

ProtoWiz – Moderately Complex Visualizations
for the Ambitious Non-Programmer

Michael Cohen and Thomas Schluchter
Abstract—We present ProtoWiz, a browser-based frontend to the powerful JavaScript visualization library Protovis. ProtoWiz

allows users with a non-technical background to explore the possibilites of Protovis in a visual environment rather than in code.
Index Terms—ProtoWiz, Direct manipulation, User testing, code generation.

INTRODUCTION
Domain-specific visualization toolkits such as Protovis enable
users with pre-existing programming experience (or a willingness
to learn) to create data-driven visualizations concisely and quickly.
Protovis seeks to strike a unique balance between ‘expressiveness
(“Can I build it?”), efficiency (“How long will it take?”) and
accessibility (“Do I know how?”)’[2] In designing Protovis, its
authors were seeking a happy medium on these dimensions,
between highly accessible and efficient “closed” visualization
systems such as Microsoft Excel and Tableau/Polaris, and
ultimately expressive low-level graphics libraries such as
Processing (or low-level design tools such as Adobe Illustrator).
Their explicit target audience was web developers, who likely have
some pre-existing familiarity with cascading style sheets (CSS) and
possibly with JavaScript, but who would find a full-fledged
graphics toolkit like Processing daunting.

We argue that Protovis succeeds admirably in retaining much of
the accessibility and efficiency of high level tools while allowing
virtually unlimited expressiveness, at least within the domain of
visualizations in two spatial dimensions. However, we also argue
that there remains a great deal of unexplored space in the
continuum of trade-offs between expressiveness, efficiency and
accessibility. In particular, Protovis leans heavily towards
expressiveness, and by targeting an audience with prior coding
experience it naturally limits the other two dimensions.
Accessibility is limited because users not comfortable with writing
and testing code will face a steep combined learning curve as they
learn both Protovis and JavaScript. Efficiency suffers in a more
subtle way; although Bostock and Heer demonstrate that Protovis is
remarkably efficient in terms of lines of code required to produce
high-value results, the time required to find the correct few lines of
code may be quite long for the novice programmer. Protovis likely
has significant advantages over learning to perform the equivalent
operations in Processing or Open GL, but efficiency barriers
remain that may discourage potential users who technically have
the skills to meet basic accessibility requirements.

Fortunately, Protovis is more than a JavaScript programming
toolkit. It is also an elegant conceptual framework that breaks
down two-dimensional visualization into its fundamental building
blocks of panels, data, scales, marks and their properties. Although
Protovis makes clever use of JavaScript inheritance relations and
functional programming to express these concepts concisely, the
concepts themselves are not JavaScript-dependent, or dependent on
computer programming in general. Rather they are closely related

to visual ideas that are quite accessible to non-programmers, and
particularly designers. Therefore, Protovis provides us with an
excellent foundation to explore the “middle” of the expressiveness-
accessibility-efficiency continuum. That is, it inspires the question:
can we create a framework that captures most (if not all) of the
expressiveness of Protovis, while substantially improving its
accessibility and efficiency? As an initial response to this
challenge, we present ProtoWiz, a browser-based interface for
constructing novel visualizations in Protovis.

ProtoWiz allows users to assemble data, scales and mark
properties using familiar HTML form controls and drag-and-drop
interactivity. The Protovis code corresponding to the form-based
specification is regenerated on the fly after each property change,
and is then parsed and rendered immediately so that the user
receives continuous feedback on the results of her changes. Once
the visualization has reached a satisfactory state (or a state where
further development requires directly editing the code) the user can
export the JavaScript code to cut-and-paste into her own web page.

We believe that Protovis fills a substantial “gap” in the field of
visualization tools available. It is far more expressive than closed
tools such as Excel, while having a substantially gentler learning
curve than Protovis itself. Practically speaking, we believe that
ProtoWiz can play a role in the visualization world analogous to
the role played by WYSIWYG tools such as Adobe Dreamweaver
in web development. In particular, ProtoWiz serves three valuable
functions for three classes of users:

• It allows non-programmers to explore a substantial

fraction of the Protovis design space with lower
barriers to entry. When the complexity of the desired
visualization is simple-to-moderate, ProtoWiz allows
quite rapid completion of the entire project, with
virtually no typing of code.

• It serves as a helpful introduction and teaching tool for
users who are interested in eventually graduating to
the greater expressiveness of direct Protovis coding.
It does this by producing concise, idiomatic Protovis
code that closely matches the style of the Protovis
example gallery, and also by allowing users to rapidly
explore ideas with a “safety net” of immediate
feedback about the validity and aesthetics of the
encoding strategy being attempted.

• Although ProtoWiz has little to offer by way of
accessibility to experienced Protovis coders, they can
still benefit from its efficiency advantages.
Experienced Protovis developers will find it useful to
quickly “scaffold” the basic structure of more
complex projects.

• Michael Cohen is with the Energy and Resources Group at the

University of California Berkeley, E-Mail: macohen@berkeley.edu.
• Thomas Schluchter is with the School of Information at the University

of California Berkeley, E-Mail: thomas@ischool.berkeley.edu.

1 RELATED WORK
The existing tool most similar to ProtoWiz is Tableau (and its
predecessor Polaris [11]). Like ProtoWiz, Tableau offers a highly
interactive way of transforming data into visualizations using a
combination of form input and drag-and-drop interactivity coupled
with immediate feedback. As Bostock and Heer [2] point out,
however, Tableau is ultimately a closed system and offers limited
expressiveness. Furthermore, even within its ostensible range of
expressiveness (i.e. available chart types) Tableau can be
constrained by its close coupling to relational database concepts.
In fact, part of the inspiration for ProtoWiz stemmed from the
frustration that one the authors of this paper experienced when
attempting to use Tableau to plot two data sets that did not have a
relational connection on a single set of axes. Although Tableau
allowed rapid and intuitive exploration of the two individual plots,
there was no way within Tableau to superimpose them. Clearly,
this example called for a more graphical approach, but at the time
this required resorting to image editing tools, or sacrificing all the
efficiency and accessibility of Tableau to re-code the individual
plots in Protovis or a similar toolkit. This was a strong indication
that there was an unexplored gap in the range of available
visualization toolkits.

