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ABSTRACT 

Graphs, node-link diagrams, are frequently used to 

visualize structured information. But while much work has 

gone into methods for visualizing single graphs, it is still an 

open question how to visualize multiple graphs to best 

convey their structural and semantic similarities and 

differences. We present a visualization technique for 

comparing graphs. At its core, our method is a graph layout 

algorithm that computes the layout for two graphs 

simultaneously so that they are easy to compare when 

placed side by side. In particular, our algorithm favors 

layouts where shared graph structure appears the same way 

in both graph layouts. We demonstrate how our method can 

work for graphs with and without unique vertex labels, 

using inexact graph matching techniques. We show 

visualizations produced by our algorithm and evaluate them 

in an informal user study, uncovering important design 

principles for visualizations that compare graphs. 
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INTRODUCTION 

Graphs are a common way to reason about and visualize 

structured objects. By structure, we mean objects that can 

be decomposed into smaller parts where there are 

relationships among the parts. For example, a social 

network is a structured object. We can decompose it into 

the set of people present in the network, with relationships 

between people who are socially connected. In graph 

terminology, we represent the people as vertices and the 

social connections as edges. 

Figure 1: An example of a simultaneous layout produced by 

our system. We highlighted the shared nodes for the 

convenience of the viewer only. 

For individual structured objects like social networks, there 

exist many visualization techniques, the most common 

being the graph (i.e. node-link diagram). But suppose we 

want to compare two or more structured objects. For 

example, we might want to compare the following objects: 

 Social networks: Alice wants to compare her immediate 

social network with Bill’s. She wants to know which 

groups of friends they have in common, even though the 

people in those groups may not correspond one-to-one. 

 Parse trees: Our natural language parser produces a 

parse tree for an English sentence. We want to compare 

this to the true parse tree for the same sentence. This 

might be useful if we want to debug our parser. 

 Recipes: A recipe is a set of ingredients and actions (e.g. 

bake, mix, cut). There is a directional relationship 

between an ingredient and an action when the ingredient 

is used in the action. There are also relationships between 

actions when the output of one action is the input to 

another. We might want to compare two recipes for 

similar dishes. We want to know not only which 

ingredients differ between these dishes but also how the 

processes of preparing the dishes differ. 

 Assembly instructions: Assembly instructions are 

structured objects composed of individual steps and 

directional relationships that indicate the order in which 

the steps must be carried out. Suppose a company wants 

to compare two different assembly instructions for 

building the same desk that the company manufactures, 

with the goal of analyzing which instructions are most 

effective. 

Given that we want to compare structured objects, how 

should we visualize the similarities and differences between 

such objects? As we have already said, structured objects 

     

 



 

are commonly expressed as graphs, and in this paper, that is 

the approach we take. Thus, the problem we face is how to 

visually display graphs so that they can easily be compared. 

We would like our visualization to facilitate comparison 

between individual nodes and between larger structures 

such as subgraphs. An ideal visualization would help the 

user create a mental mapping from one graph to the other. 

For simplicity, in this paper we limit ourselves to the case 

where we want to compare only two graphs. Our approach 

is to display the graphs side by side so that common graph 

structure has the same appearance in both graphs. Suppose 

we were to use a standard graph layout algorithm to lay out 

each graph separately and then place them next to each 

other. This display would have none of the properties that 

we desire. Instead, we design a layout algorithm that 

simultaneously calculates the layout for two graphs. Our 

algorithm attempts to maintain the same distances between 

corresponding nodes in the graphs. In other words, if a pair 

of nodes appears in both graphs, the algorithm attempts to 

keep the distance between the nodes the same in both 

graphs. This results in corresponding nodes having the 

same relative position to each other in both graphs, such 

that the shared structure between the graphs appears the 

same way in both. 

RELATED WORK 

There are two primary areas of work related to visualization 

for graph comparison: graph layout and dynamic graph 

drawing. We discuss each of these in turn. 

Graph Layout 

The work on graph layout examines ways to draw graphs 

with certain desirable properties. These properties can vary 

from one application to another, but a few are common. In 

general, a good layout will minimize the amount of physical 

space taken up by the graph. A good layout will eliminate 

node overlaps and minimize the number of edge crossings. 

For directed graphs, a good layout will maximize the 

number of directed edges that point downward. The goal of 

these heuristics is to make the graph visualization easier to 

comprehend. 

