

Graph Compare: Simultaneous Graph Layout and
Visualization for Structural Comparison

Matthew Can

UC Berkeley Computer Science Department

matthewcan@berkeley.edu

ABSTRACT

Graphs, node-link diagrams, are frequently used to

visualize structured information. But while much work has

gone into methods for visualizing single graphs, it is still an

open question how to visualize multiple graphs to best

convey their structural and semantic similarities and

differences. We present a visualization technique for

comparing graphs. At its core, our method is a graph layout

algorithm that computes the layout for two graphs

simultaneously so that they are easy to compare when

placed side by side. In particular, our algorithm favors

layouts where shared graph structure appears the same way

in both graph layouts. We demonstrate how our method can

work for graphs with and without unique vertex labels,

using inexact graph matching techniques. We show

visualizations produced by our algorithm and evaluate them

in an informal user study, uncovering important design

principles for visualizations that compare graphs.

Author Keywords

Graph comparison, graph structure, graph layout, graph

visualization.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

General Terms

Algorithms, Design.

INTRODUCTION

Graphs are a common way to reason about and visualize

structured objects. By structure, we mean objects that can

be decomposed into smaller parts where there are

relationships among the parts. For example, a social

network is a structured object. We can decompose it into

the set of people present in the network, with relationships

between people who are socially connected. In graph

terminology, we represent the people as vertices and the

social connections as edges.

Figure 1: An example of a simultaneous layout produced by

our system. We highlighted the shared nodes for the

convenience of the viewer only.

For individual structured objects like social networks, there

exist many visualization techniques, the most common

being the graph (i.e. node-link diagram). But suppose we

want to compare two or more structured objects. For

example, we might want to compare the following objects:

 Social networks: Alice wants to compare her immediate

social network with Bill’s. She wants to know which

groups of friends they have in common, even though the

people in those groups may not correspond one-to-one.

 Parse trees: Our natural language parser produces a

parse tree for an English sentence. We want to compare

this to the true parse tree for the same sentence. This

might be useful if we want to debug our parser.

 Recipes: A recipe is a set of ingredients and actions (e.g.

bake, mix, cut). There is a directional relationship

between an ingredient and an action when the ingredient

is used in the action. There are also relationships between

actions when the output of one action is the input to

another. We might want to compare two recipes for

similar dishes. We want to know not only which

ingredients differ between these dishes but also how the

processes of preparing the dishes differ.

 Assembly instructions: Assembly instructions are

structured objects composed of individual steps and

directional relationships that indicate the order in which

the steps must be carried out. Suppose a company wants

to compare two different assembly instructions for

building the same desk that the company manufactures,

with the goal of analyzing which instructions are most

effective.

Given that we want to compare structured objects, how

should we visualize the similarities and differences between

such objects? As we have already said, structured objects

are commonly expressed as graphs, and in this paper, that is

the approach we take. Thus, the problem we face is how to

visually display graphs so that they can easily be compared.

We would like our visualization to facilitate comparison

between individual nodes and between larger structures

such as subgraphs. An ideal visualization would help the

user create a mental mapping from one graph to the other.

For simplicity, in this paper we limit ourselves to the case

where we want to compare only two graphs. Our approach

is to display the graphs side by side so that common graph

structure has the same appearance in both graphs. Suppose

we were to use a standard graph layout algorithm to lay out

each graph separately and then place them next to each

other. This display would have none of the properties that

we desire. Instead, we design a layout algorithm that

simultaneously calculates the layout for two graphs. Our

algorithm attempts to maintain the same distances between

corresponding nodes in the graphs. In other words, if a pair

of nodes appears in both graphs, the algorithm attempts to

keep the distance between the nodes the same in both

graphs. This results in corresponding nodes having the

same relative position to each other in both graphs, such

that the shared structure between the graphs appears the

same way in both.

RELATED WORK

There are two primary areas of work related to visualization

for graph comparison: graph layout and dynamic graph

drawing. We discuss each of these in turn.

Graph Layout

The work on graph layout examines ways to draw graphs

with certain desirable properties. These properties can vary

from one application to another, but a few are common. In

general, a good layout will minimize the amount of physical

space taken up by the graph. A good layout will eliminate

node overlaps and minimize the number of edge crossings.

For directed graphs, a good layout will maximize the

number of directed edges that point downward. The goal of

these heuristics is to make the graph visualization easier to

comprehend.

A comprehensive review of the literature on graph layout

algorithms that attempt to address these properties is

beyond the scope of this paper. Instead, we describe some

of the common classes of graph layout algorithms.