We drew general inspiration for the idea that direct
manipulation of parameter manipulation to display can enable non-
programmer users to engage fluidly with data from the work of
Ahlberg and Shneiderman on “tight coupling.” [1]

ProtoWiz uses a “templating” approach to code generation,
guiding users to define appropriate properties for each mark and
assign those properties appropriate values by presenting the most
likely options in drop-down lists. Perhaps the most well-known
existing templated programming language is Scratch [7], which is
designed to introduce school-age students to programming (often
without them being explicitly aware of the introduction). Scratch
appeals to students because of its focus on storytelling and
animation, and because its templated, color-coded nature makes it
easier to assemble programs without running into confusing syntax
errors. ProtoWiz similarly takes advantage of the templating
approach to ease the programming learning curve. Like Scratch,
ProtoWiz generates some code implicitly “behind the scenes”,
allowing the user to focus on manipulating the important, story-
centric variables. Unlike Scratch, the complete code generated by
ProtoWiz is only a button click away, making it more appropriate
as a learning tool for adults who will likely be interested in
understanding what is going on behind the scenes, and perhaps
moving on to writing (or editing) their own Protovis code in short
order.

2 PROTOWIZ ARCHITECTURE AND DESIGN
ProtoWiz’ code generation capabilities rely on an architecture that
generalizes key concepts of Protovis and makes them available as
an internal programming interface. We describe the components of
this programming interface in turn.

2.1 Properties
ProtoWiz draws heavily from Protovis’ marks-with-properties
architecture, and in fact extends this architecture to encompass
certain aspects of the code that are not “properties” per se in
Protovis, to provide a clearer, more consistent interface for users.

The basic unit of manipulation in ProtoWiz is a property. A
property is an object (specifically, a function object) with the
following key capabilities:

• Form generation. Each property generates a snippet of
Document Object Model (DOM) code, which we refer to
as its form, that will display its current value and allow
users to manipulate that value. The form is tailored to
present the most common and valid choices for that
property. For instance, many properties are commonly

defined using a Protovis scale applied to a data column;
thus, these properties in ProtoWiz present the user with
drop-downs that are pre-populated with the list of
available data fields and defined scales. When the value
of one of the property’s form fields is changed, this
triggers an update to the property’s internal value, using
its accessor.

• Accessor. The basic property object is actually a
JavaScript function that serves as an accessor for the
property’s internal value. Calling this function with no
parameters returns the current value of the property.
Calling it with an argument sets the value of the property.
The setter performs five tasks: 1) basic validation of the
new value, 2) updating the property’s internal value to
reflect the new value, if it is valid, 3) updating the
property’s form to reflect its new value, 4) if necessary,
updating other properties’ forms and values when they
are dependent on the current property (see form updating
below for an example), 5) re-generating the protovis code
for the visualization and re-rendering it, providing
immediate feedback to the user on the consequences of
the change.

• Code generation. Each property can generate a code
snippet based on its value. This snippet will generally
take the form “.propertyName(expanded
propertyValue)”. This format lends itself to method
chaining with no additional “glue” required; code from
each of a mark’s properties is simply concatenated.
There are notable exceptions to this pattern, which are
addressed below.

• Form updating. Some (but not all) properties will need
to update the options presented to the user when other
properties are changed. The most obvious example is the
“scale and field” type property outlined above. The
options presented by the form will need to change when a
scale is added or removed, or when the data fields
available change (e.g. when a mark’s data property
changes). One subtlety here is that the change in form
options may imply a required change in the underlying
property value. For instance, if a property was based on
field “x” in the data set, and the mark is now using a new
data set with no field called “x” then the property will
tend to be left in a state that will result in a parsing error
when the visualization is rendered. ProtoWiz attempts to
account for this by blanking out form fields that would
otherwise be left with an inappropriate value. Although
we believe this is the “lesser of two evils” compared to
leaving the field in an error-generating state, it could still
cause confusion if the user does not understand why the
field was blanked out.

ProtoWiz properties are arranged into a hierarchy to maximize

code re-use and efficiency where functionality is shared. All
properties ultimately descend from the basic abstract property. So,
for instance, scaleAndFieldProperty is an abstraction that descends
from property and provides the common capabilities of properties
that are frequently defined by applying a scale to a data field.
posProperty and styleProperty are further abstractions based on
scaleAndFieldProperty. posProperty adds a “side” selector so the
user can choose which direction the position is calculated from,
whereas styleProperty adds an alpha (opacity) selector. Finally,
concrete properties such as xProperty and yProperty descend from
posProperty, and strokeStyleProperty and fillStyleProperty
descend from styleProperty.

Note that the concrete properties in ProtoWiz do not always
correspond one-to-one with the properties of Protovis marks. For
instance, ProtoWiz defines xProperty, which allows users to define
the “left” or “right” Protovis property of the mark, but not both.
This is one instance where a small amount of expressiveness was

intentionally traded off for a significant accessibility improvement.
Good reasons to define both the left and right property of a mark
are rare (and in any case the same result can almost always be
obtained by defining width instead) and the potential for confusion
when a new user naively sets the left, right and width properties
simultaneously is high. By making it explicit in the interface that
the left and right properties are mutually exclusive, and by allowing
the user to rapidly switch between them and immediately see the
difference, we are able to short-circuit what may be a painful
learning experience for the Protovis novice.