A comprehensive review of the literature on graph layout 

algorithms that attempt to address these properties is 

beyond the scope of this paper. Instead, we describe some 

of the common classes of graph layout algorithms. 

Undirected graph layout is typically done using force-

directed placement (FDP) algorithms. In practice, these 

algorithms produce aesthetically pleasing layouts with nice 

symmetries. Their layouts generally also minimize edge 

crossings and keep all edge lengths the same. A well known 

FDP algorithm is that of Fruchterman and Reingold [5]. It 

treats the graph as a physical system, where the edges are 

springs and the vertices are charged particles. To compute 

the layout, their algorithm solves for the steady state of this 

system. Another flavor of FDP is based on the stress 

function, introduced by Kamada and Kawai [9]. These 

layouts minimize a stress function defined on the edges of 

the graph. Our algorithm for simultaneous graph layout is 

based on this approach. The most common methods for 

directed graph layout are based on the algorithm of 

Sugiyama et al. [13]. These algorithms use the y-axis to 

convey hierarchy. They divide the y-axis into layers and 

place nodes into layers so as to minimize edge length. 

Preprocessing is required to handle graphs with cycles. 

Dwyer and Koren introduced the DIG-COLA layout 

algorithm [3], which uses FDP to perform directed graph 

layout. Specifically, they minimize the stress function using 

majorization, a technique borrowed from multidimensional 

scaling. This technique iteratively bounds the stress 

function with a quadratic. To produce a nice directed 

layout, they add hierarchical constraints to the objective 

function and solve the resulting convex optimization 

problem, a quadratic program. DIG-COLA produces 

layouts that convey hierarchy and contain some of the nice 

qualities of FDP-based layouts. 

Dynamic Graph Drawing 

Dynamic graph drawing is the problem of drawing a graph 

that changes over time. The changes are visualized as a 

sequence of graphs, one for each time step that is depicted. 

The challenge is how to lay out the sequence of graphs so 

that the viewer can make the most sense of what nodes and 

edges were inserted and removed across time steps. In the 

literature, this is known as “preserving the mental map.” 

North’s DynaDAG is a system for drawing dynamic 

directed acyclic graphs [12]. It uses a heuristic to perform 

incremental layout, whereas our algorithm minimizes the 

stress function. Diehl and Görg introduced a generic 

algorithm for dynamic graph drawing that can utilize 

different layout algorithms [2]. Their approach considers all 

graphs in the sequence, so it is an offline method rather than 

an online one. Similarly, we compute the layouts of two 

graphs simultaneously. In follow up work, Görg et al. 

explore the use of their generic algorithm in the context of 

orthogonal and hierarchical layouts [6]. Frishman and Tal 

present an algorithm for the dynamic drawing of clustered 

graphs [4]. It attempts to maintain the clustered structure of 

the graphs during incremental layout. In some sense, our 

algorithm also attempts to highlight clusters that are 

common between two graphs, but without knowing the 

clusters a priori. Archambault introduces the difference 

map, a technique for comparing the structure of two graphs 

in the context of dynamic graph drawing [1]. The difference 

map displays the union of two graphs using three colors: 

nodes only in the first graph are shown in one color, nodes 

only in the second graph are shown in a second color, and 

nodes common to both graphs are shown in the third color. 

We are also interested in visualizing structural similarities 

between two graphs, but our approach is to jointly compute 

a side-by-side graph layout. 



 

In dynamic graph drawing, the assumption is that a node in 

one time step corresponds to a node in another if they have 

the same identity. That is, dynamic graph drawing operates 

on graphs where the nodes can be uniquely identified. But, 

we would like to compare graphs where the nodes do not 

have unique identifiers. For example, if we encode a recipe 

as a graph, the same ingredient or action may appear in the 

graph multiple times as different nodes. Our method 

addresses this situation. 

METHOD 

We now describe our algorithm for simultaneous graph 

layout and visualization. Since our layout algorithm is 

based on minimizing the stress function in [9], we begin by 

introducing stress-based layout for a single graph. Then we 

explain how we use this to lay out two graphs 

simultaneously. Furthermore, we describe how we extend 

our method to graphs with non-unique node labels by 

computing an inexact graph matching. 