Undirected graph layout is typically done using force-

directed placement (FDP) algorithms. In practice, these

algorithms produce aesthetically pleasing layouts with nice

symmetries. Their layouts generally also minimize edge

crossings and keep all edge lengths the same. A well known

FDP algorithm is that of Fruchterman and Reingold [5]. It

treats the graph as a physical system, where the edges are

springs and the vertices are charged particles. To compute

the layout, their algorithm solves for the steady state of this

system. Another flavor of FDP is based on the stress

function, introduced by Kamada and Kawai [9]. These

layouts minimize a stress function defined on the edges of

the graph. Our algorithm for simultaneous graph layout is

based on this approach. The most common methods for

directed graph layout are based on the algorithm of

Sugiyama et al. [13]. These algorithms use the y-axis to

convey hierarchy. They divide the y-axis into layers and

place nodes into layers so as to minimize edge length.

Preprocessing is required to handle graphs with cycles.

Dwyer and Koren introduced the DIG-COLA layout

algorithm [3], which uses FDP to perform directed graph

layout. Specifically, they minimize the stress function using

majorization, a technique borrowed from multidimensional

scaling. This technique iteratively bounds the stress

function with a quadratic. To produce a nice directed

layout, they add hierarchical constraints to the objective

function and solve the resulting convex optimization

problem, a quadratic program. DIG-COLA produces

layouts that convey hierarchy and contain some of the nice

qualities of FDP-based layouts.

Dynamic Graph Drawing

Dynamic graph drawing is the problem of drawing a graph

that changes over time. The changes are visualized as a

sequence of graphs, one for each time step that is depicted.

The challenge is how to lay out the sequence of graphs so

that the viewer can make the most sense of what nodes and

edges were inserted and removed across time steps. In the

literature, this is known as “preserving the mental map.”

North’s DynaDAG is a system for drawing dynamic

directed acyclic graphs [12]. It uses a heuristic to perform

incremental layout, whereas our algorithm minimizes the

stress function. Diehl and Görg introduced a generic

algorithm for dynamic graph drawing that can utilize

different layout algorithms [2]. Their approach considers all

graphs in the sequence, so it is an offline method rather than

an online one. Similarly, we compute the layouts of two

graphs simultaneously. In follow up work, Görg et al.

explore the use of their generic algorithm in the context of

orthogonal and hierarchical layouts [6]. Frishman and Tal

present an algorithm for the dynamic drawing of clustered

graphs [4]. It attempts to maintain the clustered structure of

the graphs during incremental layout. In some sense, our

algorithm also attempts to highlight clusters that are

common between two graphs, but without knowing the

clusters a priori. Archambault introduces the difference

map, a technique for comparing the structure of two graphs

in the context of dynamic graph drawing [1]. The difference

map displays the union of two graphs using three colors:

nodes only in the first graph are shown in one color, nodes

only in the second graph are shown in a second color, and

nodes common to both graphs are shown in the third color.

We are also interested in visualizing structural similarities

between two graphs, but our approach is to jointly compute

a side-by-side graph layout.

In dynamic graph drawing, the assumption is that a node in

one time step corresponds to a node in another if they have

the same identity. That is, dynamic graph drawing operates

on graphs where the nodes can be uniquely identified. But,

we would like to compare graphs where the nodes do not

have unique identifiers. For example, if we encode a recipe

as a graph, the same ingredient or action may appear in the

graph multiple times as different nodes. Our method

addresses this situation.

METHOD

We now describe our algorithm for simultaneous graph

layout and visualization. Since our layout algorithm is

based on minimizing the stress function in [9], we begin by

introducing stress-based layout for a single graph. Then we

explain how we use this to lay out two graphs

simultaneously. Furthermore, we describe how we extend

our method to graphs with non-unique node labels by

computing an inexact graph matching.

Stress-based Graph Layout

Formally speaking, we are given a graph G = (V,E) of

vertices and edges. Computing a layout for G means

computing x,y positions for each vertex in G. We assume

the vertices have unique labels from a finite label set L. Let

Xi be the coordinates of vertex i and X be the coordinates of

all vertices. The stress function is defined as follows:

stress (X) = ∑i<j wij (||Xi – Xj|| – dij)
2

Here, dij is the graph theoretic distance between vertices i

and j (shortest path from vertex i to vertex j) and wij equals

dij
-2

, a normalization constant.

In stress-based graph layout, the layout is calculated by

minimizing the stress function. Why should we expect this

to result in a good layout? Let us look at the stress function

closely. By minimizing the stress function, we try to bring

the Euclidean distance between two vertices close to their

graph theoretic distance. In terms of visual variables, we

can see that this attempts to use length to encode graph

theoretic distance. For simplicity, let us assume that the

edges of our graph have no weights associated with them.

Then, minimizing stress also makes the length of all edges

as close to each other as possible.