2.2 Marks, Scales and Data Sets
A mark in ProtoWiz is essentially a collection of properties. Since
values are stored on the individual properties, marks do not need
accessors of their own. However, marks perform important
coordination functions that parallel the other three capabilities of
properties at a higher level of aggregation.

• Form generation. The mark has its own form, which is
essentially a lightweight DOM wrapper to which the
properties can attach their own forms. At creation time,
a mark calls upon all of its properties to generate and
append their forms to the mark’s form. These initial
forms are always present throughout the life of the mark,
though they may be rendered invisible depending on the
mark’s type (see custom properties, below).

• Code generation. For the most part, a mark can simply
loop through its properties and concatenate their code
into an overall Protovis description of the mark.
However, there are certain ProtoWiz custom properties
that must be handled specially, such as name, parent and
type. More on this under “custom properties” below.

• Form updating. Each mark provides a convenient
method to update all of its field-and-scale based
properties since this is a common operation. The details
of updating each property are left to the property itself.

A key conceptual abstraction in ProtoWiz is that ProtoWiz

scales and data sets are implemented as objects based upon
ProtoWiz marks. (That is, scales and data sets are “descended
from” marks, in the prototypal sense.) Although they are
implemented quite differently in Protovis, from a user interface
perspective, ProtoWiz scales and data sets perform exactly the
same function as marks – that is, they aggregate a collection of
properties and generate code that correctly specifies the aggregate
unit. Because scales, especially, do not rely as heavily on the
repetitive method-chaining syntax of marks, the aggregate code-
generation procedure for scales is slightly more complex than that
of marks. In spite of this minor additional complexity, there are
clear architectural and code-reuse advantages to instantiating
marks, scales and data sets using a consistent paradigm.

For example, a quantitative scale’s domain is often defined in
terms of the maximum and minimum values in a particular data
field. In the ProtoWiz architecture, we simply re-use the
dataProperty that we created for marks and add it to scales as well.
Users can set this property to choose a data set to base the scale’s
domain on, which changes the drop-down options available in the
domainProperty’s form. Since Protovis scales do not really have a
data property, the scale’s dataProperty is simply ignored in the
scale’s code-generation method. By applying the ProtoWiz
property architecture, we are able to efficiently re-use code on the
development side while also providing the user with the most
consistent experience possible, hiding away some implementation
details that are not relevant to the conceptual design of
visualizations.

2.3 Custom properties
In addition to making available nearly all of the properties of
Protovis marks (exceptions include properties dealing with
interactivity, such as the “events” property) ProtoWiz defines a few
additional properties that support a level of efficient interaction that
would be impossible in a directly-coded Protovis visualization.
Most notable are the nameProperty, the typeProperty and the
parentProperty.

nameProperty is where users enter a (required) name for each
mark. This name identifies the mark in the layers area of the user
interface, and also serves as the JavaScript identifier for the mark
in the generated Protovis code. The nameProperty form will
immediately correct an attempt to use an inappropriate identifier,
for instance by replacing space characters with underscores and
adding a unique number on to the end of a duplicated name; this
prevents the user from having to puzzle through an entire class of
trivial errors related to naming, and provides direct guidance on
what constitutes an appropriate name in JavaScript without
sacrificing flexibility.
In a rare intentional departure from Protovis idiom, ProtoWiz
assigns every mark an identifier, even one that could be defined
simply by chaining an “.add” directly onto the end of its parent
mark. There are two reasons for this. First, it makes code
generation considerably simpler and more general – e.g., the case
where two marks need to inherit from the same parent mark can be
handled without any branching or special cases. Second, it makes
it easier for a novice user to examine the complete generated code
and see which blocks correspond to which marks, facilitating the
matching of final code to the mental/user interface model. We
deemed that these advantages were worth the minor deviation from
convention (and, in any case, in any Protovis visualization at least
some marks will have names, so the pattern should be familiar
enough).

In Protovis, each mark type is represented by a separate class
that defines the effect of property methods relevant to itself.
Because different mark types share many properties with the same
meaning, it is easy for marks to inherit useful information from a
parent mark of a different type, and it is relatively simple to change
the type of a mark to explore a different representation. However,
there are a couple of challenges inherent in the code-based
approach to mark creation. First, because many properties are
shared but many are not, it takes practice to learn which properties
will create the desired effects with each mark type. For instance,
width is used with bars, whereas lineWidth is used with dots and
lines. Second, maintaining clean code when switching between
property types can require significant trial and error at first. For
instance, suppose that a user is creating a step chart in various
colors using a line mark with “step-before” interpolation and
segmented set to true, but then decides that a bar mark may better
form the desired representation. It is easy enough to change a
pv.Bar to a pv.Line, but then the user is faced with the challenge of
property housekeeping. For instance, does the new bar also need to
be segmented? Is that required (like it was for the multi-colored
line), optional, or meaningless for a bar? For tidiness and to avoid
unexpected behavior it is often desirable to delete properties that
are no longer needed. The user can comment them out while
exploring, but has to remember to uncomment the correct ones if
she reverses her choice of mark type.

To an experienced programmer, learning which properties go
with which marks and keeping track of which are relevant as
different mark types are explored may seem trivial. However, to a
novice or non-programmer they can appear to be formidable
barriers that lead to time drained consulting references and/or
frustrating lack of response when one believes one has made a
valid change. Furthermore, neither activity adds value to the
visualization – they are simple memorization and housekeeping
tasks. ProtoWiz’s contribution to minimizing these challenges is
the typeProperty. In ProtoWiz a mark’s type at creation time is

simply a starting point, and can be changed at any time by choosing
a different type from the typeProperty’s form’s select box. Aside
from changing the type declared in the generated code, the
typeProperty hides all properties that are not relevant to the new
mark type. Furthermore, hidden properties always generate an
empty string when their code method is called. In other words,
both the user interface and the generated code immediately direct
the users attention to the relevant properties for the chosen mark
type. However, the former value of the hidden properties is still
stored in the underlying property object, so if the user changes her
mind about a given type change, reversing it will transparently
restore her former values, leading to a highly accessible and
efficient exploration process.