Stress-based Graph Layout 

Formally speaking, we are given a graph G = (V,E) of 

vertices and edges. Computing a layout for G means 

computing x,y positions for each vertex in G. We assume 

the vertices have unique labels from a finite label set L. Let 

Xi be the coordinates of vertex i and X be the coordinates of 

all vertices. The stress function is defined as follows: 

stress (X) = ∑i<j wij (||Xi – Xj|| – dij)
2
 

Here, dij is the graph theoretic distance between vertices i 

and j (shortest path from vertex i to vertex j) and wij equals 

dij
-2

, a normalization constant. 

In stress-based graph layout, the layout is calculated by 

minimizing the stress function. Why should we expect this 

to result in a good layout? Let us look at the stress function 

closely. By minimizing the stress function, we try to bring 

the Euclidean distance between two vertices close to their 

graph theoretic distance. In terms of visual variables, we 

can see that this attempts to use length to encode graph 

theoretic distance. For simplicity, let us assume that the 

edges of our graph have no weights associated with them. 

Then, minimizing stress also makes the length of all edges 

as close to each other as possible. 

We minimize the stress using gradient descent. The partial 

derivative of the stress with respect to the i
th

 node is: 

∂s / ∂Xi = ∑j≠i 2*wij (||Xi – Xj|| – dij) (Xi – Xj) / ||Xi – Xj|| 

Gradient descent iteratively computes the gradient of an 

objective function and takes a step in the negative direction 

of the gradient. The algorithm is in Figure 2. 

Simultaneous Graph Layout 

Given two graphs G1 and G2, we compute a simultaneous 

layout by constructing a new graph G, composed of both 

graphs, and laying that out via stress minimization. Graph 

G contains all vertices and edges in G1 and G2. 

Additionally, G has zero-weight edges connecting vertices 

of G1 and G2 whose labels match. Again, we assume unique 

labels, so a match on the labels implies that the vertices 

have the same identity. This illustration shows how we 

compute G from two graphs: 

 

Figure 3: To lay out two graphs (in red and blue), we first 

create a new graph that contains them along with additional 

zero-weight edges between matching nodes. 

By computing a layout for G, we also compute layouts for 

G1 and G2. To produce our visualizations, we simply render 

the two graphs using the layout information and place them 

side by side. This method will try to preserve the distances 

between corresponding nodes in the two graph layouts, 

while also considering a layout suitable to the structure of 

each graph. This is true because stress minimization will 

prefer layouts where corresponding nodes have the same 

position. The hypothesis is that it will help people notice 

shared graph structure if that structure appears the same 

way in both graphs. Before we demonstrate the results of 

our algorithm, we extend it to work with graphs whose 

vertices take on non-unique labels. 

Non-unique Vertex Labels 

With unique vertex labels, we can construct the joint graph 

described above because a vertex in one graph can only 

correspond to one vertex in the other. In the absence of 

unique vertex labels, we need some other way of computing 

a matching between the vertices in the two graphs. This is 

known as the inexact graph matching problem. 

initialize X; 

for n from 0 to num_iter: 

initialize dX; 

 for i from 0 to num_vertices: 

  dX[i] = deriv(X, i); 

 X = X – dX * eps; 

Figure 2: The algorithm for stress-based layout minimizes the 

stress function by performing gradient descent. 
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Inexact graph matching is related to the concept of graph 

edit distance. Let us assume the following edit operations 

on a graph: vertex insertion and removal, edge insertion and 

removal, and vertex relabeling. Each of these operations has 

an associated cost. The graph edit distance between two 

graphs is the least cost sequence of edit operations that 

transforms one graph into the other. By computing the 

graph edit distance, we also compute an inexact matching 

between the graphs. A vertex in the first graph matches a 

vertex in the second if its label is changed to match it. 

The problem of computing graph edit distance is NP-

complete. We frame it as a search problem and use 

uniform-cost search to search through the space of edit 

sequences for the least-cost sequence. Our method is based 

on the A* search algorithm presented by Neuhaus et al. 

[11], except that we do not use a heuristic. 

IMPLEMENTATION 

We implemented our algorithm in the Java programming 

language. This includes the stress-based layout and the 

graph edit distance computation. Both were our own 

implementation. While our algorithm computes the node 

positions in the graph layout, it does not render the visual 

display. Instead, we output the layout to the DOT language 

and use Graphviz [7] to render the graph. Graphviz uses our 

calculated positions as the final node positions. 