We minimize the stress using gradient descent. The partial

derivative of the stress with respect to the i
th

 node is:

∂s / ∂Xi = ∑j≠i 2*wij (||Xi – Xj|| – dij) (Xi – Xj) / ||Xi – Xj||

Gradient descent iteratively computes the gradient of an

objective function and takes a step in the negative direction

of the gradient. The algorithm is in Figure 2.

Simultaneous Graph Layout

Given two graphs G1 and G2, we compute a simultaneous

layout by constructing a new graph G, composed of both

graphs, and laying that out via stress minimization. Graph

G contains all vertices and edges in G1 and G2.

Additionally, G has zero-weight edges connecting vertices

of G1 and G2 whose labels match. Again, we assume unique

labels, so a match on the labels implies that the vertices

have the same identity. This illustration shows how we

compute G from two graphs:

Figure 3: To lay out two graphs (in red and blue), we first

create a new graph that contains them along with additional

zero-weight edges between matching nodes.

By computing a layout for G, we also compute layouts for

G1 and G2. To produce our visualizations, we simply render

the two graphs using the layout information and place them

side by side. This method will try to preserve the distances

between corresponding nodes in the two graph layouts,

while also considering a layout suitable to the structure of

each graph. This is true because stress minimization will

prefer layouts where corresponding nodes have the same

position. The hypothesis is that it will help people notice

shared graph structure if that structure appears the same

way in both graphs. Before we demonstrate the results of

our algorithm, we extend it to work with graphs whose

vertices take on non-unique labels.

Non-unique Vertex Labels

With unique vertex labels, we can construct the joint graph

described above because a vertex in one graph can only

correspond to one vertex in the other. In the absence of

unique vertex labels, we need some other way of computing

a matching between the vertices in the two graphs. This is

known as the inexact graph matching problem.

initialize X;

for n from 0 to num_iter:

initialize dX;

 for i from 0 to num_vertices:

 dX[i] = deriv(X, i);

 X = X – dX * eps;

Figure 2: The algorithm for stress-based layout minimizes the

stress function by performing gradient descent.

A

B

C
1 1

A C

D E

1 1

1

0 0

Inexact graph matching is related to the concept of graph

edit distance. Let us assume the following edit operations

on a graph: vertex insertion and removal, edge insertion and

removal, and vertex relabeling. Each of these operations has

an associated cost. The graph edit distance between two

graphs is the least cost sequence of edit operations that

transforms one graph into the other. By computing the

graph edit distance, we also compute an inexact matching

between the graphs. A vertex in the first graph matches a

vertex in the second if its label is changed to match it.

The problem of computing graph edit distance is NP-

complete. We frame it as a search problem and use

uniform-cost search to search through the space of edit

sequences for the least-cost sequence. Our method is based

on the A* search algorithm presented by Neuhaus et al.

[11], except that we do not use a heuristic.

IMPLEMENTATION

We implemented our algorithm in the Java programming

language. This includes the stress-based layout and the

graph edit distance computation. Both were our own

implementation. While our algorithm computes the node

positions in the graph layout, it does not render the visual

display. Instead, we output the layout to the DOT language

and use Graphviz [7] to render the graph. Graphviz uses our

calculated positions as the final node positions.

RESULTS

We now provide the results of our simultaneous graph

layout algorithm for graph comparison. First, we show

example layouts produced by our system and discuss their

strengths and weaknesses. We then evaluate our

visualizations in an informal user study.

Figure 4: A side-by-side graph layout produced by our system. Note that the common structure, J-I-C-D-E, has the same

appearance in both graphs because distances and relative positions between common nodes are the same.

Figure 5: These are the same graphs as above, with the layouts computed by Graphviz’s neato algorithm. The common

structure does not have the same appearance in both graphs.

Examples

Undirected Graph

Figure 4 shows the output of our system for a pair of

undirected graphs that share a 5-node subgraph. In our

simultaneous layout, the shared subgraph has the same

appearance in both graphs. That is, if you look only at the

layout of that subgraph in both graphs, it is nearly identical.

In this case, our algorithm works as we had hoped it would.

But, what is not yet clear is whether this helps convey the

shared structure to the viewer. We come back to this point

in our evaluation.

We also lay out the same pair of graphs in Figure 5 using a

standard undirected layout procedure in the Graphviz graph

drawing tool. Unlike our output, the shared graph structure

does not have the same appearance in both graphs. Nodes

common to both graphs are not in the same relative

positions to each other.

