
Graph Compare

Matthew Can
UC Berkeley

Computer Science

Jointly laying out graphs for easy comparison

Abstract
Graphs are commonly used to represent
structured information. There exist many
techniques for graph visualization and
graph layout. However, there has been
much less work in the area of visualization
for graph comparison. We propose a layout
algorithm for simultaneous graph layout that
facilitates comparison by maintaining
relative distances between shared
structure.

Stress-based Layout
Our layout algorithm is based on stress
minimization. First, we introduce the basics
for single graph layout.

Given graph G = (V, E) where the vertices
have unique labels. Let Xi be the
coordinates for vertex i and X be the matrix
of all vertex coordinates.

Stress (X) = ∑i<j wij (||Xi – Xj|| – dij)2

where dij is the shortest path from vertex i to
vertex j and wij is dij

-2.

We minimize the stress using gradient
descent. The partial derivative of the stress
is:

∑j≠i 2*wij (||Xi – Xj|| – dij) (Xi – Xj) / ||Xi – Xj||

Simultaneous Layout

We lay out two graphs G1 and G2
simultaneously by creating a new graph G

and using the stress-based layout on G.
Graph G contains all vertices and edges in
G1 and G2, with additional zero weight
edges between vertices of G1 and G2 with

the same label.

Limitations

Currently, the algorithm only works for
graphs whose vertices have unique

labels. For graphs with non-unique labels
it may be possible to compute a
structured mapping between vertices
using inexact graph matching (i.e. graph

edit distance). In addition, while the
algorithm maintains relative distances, it
does not place common graph structure in
the same relative positions.

The pseudocode of our layout algorithm

CS 294-10

Graph layout for two graphs computed simultaneously using our algorithm.

The same two graphs as above, with the layout computed by the Graphviz neato algorithm.

Initialize X;

for n from 0 to num_iter:

initialize dX;

for i from 0 to num_vertices:

dX[i] = deriv(X, i);

X = X – dX * eps;

A
B

C

A

CD E

The rationale is that the side-by-side layout
for the two graphs will try to preserve the
relative distances between corresponding
nodes, helping spot shared structure.

A B

C A

	Slide Number 1

