



![](_page_1_Figure_0.jpeg)

![](_page_1_Picture_1.jpeg)

![](_page_2_Figure_0.jpeg)

![](_page_2_Figure_1.jpeg)

![](_page_3_Figure_0.jpeg)

![](_page_3_Figure_1.jpeg)

![](_page_4_Figure_0.jpeg)

![](_page_4_Figure_1.jpeg)

![](_page_5_Figure_0.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_6_Figure_0.jpeg)

![](_page_6_Figure_1.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_8_Picture_1.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_1.jpeg)

# Trichromaticity

Eye records color by 3 measurements We can "fool" it with combination of 3 signals

So display devices (monitors, printers, etc.) can generate perceivable colors as mix of 3 primaries

![](_page_10_Picture_3.jpeg)

![](_page_10_Picture_4.jpeg)

### Cone Responses are Linear

Response to stimulus  $\Phi_1$  is  $(L_1, M_1, S_1)$ Response to stimulus  $\Phi_2$  is  $(L_2, M_2, S_2)$ Then response to  $\Phi_1 + \Phi_2$  is $(L_1 + L_2, M_1 + M_2, S_1 + S_2)$ 

Response to  $n\Phi_1$  is  $(nL_1, nM_2, nS_1)$ 

System that obeys superposition and scaling is called a **linear system** 

![](_page_11_Figure_4.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_20_Figure_1.jpeg)

## How to Build Measurement Device?

## How to Build Measurement Device?

Idea:

- Start with light sensor sensitive to all wavelengths
- Use three filters with spectra b, r, g
- measure 3 numbers

This is pretty much what the eyes do!

![](_page_21_Figure_7.jpeg)

## Problem

Idea:

- Start with light sensor sensitive to all wavelength
- Use three filters with spectra b, r, g
- measure 3 numbers

For CIE primaries need negative values

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Picture_0.jpeg)

**Color Sampling** 

Problem: a photosite can record only one number We need 3 numbers for color What can we do?

![](_page_28_Figure_0.jpeg)

# <section-header><section-header><section-header><section-header><section-header><section-header><section-header>

![](_page_29_Figure_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_0.jpeg)

|   | D                          | en | າວອ | sai | cin | g |   |   |   |   |   |   |  |   |   |   |   |   |   |
|---|----------------------------|----|-----|-----|-----|---|---|---|---|---|---|---|--|---|---|---|---|---|---|
|   | Interpolate missing values |    |     |     |     |   |   |   |   |   |   |   |  |   |   |   |   |   |   |
|   |                            |    |     |     |     |   |   |   |   |   |   |   |  |   |   |   |   |   |   |
|   |                            |    |     |     |     |   |   |   |   |   |   |   |  |   |   |   |   |   |   |
|   |                            |    |     |     |     |   |   |   |   |   |   |   |  |   |   |   |   |   |   |
| ? |                            | ?  |     | ?   |     |   |   | ? |   | ? |   | ? |  | ? | ? | ? | ? | ? | ? |
| ? | ?                          | ?  | ?   | ?   | ?   |   | ? |   | ? |   | ? |   |  |   | ? |   | ? |   | ? |
| ? |                            | ?  |     | ?   |     |   |   | ? |   | ? |   | ? |  | ? | ? | ? | ? | ? | ? |
| ? | ?                          | ?  | ?   | ?   | ?   |   | ? |   | ? |   | ? |   |  |   | ? |   | ? |   | ? |
| ? |                            | ?  |     | ?   |     |   |   | ? |   | ? |   | ? |  | ? | ? | ? | ? | ? | ? |
| ? | ?                          | ?  | ?   | ?   | ?   |   | ? |   | ? |   | ? |   |  |   | ? |   | ? |   | ? |
|   | •                          | •  |     |     | •   |   |   |   | • |   |   |   |  |   |   |   |   |   |   |

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Picture_1.jpeg)

![](_page_37_Picture_0.jpeg)

![](_page_37_Picture_1.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Picture_1.jpeg)

### Summary

**Spectrum:** Infinite dimensional – value at every wavelength

**Cones:** Project spectrum according to L,M,S responses into 3 values

**Metamers:** Different spectra, same responses

**Color Matching:** Reponses are linear so can convert to any color space using 3x3 matrix

Sensing Color: Spatial multiplexing via Bayer mosaic most common

... but requires **demosaicing** 

![](_page_40_Picture_7.jpeg)

![](_page_41_Figure_0.jpeg)