RESULTS 

We now provide the results of our simultaneous graph 

layout algorithm for graph comparison. First, we show 

example layouts produced by our system and discuss their 

strengths and weaknesses. We then evaluate our 

visualizations in an informal user study. 

          

Figure 4: A side-by-side graph layout produced by our system. Note that the common structure, J-I-C-D-E, has the same 

appearance in both graphs because distances and relative positions between common nodes are the same. 

 

                

Figure 5: These are the same graphs as above, with the layouts computed by Graphviz’s neato algorithm. The common 

structure does not have the same appearance in both graphs. 



 

Examples 

Undirected Graph 

Figure 4 shows the output of our system for a pair of 

undirected graphs that share a 5-node subgraph. In our 

simultaneous layout, the shared subgraph has the same 

appearance in both graphs. That is, if you look only at the 

layout of that subgraph in both graphs, it is nearly identical. 

In this case, our algorithm works as we had hoped it would. 

But, what is not yet clear is whether this helps convey the 

shared structure to the viewer. We come back to this point 

in our evaluation. 

We also lay out the same pair of graphs in Figure 5 using a 

standard undirected layout procedure in the Graphviz graph 

drawing tool. Unlike our output, the shared graph structure 

does not have the same appearance in both graphs. Nodes 

common to both graphs are not in the same relative 

positions to each other. 

Directed Graph 

So far in our system description, we have not made any 

distinction between directed and undirected graphs. Since 

our simultaneous layout algorithm is based on stress 

minimization, we designed it with undirected graphs in 

mind. However, nothing prevents us from using it to lay out 

graphs with directed edges. Aside from rendering directed 

edges in the display, the only change we make to the 

algorithm is to compute the graph theoretic distances on an 

undirected copy of the graph. But because our algorithm 

does nothing to visualize hierarchy in graphs, it is likely to 

yield poor layouts for directed graphs. In any case, we show 

the results. 

The visualization in Figure 6 is a comparison of two 

chocolate chip cookie recipes. The recipes are encoded as 

directed graphs. Ingredients are pink nodes and cooking 

actions are blue nodes. A directed edge from an ingredient 

to an action indicates that the ingredient was an input to that 

action. A directed edge from one action to another indicates 

that the output of the first action was an input to the second. 

One good property of our simultaneous layout is that it 

highlights the general structure shared by both cookie 

recipes; wet ingredients are combined with dry ingredients, 

and the result goes through a baking process. Even without 

     

Figure 6: Comparison of two chocolate chip cookie recipes, represented as directed graphs, using our algorithm. Our layout 

makes it easy to notice the common, general structure of mixing wet and dry ingredients, followed by baking. 

 

                        

Figure 7: The same graphs as above, with the layouts computed by Graphviz’s dot algorithm. This Sugiyama-style layout does 

a better job than our algorithm at conveying the process flow of baking chocolate chip cookies. 



 

reading the labels on the nodes, a viewer can glean that this 

general structure exists and is common to both graphs. This 

is less salient in the layouts produced by Graphviz’s 

standard layout for directed graphs. However, Graphviz’s 

Sugiyama-style layout does a better job than ours at 

showing the hierarchical information in the graphs. That is, 

it is easier to follow the flow of ingredients and 

intermediate outputs through the actions. Note that in our 

layouts, many directed edges point upwards, making this 

harder. 

Evaluation 

To get some understanding of the efficacy of our side-by-

side layout for graph comparison, we conducted an 

informal user study. Our goal was not only to judge how 

well our visualization technique performs, but also to learn 

some general principles for creating visualizations that 

make it easy for people to compare graphs. 

We conducted our study with six participants, all 

undergraduates at UC Berkeley. Each participant was 

presented with the visualizations in Figure 4 and Figure 6. 

For Figure 4, we told them that the graphs were social 

networks where edges indicated friendship. For Figure 6, 

we explained to them how we encoded the recipes as 

graphs. 

We asked participants to look at the side-by-side graphs and 

tell us what similarities and differences they noticed 

between the graphs. They were instructed to compare 

specific graph elements such as nodes and more general 

graph elements like subgraphs. We asked participants to 

talk aloud as they did this, and in particular, we asked that 

they attempt to describe what helps them locate and 

visualize the structure that they compare. 

