d): results of filters in b) 

applied to c) 

Heeger Bergen 1995 - Results 

I J 

Successes Failures 

I J 
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Heeger Bergen 1995 - Results 

Heeger Bergen 1995 - Verdict 

•  Texture model: 
– Histograms of responses to various filters 

•  Avoiding copying: 
–  Inherent in algorithm 

•  No user intervention required 
•  Captures stochastic textures well 
•  Does not capture structure 

– Lack of inter-scale constraints 
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De Bonet 1997 
Propagate constraints downwards by matching 
statistics all the way up the pyramid 
 

Feature vector: multiscale collection of filter 
responses for a given pixel 
 

Algorithm: 
–  Initialize J to empty image 
– Create multiresolution pyramids for I and J 
– For each pixel in level of J, randomly choose 

pixel from corresponding level of I that has 
similar feature vector 

De Bonet 1997 - Algorithm 

6 feature vectors shown 
 
Notice how they share 
parent information 
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De Bonet 1997 - Results 

De Bonet 1997 - Verdict 

Texture model: 
– Feature vector containing multiscale responses 

to various filters 
Avoiding copying: 

– Random choice of pixels with ‘close’ feature 
vectors, but copying still frequent on small 
scale 

Individual per-filter thresholds cumbersome 
Feature vectors used in later synthesis work 
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Efros & Leung 1999 - Algorithm 

Assuming Markov property, compute P(p|N(p)) 
Building explicit probability tables infeasible  

p 

Synthesizing a pixel 

non-parametric 
sampling 

Input image  

Instead, search the input image for all similar neighborhoods — 
that’s the pdf for p 
To sample from this pdf, just pick one match at random 

Some Details 
Growing is in “onion skin” order 

–  Pixels with most neighbors synthesized first 
–  If no close match found, the pixel is not synthesized until later 

Using Gaussian-weighted SSD is very important 
–  to make sure the new pixel agrees with its closest neighbors 
–  Approximates reduction to a smaller neighborhood window if 

data is too sparse 
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Neighborhood Window 

input 

Varying Window Size 

Increasing window size 
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Synthesis Results 
french canvas rafia weave 

More Results 
white bread brick wall 
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Homage to Shannon 

Hole Filling 
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Extrapolation 

Efros Leung 1999 – Verdict 
Texture model: 

MRF 

Avoiding copying: 
MRF 

Neighborhood size = largest feature size 
Markov model is surprisingly good 

“I spent an interesting evening recently with a grain of salt.” 

Search is very slow with large neighborhoods 
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Image Quilting [Efros & Freeman] 

Observation: neighbor pixels are highly correlated 

Input image  

non-parametric 
sampling 

B 

Idea: unit of synthesis = block 
Exactly the same but now we want P(B|N(B)) 

Much faster: synthesize all pixels in a block at once 

Not the same as multi-scale! 

Synthesizing a block 

Input texture 

B1 B2 

Random placement  
of blocks  

block 

B1 B2 

Neighboring blocks 
constrained by overlap 

B1 B2 

Minimal error 
boundary cut 
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min. error boundary 

Minimal error boundary 
overlapping blocks vertical boundary 

_ = 
2 

overlap error 

Philosophy 

The “Corrupt Professor’s Algorithm”: 
Plagiarize as much of the source image as you can 
Then try to cover up the evidence 

 
Rationale:   

Texture blocks are by definition correct samples of 
texture so problem only connecting them together 
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Failures 
(Chernobyl 
Harvest) 

Efros Freeman 2001 - Verdict 

Texture model: 
MRF 

Avoiding copying: 
Randomized patch selection, but still noticeable 

Patch size is a hard parameter to understand 
Results are surprisingly good given algorithm 
Multiscale goes on a brief hiatus 
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A1 Texture Synthesis   Due Mon Sep 26 

Implement application of texture synthesis 
Image analogies, Hole-"lling, Patchmatch Structured hybrids …. 

 

Adequate to implement, best solutions go beyond: 
 Every technique has some limitations (well written papers usually describe 
some of them). Develop techniques to address one or more limitations?  

 

 Sometimes different papers present different techniques for addressing the 
same problem Implement competing techniques and compare their 
strengths and weaknesses.  

 

 It may be possible to combine ideas from multiple papers to produce a new 
hybrid technique that addresses a new problem. Develop a new way to 
combine the texture synthesis techniques your have read about to solve a 
new problem.  

 

1 person = 1 paper,  
2 people = 1 paper + issue from list above or 2 papers,  
3 people = 2 papers + issue from list above 