The parentProperty allows the user to select a mark’s
immediate ancestor on the inheritance chain. Users can do this by
selecting the name of any mark on a lower later from a generated
drop-down list. Parent names update automatically when the
referenced mark’s name changes, allowing users to be more
flexible about names than they would be in a coding environment
where name changes would require explicit follow-up using find-
and-replace to ensure consistency.

2.4 Graphical decomposition
ProtoWiz follows closely Protovis’ paradigm of graphical
decomposition. Like Protovis, ProtoWiz requires users to mentally
decompose the desired output into a combination of dots, bars,
wedges, labels, and so on. Additionally, ProtoWiz makes explicit
the idea of layers, which exist only implicitly in Protovis. Because
Scalable Vector Graphics (SVG, the final output format of
Protovis) does not support explicit z-ordering, marks are simply
rendered in the order that they are coded, with the newest mark on
top of the previous mark. It is possible to control z-ordering by
rearranging the order of mark definitions, but this is unlikely to be
intuitive to novices. ProtoWiz makes the idea of ordering in depth
explicit by wrapping each mark’s form in a draggable container,
and supporting dynamic re-ordering of the containers, which is
immediately reflected in the draw order on the canvas.
Rearranging layers has the potential to break inheritance
relationships between marks (since inheritance, like z-order, must
go in code order) so ProtoWiz provides a warning if a user is about
to make such a change. The layers metaphor not only makes the
underlying operation of Protovis and SVG clearer, it also leverages
a user’s potential familiarity with other layer-based tools such as
Adobe Photoshop.

2.5 Form field flexibility and code expansion
While the ProtoWiz drop-down menus alone are adequate for the
creation of many simple visualizations, expressiveness demands
that users be able to enter simple snippets of code occasionally.
Our design goal is to make this coding feel similar in complexity to
the code written for an Excel formula (which many users will be
familiar with) or the expression builders in, for example, Tableau
or desktop databases such as FileMaker and Microsoft Access.

To enable the input of custom code, we made use of the
simpleCombo [10] plug-in for jQuery [5] (which itself was used
extensively to build the interface). simpleCombo allows standard
drop-down menus to be outfitted with a first option element that
can be edited by entering keystrokes. In the interface we have
colored these drop-downs cyan to indicate their unusual nature. If
a user decides to select a pre-populated option instead, the custom
option remains in the list unless it is typed over later on.

To simplify the task of writing code to define properties,
ProtoWiz requires only that users explicitly write the code for data
fields, operators, and/or literal values needed to generate the
appropriate property values. Users do not need to understand that
sometimes they are writing the body of a function while other times
they are not. ProtoWiz scans the entered values at code-generation
time and prepends them with function(d) (if the user references

d.foo) or function() (if the user references this). This generates
working code based on a simplified specification, but allows the
user to defer understanding of the inner workings of anonymous
functions which can be quite mysterious to novices.

3 EVALUATION
For the purpose of evaluating the implementation approach, we
conducted two separate evaluation steps:

1. We benchmarked ProtoWiz against selected
visualizations from the Protovis examples gallery [9] to
see whether it was possible to recreate them using
ProtoWiz alone, and compared the code that ProtoWiz
generates to Protovis example code.

2. We conducted user tests with a prototype of the system.
The goal here was to evaluate whether the user interface
supported non-programmers in the creation of
moderately complex visualizations.

3.1 Benchmark visualizations and generated code
The following visualizations could be reproduced using the
ProtoWiz interface:

Figure 1: Nightingale's Rose reproduced in ProtoWiz

Although Nightingale’s Rose (Figure 1) is reproducible within
ProtoWiz, there are some significant challenges to doing so. First,
because ProtoWiz does not yet support most of Protovis’ data
transformations, it is necessary to add columns to the data set that
specify the “max” radius of each slice (for label positioning), the
number of the month, and the abbreviation of the month. We do
not consider this a major shortcoming as most users interested in
creating data-centric visualizations will have some experience with
spreadsheets and would likely prefer doing the data manipulation in
a spreadsheet to learning the equivalent commands in ProtoWiz in
any case. Doing data manipulation in the spreadsheet may require
toggling back and forth between the two programs as a user
discovers a need for an additional column, but since a data set can
be re-pasted without disrupting the property definitions, we believe
this is a minor annoyance.

More problematic are property values that are valid in Protovis
but cannot be used in ProtoWiz. In the original Rose example, the
strokeStyle is defined as this.fillStyle().darker(). Unfortunately,
this construction generates a rendering error in ProtoWiz because
in the generated code the strokeStyle property is declared before
the fillStyle property, and therefore the fillStyle is not yet available
to use when strokeStyle is declared. (It would be possible to work
around this by reversing the dependency. That is, darkening the
original color scale, applying it to the strokeStyle, and then
defining the fillStyle as this.strokeStyle().lighter() instead.
However, this is an arbitrary and unnecessary asymmetry to impose
on users.) Future versions of ProtoWiz may be able to detect
dependent properties and reorder them as necessary. For the
current example, the strokeStyle was simply defined as a thin gray

line instead, with no relation to the fillStyle. In this case, the visual
difference is barely noticeable, but it does point to one area where
working purely in ProtoWiz places a hard limit on expressiveness.