For the undirected graphs in Figure 4, participants had a 

difficult time making a comparison. Only a couple 

participants noticed the entirety of the shared structure. 

Others noticed that the I-C-E “triangle” was common to 

both graphs. One participant did not notice any shared 

components at all. When explaining how they made 

comparisons, participants described that they began by 

scanning the nodes in the graphs to find a single one that 

the two had in common. Often, node I was the first 

comparison made. From that first node, they branched out 

and looked for other neighbors that were shared. One 

participant described that this comparison was difficult 

because the shape of the two graphs did not give off any 

patterns, so he had to start scanning the nodes. In general, 

participants noticed “lonely” nodes like O and J, which 

extended from the graphs and stood out alone. 

Participants had a much easier time comparing the cookie 

recipes in Figure 6. All participants noticed that the two 

graphs shared the same macro structure made of three 

clusters: dry ingredients, wet ingredients, and the baking 

process. They noticed this structure before reading the 

labels on the nodes, and read the labels afterward to verify 

the similarity. One person said that while the clusters were 

not exactly the same, the two graphs appeared to have the 

same pattern. Participants described that they made the 

mapping between clusters of nodes based on the fact that 

clusters looked the same way in both graphs. We probed 

further, asking participants to be as explicit as possible 

about how they made a mapping between the graphs. The 

general process is that participants first noticed a structure 

in one graph, and then checked to see if it was present in the 

other. The first place they checked was the same relative 

location on the other graph. Three participants also 

described that they started looking at the graphs at the top 

left. They also mentioned that the color coding helped them 

make comparisons. 

DISCUSSION 

Based on our informal evaluation of our simultaneous graph 

layout algorithm, we have come up with a few design 

implications for visualizations that compare graphs. 

Use color to improve comparison 

In the chocolate chip cookie comparison, one of the things 

that helped our participants make comparisons was the 

color coding on the nodes. There are two ways that color 

can facilitate comparison. In the case of the recipes, color 

adds structure. For example, consider the dry ingredients in 

the bottom left of the graphs in Figure 6. Without the color, 

all the viewer knows is that the commonality is three nodes 

pointing to another node. With the color, she knows that it 

is three ingredients being used in an action. In the latter 

case, she has a stronger basis for the similarity. The second 

way in which color can help is if it explicitly highlights 

common structure. In Figure 1, the nodes common to both 

graphs are colored gray. This makes it immediately 

apparent to the viewer which nodes the graphs have in 

common. 

Same structure looks the same 

As we had hypothesized, our evaluation revealed that 

making shared graph structure appear visually similar in 

both graphs improves the viewer’s ability to see it. For our 

cookie recipe graphs, participants made mappings between 

the graphs based on visually similar groups of nodes 

(comparison based on appearance of graph structure), and 

then checked the labels on the nodes to further verify 

similarity. 

Same structure in same relative location 

We also learned from our evaluation that it is not enough 

for common structure to look the same in both graphs. 

What we also need for ease of comparison is that the 

common structure appear in the same relative location in 

both graphs. Consider Figure 4 as an example. Although the 

common subgraph looks the same in both graphs, it is in a 

different location. In the graph on the left, it is in the upper 

left. In the graph on the right, it is in the lower right. This is 

what made it difficult for participants of our study to locate 



 

the common structure. In contrast, in the cookie recipe 

graphs, most of the common structures were in the same 

relative location in both graphs. And when they were not, 

participants took notice and commented that while the 

structures were the same, they were not placed in the same 

location. They remarked upon this as something that was 

“wrong” with the layout. 

Convey hierarchical information 

One of the complaints with our recipe graph visualization is 

that participants had a preference for reading it from top to 

bottom, but our directed edges had a general flow from left 

to right. In fact, when commenting on hierarchical 

relationships, participants saw the top-to-bottom 

relationships better. For directed graphs, it is important to 

have as many directed edges point downwards as possible. 

When edges must point in another direction, we 

recommend that corresponding edges between the two 

graphs point in the same direction. 

FUTURE WORK 

Our algorithm for simultaneous graph layout is just a first 

step toward creating visualizations that facilitate graph 

comparison. There is much yet to be done in this area and 

there are many possible extensions to our current method. 