Figure 1: Protovis example code
Finally, there are some property definitions that can be created in
ProtoWiz, but only by writing substantial code snippets that imply
a prior familiarity with Protovis. For instance, in order to generate
the Rose, a user must currently enter the following code into the
interface verbatim:

• function(d) causes.sort(function(a, b) d[b] - d[a])
• function(c, d) radius(d[c])
• this.anchorTarget().midAngle() + Math.PI / 2

On the one hand, the fact that the Rose can be created with only
a few “real” lines of code can be considered a significant step
forward. On the other hand, it argues for further refinement of the
interface (and especially for the addition of an expression builder)
so that non-programmers have a reasonable chance of producing
visualizations at this level of sophistication.

Support for small multiples (cf. Figure) was added by allowing

multiple panels in the same visualization. Currently, the data roll-
up functionality built into Protovis is not available through the
ProtoWiz interface, so that the order of panels doesn’t quite match
the original example. This feature will be included in a future
version.

ProtoWiz generates concise, idiomatic code that will be familiar
to browsers of the Protovis example gallery. To demonstrate this,
we present the code to generate scales and a single dot mark for a
simple scatter plot, both from the example gallery and generated by
ProtoWiz. Minor differences are noticeable; for instance,
ProtoWiz wraps this.strokeStyle() in an unnecessary (but harmless)
pv.color() because it does not recognize that this.strokeStyle() is
already a color value. However, on the whole the code is quite
similar, which should help users apply insights from the example
gallery to ProtoWiz projects, and apply insights from ProtoWiz-
based projects to future projects coded by hand.

3.2 User tests
In addition to confirming that the internal architecture of ProtoWiz
provides access to most features of Protovis, we were interested in
learning whether the user interface enabled relatively inexperienced
individuals to produce a visualization in a reasonable amount of
time.

3.2.1 Participants
A total of five participants was recruited from the School of
Information and the Energy and Resources Group, 4 males and 1
female. All participants were interested in information
visualizations and had been exposed to software applications for
generating them. Excel was mentioned as a common tool, and most
participants had used at least one other software package, including
R, STATA and Matlab. None of our participants claimed to have
extensive or professional programming experience, but three
people mentioned that if they copied code from examples, they
could usually adapt it to their own purposes. This fits well the user
group we are targeting: end-user programmers as defined in [6]:
“people with expertise in other domains working towards goals for
which they need computational support”. This is important to
remember because it speaks to the probability that advanced
programming concepts are going to be understood by our target
audience. As Ko et al. detail, most end-user programmers know
what they need to do in a certain language to achieve a certain
result, but they rarely understand the computer science behind it
and are likely to be thrown off by unexpected errors. As we will
see, this has ramifications for the design and further development
of ProtoWiz’ user interface.

Figure 2: Becker's barley visualization is a good example of
the use of small multiples

x = pv.Scale.linear(0, 99).range(0, w),
y = pv.Scale.linear(0, 1).range(0, h),
c = pv.Scale.log(1, 100).range("orange",
"brown");

vis.add(pv.Panel)
 .data(data)
 .add(pv.Dot)
 .left(function(d) x(d.x))
 .bottom(function(d) y(d.y))
 .strokeStyle(function(d) c(d.z))
 .fillStyle(function()
this.strokeStyle().alpha(.2))
 .size(function(d) d.z)
 .title(function(d) d.z.toFixed(1));

x = pv.Scale.linear(0, 99).range(0, w);
y = pv.Scale.linear(0, 1).range(0, h);
c = pv.Scale.log(1, 100).range('#ff7f0e',
'#8c564b');

exampleMark = root.add(pv.Dot)
 .data(demo)
 .left(function(d) x(d.x))
 .bottom(function(d) y(d.y))
 .size(function(d) d.z)

 .strokeStyle(function(d) c(d.z))
 .fillStyle(function()
pv.color(this.strokeStyle()).alpha(0.2))
 .title(function(d) d.z.toFixed(1));

a

b

Figure 3: (a) shows Protovis example code, (b) shows the
equivalent code generated by ProtoWiz

Although some of our participants had looked at Protovis
before, none had actually used it in any of their projects. The
reasons for this ranged from “the frustrating lack of
documentation”1 to a lack of time to “dive in”. Although these
quotes are only anecdotal evidence, they may suggest that Protovis
can be a challenge to learn for a certain user population.

3.2.2 Methodology
After an initial assessment interview to gauge the participants’
experience with various visualization tool and techniques,
participants were given a brief introduction to the interface. For the
purpose of the user test, the application was pre-loaded with a
three-dimensional dataset containing 100 rows. The initial display
showed an x-axis with rules, a y-axis with rules and a scatterplot of
circles based on the data. Participants were asked to explore the
interface for 10-15 minutes and try any functionality they were
curious about. They were encouraged to think aloud while playing
around with the interface. To ensure that we would learn about
specific problems with regards to the expressiveness of the
interface, as much as possible we only responded to questions and
did not jump in to assist the participants with a task they seemed to
be struggling with.

After the unstructured exploration of the interface, participants
were given a printout of an example in the Protovis gallery (“Gas
and driving”, Figure 4) based on a data set containing historical
data on driving habits (miles driven per capita each year) and
gasoline prices (adjusted for inflation). The participants were asked
to reproduce the graph as faithfully as they could in 20 minutes.
Before we started measuring time, we gave an explanation of the
graphical decomposition approach in order to enable everyone to
develop an appropriate strategy (analyse graph for different mark
types, determine their order, add them in order and attach data to
them). The strategy was not made explicit. As with the interface
exploration task, we only responded to direct questions and
recorded the participants’ thoughts along the way.

1 This should be taken less at a criticism of the documentation efforts of the
Protovis team and rather as an indication that end-user programmers’
needs are different from those of professional software developers. The
participant voicing this complaint did not have enough programming
experience to be able to use API documentation productively.

3.2.3 Results
All participants were able to reproduce the example graph with
varying degrees of fidelity. In one case, the graphic produced by
the ProtoWiz user was nearly a pixel-perfect replica (see Figure 5).
Also, participants varied in their ability to devise an appropriate
strategy for creating the visualization unaided. The reasons for
these varying difficulties are discussed below.

The concept of a mark that is associated with data appeared to
be foreign to most of our users. Several times, we needed to
explain that marks are conceptually different from their data-driven
instantiations on the display. This proved to be a critical point as
the only way to add a new visual element to the canvas is to create
a new mark in the interface. Several participants tried to modify
existing marks to add visual elements to the display and expressed
initial confusion about the changes in the visualization.

When the concept of a mark was understood, most other mark-
related operations (re-ordering by dragging, basing a mark on
another mark etc.) were easily understood as well.

Further, the relationship of marks and scales was a stumbling
block in many cases. In the user interface of ProtoWiz, Scales
inhabit a different part of the screen than marks. The reasoning
behind this design decision was that scales are non-visible elements
that merely provide transformation functions to the marks that
consume data points. Scales translate values from the data domain
into the visual domain – which is why they need to be applied to
the data that is being displayed. This connection did not seem
readily apparent to the participants. In particular, there was
considerable insecurity around the difference between applying and
changing a scale. Both applying a scale to a given mark (or
switching one scale for another) in the mark interface and altering
the scale’s properties in the scale interface immediately changed
the visualization. Participants with a weak understanding of scales
could not immediately make a connection between the changes
they saw and the actions they had taken. This was compounded by
some participants’ tendencies to change many properties in many
places hoping to get some effect. (A typical remark would be “Oh,
that didn’t do anything!”).

This tendency had the most impact in positioning new marks
which is usually the first and most essential step. For a mark to
display itself correctly, it needs (at a minimum) a data source.
Because ProtoWiz supports multiple data sets, setting the data
source can be a two-step process: selecting a data set to draw from,
and then setting the appropriate data value from the data set as the
mark’s data source. Due to the absence of strong typing in
JavaScript, creating reliable type checking mechanisms is very
difficult, and we had to opt not to do this. As a consequence, users
were able to, for example, assign ordinal data values from the data
set to marks that require numeric specifications to position
themselves. The visualization fails gracefully in this case, but some

Figure 5: Re-creation of the example graph by one of our participants
inside ProtoWiz

Figure 4: Example visualization from the Protovis Gallery

participants had to be nudged to reconsider their choice of data
source.

For all marks that display themselves in Euclidian space, the
specification of minimally necessary properties (horizontal
position, vertical position and appearance) could be an initial
barrier to understanding the relationship between mark
manipulation and changes in the visualization display. The
referenced Protovis example contained a line mark, a dot mark and
a label mark, all of which need to be positioned in Euclidian space,
and underspecifying marks leads to results that some participants
struggled to interpret. For example, specifying a line mark with
only an x-axis property leads to a flat horizontal line. Depending on
the position of the browser’s viewport, this change in display could
be overlooked, especially when participants were focused on
understanding the various form elements.

The accordion widget that contained the form elements for each
mark contributed to some of these difficulties. To implement the
layers metaphor explained in section 2.4, mark form elements are
stacked on top of each other. To maximize screen space for each
form element, an accordion widget organizes the display of the
individual marks’ forms. When a user adds a number of marks to
the visualization, each new mark gets appended to the list of marks
to reflect the order of Protovis code. When working with marks
that were positioned at the bottom of the list, it was possible for the
visualization to be partly scrolled outside the viewport. This led to
the impression that nothing was happening on the screen when in
fact, the upper half of the visualization might have changed.

Participants frequently commented on the ordering of form
elements. In some instances, certain controls were not positioned in
placed where they would have been expected. Because of the way
form elements are currently generated on the fly when a mark
updates its controls, the ProtoWiz interface has basic logical
grouping of elements. This could easily be enhanced to create
semantically consistent structures for control groups that are
labelled according to their visual impact (e.g. “Positioning”,
“Colors” etc.) The layout of the form controls was deemed by some
participants too be “overwhelming”; these cases should be resolved
by applying both semantic grouping as described above and a
refined visual hierarchy.

The existence of multiple data sets was generally well
understood. Some participants were led to believe that they could
directly alter the data by inputting new values which is not
currently supported. In the long term, the HTML <textarea> that
holds the JSON notation as a string should be replaced by a tabular
representation of the data. This would also help users with
discovering properties of the data that affect the display of the
visualization. The example graph that we asked participants to re-
create had labels aligned with the data points in a seemingly
arbitrary fashion. A closer look at the data set would have revealed
to the participants that each data row actually contained positioning
information for the label to avoid visual occlusion. Had the data
been presented in a tabular format, this might have been more
obvious.

Data sets are in the current implementation grouped with scales
because both represent non-visual parts of the visualization code.
As with scales, some participants were expecting that selecting a
data set in the data set viewer would apply the data to the entire
visualization. Again, the concept that marks are conceptually
separate from their data is most likely the cause for these issues.

A consistent source of questions were marks of the type Label.
Most participants did not think of labels as marks, but rather as
accessories to marks. Consequently, labels were often assumed to
be controlled by the marks with which participants wanted to
associate them. Almost every participant had to be pointed to the
existence of a “Label” button in the panel from which they had
created the other additional marks in their visualization.

3.2.4 Discussion
Overall, ProtoWiz has proven to be a very successful tool for the
kind of task that we tested it against. The fact that users without
significant previous exposure to Protovis were able to reproduce a
graph with minimal amounts of training proves that the concept is
valid and should be pursued further. There are, however, numerous
aspects to the current implementation of ProtoWiz that should be
given more consideration.