Directed graphs 

Our existing algorithm does not faithfully support directed 

graphs in the sense that it does not compute layouts that 

convey the hierarchical information in directed graphs. We 

plan to extend our algorithm to directed graphs by 

modifying the stress-based objective function that our 

algorithm minimizes. We will incorporate the hierarchy 

constraints used by the DIG-COLA algorithm [3]. 

Evaluation 

Our evaluation merely evaluated our visualizations in 

isolation. In the future, we would like to compare our 

simultaneous side-by-side layout to other visualizations for 

graph comparison, such as the difference map [1]. 

In addition, we would like to have a better understanding of 

what mappings people make when they compare graphs. 

And perhaps a way to evaluate visualizations for graph 

comparison is to examine how the visualizations differ 

based on what mappings they elicit from users. 

We plan to use Mechanical Turk to gather mappings for 

pairs of graphs by asking workers to draw marks around 

what they perceive to be common structure. Kittur et al. 

have shown that with careful experimental design, 

Mechanical Turk can be viable way to perform user studies 

quickly and cheaply [10]. In the field of visualization, Heer 

and Bostock replicated known results in graphical 

perception with workers on Mechanical Turk, providing a 

basis for conducting graphical perception experiments on 

the system [8]. 

Better use of inexact graph matching 

Our method used inexact graph matching to create a 

mapping between the nodes of two graphs when the nodes 

did not have unique labels. However, we might want to 

create such a mapping even when the nodes do have unique 

labels. Here is the justification: 

Remember that our algorithm favors layouts where 

corresponding nodes in the two graphs are the same 

distances from other corresponding nodes. This tends to 

result in layouts where shared structure looks the same in 

both graphs. But, as there are more correspondences 

between nodes (i.e. as the matching becomes more inexact), 

we have more soft constraints on the layout our algorithm 

can produce. This will tend to give us layouts where the 

common structure not only has the same appearance, but 

also appears in the same relative location. We believe the 

use of inexact graph matching is the reason why the graphs 

in Figure 6 preserved relative location in many cases. 

Furthermore, we would like to experiment with different 

cost functions in the graph edit distance computation to see 

how they affect the simultaneous layout. In particular, we 

would like to know how robust the layout is with respect to 

the cost function. Our function gave a cost of 1 to all 

insertion and deletion operations, a cost of 0 to relabeling 

operations where the labels were identical, and infinity to 

relabeling operations where the labels were different. We 

anticipate that different applications will require different 

cost functions. 

We have also thought of using the results of the graph edit 

distance to modulate the stress function of the combined 

graph that we actually lay out. Currently, we place an edge 

of zero weight between corresponding nodes of the two 

input graphs. Instead, we might let that weight vary based 

on the strength of the correspondence, as computed by the 

graph edit distance. 

Finally, we plan to implement some form of approximate 

graph edit distance rather than our exact algorithm because 

the computational complexity of graph edit distance 

prevents us from using it on large graphs. 

Miscellaneous 

We used gradient descent to minimize the stress function. 

In the future, we plan to use the majorization technique 

used by DIG-COLA [3]. It is a global optimization with the 

nice property that it guarantees a monotonic decrease of the 

stress function. 

Currently, our method only supports comparing two graphs. 

We would like to explore ways of comparing several 

graphs, perhaps in a small multiples type of visualization. A 

naïve way to do this is by using our method on pairs of 

adjacent graphs, fixing the layout of the first graph. But, 

there might be a more sophisticated method that considers 

all of the graphs simultaneously. 



 

Lastly, we would like to explore the use of other visual 

variables like color and node size in our visualizations. We 

have already discussed the potential for color to improve 

the viewer’s ability to make mappings between the graphs. 

CONCLUSION 

We have presented a visualization technique for comparing 

two graphs. Our method is to place the graphs side-by-side 

with a layout that maintains the same visual appearance of 

structure that is common between the two graphs. We have 

described an algorithm based on stress minimization that 

produces layouts with this property. Examples show that 

our algorithm produces the kinds of layouts we desire. An 

informal evaluation of our visualizations reveals several 

design principles for graph comparison visualizations. 

While it is the case that common structure should have the 

same visual appearance, that alone is not enough. It is also 

important that common structure appear in the same relative 

location in both graphs. Most importantly, we have outlined 

the work yet to be done in this area of research. 
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