The first and most prominent aspect is the observed difficulty of
some novel users to understand the relationship between their
manipulation of the interface and the resulting visualization. It
appears that the gulf of evaluation and the gulf of execution are
widened by the idiosyncratic nature of Protovis’ approach to
visualization.

The gulf of evaluation as Hutchins et al. [4] describe it,
concerns the ability of the user to tie states of the generated
visualization back to the settings of the interface. A number of
remedies could be applied to the current implementation to support
a clearer understanding of how the state of the visualization reflects
the state of the mark forms, data sets and scales. Some of these are
reflected in section 4, Limitations and future work.

The gulf of execution is the distance between the user’s mental
model of the application and the software’s modelling of its
domain. This becomes highly relevant when users form a strategy
for attaining the goals they set. In our evaluation, this shows when
users are clicking buttons and guessing what they will do (“Maybe
this one? No, I’m doing it wrong…”).

While some of the causes for this lie in the technical
implementation of the interface, the larger issue seems to lie in the
distance between Protovis’ model of building visualizations and the
users’ understanding. This raises an interesting conceptual issue.
Currently, ProtoWiz’ manipulation interface mirrors very closely
the underlying concepts; this extends down to the naming of
properties. That is, to a large degree, intentional. We want
ProtoWiz to be both a tool for quick and effective visualization
creation, and a learning instrument. By showing users the code that
is generated from their settings, and by enabling them to copy-paste
the complete code to an HTML document for further development,
we want to encourage users of ProtoWiz to further their
understanding of ProtoVis.

As soon as one introduces abstractions from the Protovis model
of creating visualizations, it becomes more difficult to correlate the
state of the mark controls with the generated code. On the other
hand, strict adherence to the ProtoVis model makes the tool more
opaque and introduces a steeper learning curve for users who are
newcomers to both Protovis and ProtoWiz.

The interesting design challenges lie in the space between.
There are numerous ways to preserve the Protovis idiom in the
interface while guiding users more strongly. In the areas where
users experienced the most initial difficulty, there are the greatest
opportunities for further improvement:

• Relationships between marks, scales and data
• Visualizing inheritance relationships both on a the

level of the entire mark and on the level of its
properties

• Either protecting the user from inadvertently breaking
parent-child relationships or building in smart
recovery mechanisms

Improvements

4 LIMITATIONS AND FUTURE WORK
ProtoWiz is an ambitious concept, and much work remains to be
done to fulfill the ultimate vision. Here we divide the possibilities
into “limitations” which we do not intend to address in the near
future because we believe they are conceptually inappropriate or
out of our original scope, and “future work” that we believe will
yield more value for the time invested. Of course, if the project

becomes popular and gains momentum, today’s accepted
limitations could become tomorrow’s future work.

4.1 Limitations

4.1.1 Interactivity
The current version of Protovis (3.2) offers quite limited native
support for interactivity. Interactivity is mainly achieved by
writing standard JavaScript event handlers and attaching them to
marks with convenience methods. Because this is a true JavaScript
programming task and does not take advantage of the elegant
mark-and-property architecture, we have left it out of scope for
ProtoWiz. If Protovis in the future incorporates interactivity (or
animated transitions) more directly, we would revisit this scoping
decision. In the meantime, programmers are free to add
interactivity to the generated Protovis code, of course.

4.1.2 Data
ProtoWiz currently supports the creation of data sets via pasting in
JSON-formatted data. Although this format will be unfamiliar to
non-programmers, there are simple and free web-based tools that
will convert Excel spreadsheets or tabular data to JSON, such as
Mr. Data Converter [8]. Thus, we do not expect data import
limitations to be a significant barrier to the use of ProtoWiz, and
see more research and practical value in focusing on simplifying
the Protovis authoring process, at least in the near term.

4.1.3 Import of existing Protovis code
We have received several inquiries as to whether ProtoWiz will
support importing of existing Protovis code into the user interface.
While we certainly agree that this would be a valuable feature, it
also implies the entirely new and mostly unrelated challenge of
implementing a JavaScript parser. We would welcome
contributions along these lines but intend to stay focused on the
core user interface challenges for now.

4.1.4 Layouts
Protovis layouts would be cumbersome to include in the ProtoWiz
architecture, as layouts define numerous idiosyncratic properties
that would need to be defined individually in the ProtoWiz
hierarchy. They also are not central to Protovis’ strength in the
flexible, “decompositional” creation of novel visualizations.
However, excluding layouts does significantly constrain
ProtoWiz’s expressiveness especially in the important area of
graph visualization, including hierarchies and networks. Of all the
original limitations in scope, this is the most likely to be revisited
first.

4.2 Future Work
Aside from the above structural or scoping limitations, there are
numerous interface modifications that would clearly improve
expressiveness, efficiency and/or accessibility but which have not
yet been implemented due to time constraints. Some of these
engender interesting research questions of their own. We briefly
address them here.

4.2.1 Direct interaction with the canvas
The canvas is an important source of immediate feedback regarding
the state of the visualization, but is a completely “passive” interface
component, creating an artificial divide between the property
definitions and their product. A more direct sense of manipulation
could be provided by allowing users to click on an existing mark in
the canvas to open its mark form, and/or fading the opacity of
marks whose forms are not currently open for editing to draw
attention to the mark being edited. More ambitiously, we can
imagine enabling direct dragging and dropping of marks on the
canvas to modify certain properties such as size. Developing an
intuitive toolbox of direct transformations and applying those

transformations intelligently to other instances of the mark would
be a difficult but potentially quite fertile design challenge.

4.2.2 Improved error status messages
Currently, Protowiz provides feedback on the “renderability” of the
generated code, either by displaying a check mark and “OK” in the
status area, or by displaying an “X” mark along with the JavaScript
error message encountered during rendering. This error message is
quite low-level and cryptic, even for moderately experienced
programmers. Two possible approaches to remedying this problem
are 1) maintaining a translation table that relates JavaScript errors
to their common causes in Protovis, and 2) pre- or re-parsing
individual properties in a “sandbox” context in an attempt to detect
where the error is being generated and why. It is an open question
as to whether either of these approaches (or a combination) could
cover a large enough fraction of possible issues to be worthwhile.

4.2.3 Expression editing
Another approach to reducing time spent addressing errors is to
provide better guidance on what constitutes correct code. In our
original conception of ProtoWiz we envisioned including an
“expression builder” similar to Tableau that would allow guided
construction of more complex operations on data fields and scales
(or literals). Unfortunately this proved to be too ambitious for the
time available, but there are clear precedents and reason to believe
that users comfortable coding at the level of Excel formulas will
find this approach familiar and usable, while allowing for more
expressiveness than the current drop-down paradigm. This would
also allow a more explicit introduction to common Protovis
techniques such as using the ternary conditional operator to control
a property based on some boolean decision about the data.

4.2.4 Drag-and-drop inheritance
Although there is some relationship between inheritance (as
determined by the parentProperty) and visual layering in the
ProtoWiz interface, we believe that the relationship could be made
far more explicit by allowing users to drag-and-drop mark forms
directly on to other mark forms to create (or break) inheritance
relationships. Child mark forms could appear “nested” inside
parent mark forms. This would allow us to do away with the drop-
down parentProperty altogether and represent both inheritance and
layering using a unified visual metaphor. Unfortunately the
standard jQuery “accordion” component used to create the layer
interface does not support this behavior, but it should be fully
achievable with customization effort.

4.2.5 Undo, redo, save and load
ProtoWiz does not currently track changes in the internal state of
its collection of marks and properties, and thus offers none of these
common conveniences. Ahlberg and Schneiderman sensibly
include “reversibility” among their requirements for “tight
coupling,”[1] and thus we consider the lack of undo functionality to
be a conceptual as well as practical weakness. Fortunately, there
are no structural limitations to adding these features.

4.2.6 Tooltips
In general, ProtoWiz intentionally displays the exact property
names used by Protovis. In many cases, these are easily
understood, but some are obscure; for example “stroke style”
where users would probably find “stroke color” more descriptive.
This exemplifies an underlying design tension in ProtoWiz – that
is, to what extent should the interface surface Protovis (or
javascript) idiosyncrasies to help users learn to code, versus hiding
those idiosyncrasies in order to make the tool more accessible to
novices? Adding tooltips to each property would be a middle
ground, allowing the Protovis names to remain “official” and
become familiar while enabling quick discovery of their underlying
meanings by new users.

4.2.7 Missing Protovis features
A few basic components of Protovis are not yet supported due to
their need for idiosyncratic or custom property definitions. These
include:

• The Image mark type
• Drop-down guidance for the “font” and “text

baseline” properties
• Formatting (e.g., of dates)
• Data manipulation.

Data nesting is technically supported by the custom

nestProperty but in an extremely rudimentary way that would be
difficult for users not already familiar with Protovis to get working
correctly. Other data manipulations (e.g. rollups) have not been
addressed at all.

5 CONCLUSION
We have presented ProtoWiz, a browser-based frontend for
Protovis. Through a flexible and extensible architecture, we were
able to replicate most of Protovis’ functionality and automatically
generate form controls that set an underlying Protovis
visualization’s properties.

REFERENCES
[1] C. Ahlberg and B. Shneiderman, “Visual Information Seeking: Tight

Coupling of Dynamic Query Filters with Starfield Displays.”
[Online]. Available: ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-
Bibliography/3131html/3131.html. [Accessed: 06-Apr-2011].

[2] M. Bostock and J. Heer, “Protovis: A graphical toolkit for
visualization,” IEEE Transactions on Visualization and Computer
Graphics, p. 1121–1128, 2009.

[3] T. R. G. Green. Cognitive dimensions of notations. In Proceedings of
the fifth conference of the British Computer Society, Human-
Computer Interaction Specialist Group on People and Computers V,
pages 443–460, New York, NY, USA, 1989. Cambridge University
Press.

[4] Hutchins, Edwin L., Hollan, James D. and Norman, Donald A. (1985)
“Direct Manipulation Interfaces”, Human-Computer Interaction, 1: 4,
311—338

[5] “jQuery: The Write Less, Do More, JavaScript Library.” [Online].
Available: http://jquery.com/. [Accessed: 06-May-2011].

[6] A. J. Ko, et al., “The State of the Art in End-User Software
Engineering.” ACM Computing Surveys. Accepted for publication.

[7] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: urban youth learning programming with
scratch,” ACM SIGCSE Bulletin, vol. 40, no. 1, p. 367–371, 2008.

[8] “Mr. Data Converter - Transforming spreadsheets into web-friendly
data since 2010.” [Online]. Available:
http://www.shancarter.com/data_converter/index.html. [Accessed: 06-
May-2011].

[9] “Protovis: Gallery.” [Online]. Available:
http://vis.stanford.edu/protovis/ex/. [Accessed: 06-May-2011].

[10] “Simple Combo Box jQuery plugin << Semicolon.” [Online].
Available: http://www.thunderguy.com/semicolon/2009/07/16/simple-
combo-box-jquery-plugin/. [Accessed: 06-May-2011].

[11] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system for query,
analysis, and visualization of multidimensional relational databases,”
IEEE Transactions on Visualization and Computer Graphics, p. 52–
65, 2002.