Directed Graph

So far in our system description, we have not made any

distinction between directed and undirected graphs. Since

our simultaneous layout algorithm is based on stress

minimization, we designed it with undirected graphs in

mind. However, nothing prevents us from using it to lay out

graphs with directed edges. Aside from rendering directed

edges in the display, the only change we make to the

algorithm is to compute the graph theoretic distances on an

undirected copy of the graph. But because our algorithm

does nothing to visualize hierarchy in graphs, it is likely to

yield poor layouts for directed graphs. In any case, we show

the results.

The visualization in Figure 6 is a comparison of two

chocolate chip cookie recipes. The recipes are encoded as

directed graphs. Ingredients are pink nodes and cooking

actions are blue nodes. A directed edge from an ingredient

to an action indicates that the ingredient was an input to that

action. A directed edge from one action to another indicates

that the output of the first action was an input to the second.

One good property of our simultaneous layout is that it

highlights the general structure shared by both cookie

recipes; wet ingredients are combined with dry ingredients,

and the result goes through a baking process. Even without

Figure 6: Comparison of two chocolate chip cookie recipes, represented as directed graphs, using our algorithm. Our layout

makes it easy to notice the common, general structure of mixing wet and dry ingredients, followed by baking.

Figure 7: The same graphs as above, with the layouts computed by Graphviz’s dot algorithm. This Sugiyama-style layout does

a better job than our algorithm at conveying the process flow of baking chocolate chip cookies.

reading the labels on the nodes, a viewer can glean that this

general structure exists and is common to both graphs. This

is less salient in the layouts produced by Graphviz’s

standard layout for directed graphs. However, Graphviz’s

Sugiyama-style layout does a better job than ours at

showing the hierarchical information in the graphs. That is,

it is easier to follow the flow of ingredients and

intermediate outputs through the actions. Note that in our

layouts, many directed edges point upwards, making this

harder.

Evaluation

To get some understanding of the efficacy of our side-by-

side layout for graph comparison, we conducted an

informal user study. Our goal was not only to judge how

well our visualization technique performs, but also to learn

some general principles for creating visualizations that

make it easy for people to compare graphs.

We conducted our study with six participants, all

undergraduates at UC Berkeley. Each participant was

presented with the visualizations in Figure 4 and Figure 6.

For Figure 4, we told them that the graphs were social

networks where edges indicated friendship. For Figure 6,

we explained to them how we encoded the recipes as

graphs.

We asked participants to look at the side-by-side graphs and

tell us what similarities and differences they noticed

between the graphs. They were instructed to compare

specific graph elements such as nodes and more general

graph elements like subgraphs. We asked participants to

talk aloud as they did this, and in particular, we asked that

they attempt to describe what helps them locate and

visualize the structure that they compare.

For the undirected graphs in Figure 4, participants had a

difficult time making a comparison. Only a couple

participants noticed the entirety of the shared structure.

Others noticed that the I-C-E “triangle” was common to

both graphs. One participant did not notice any shared

components at all. When explaining how they made

comparisons, participants described that they began by

scanning the nodes in the graphs to find a single one that

the two had in common. Often, node I was the first

comparison made. From that first node, they branched out

and looked for other neighbors that were shared. One

participant described that this comparison was difficult

because the shape of the two graphs did not give off any

patterns, so he had to start scanning the nodes. In general,

participants noticed “lonely” nodes like O and J, which

extended from the graphs and stood out alone.

Participants had a much easier time comparing the cookie

recipes in Figure 6. All participants noticed that the two

graphs shared the same macro structure made of three

clusters: dry ingredients, wet ingredients, and the baking

process. They noticed this structure before reading the

labels on the nodes, and read the labels afterward to verify

the similarity. One person said that while the clusters were

not exactly the same, the two graphs appeared to have the

same pattern. Participants described that they made the

mapping between clusters of nodes based on the fact that

clusters looked the same way in both graphs. We probed

further, asking participants to be as explicit as possible

about how they made a mapping between the graphs. The

general process is that participants first noticed a structure

in one graph, and then checked to see if it was present in the

other. The first place they checked was the same relative

location on the other graph. Three participants also

described that they started looking at the graphs at the top

left. They also mentioned that the color coding helped them

make comparisons.

DISCUSSION

Based on our informal evaluation of our simultaneous graph

layout algorithm, we have come up with a few design

implications for visualizations that compare graphs.

Use color to improve comparison

In the chocolate chip cookie comparison, one of the things

that helped our participants make comparisons was the

color coding on the nodes. There are two ways that color

can facilitate comparison. In the case of the recipes, color

adds structure. For example, consider the dry ingredients in

the bottom left of the graphs in Figure 6. Without the color,

all the viewer knows is that the commonality is three nodes

pointing to another node. With the color, she knows that it

is three ingredients being used in an action. In the latter

case, she has a stronger basis for the similarity. The second

way in which color can help is if it explicitly highlights

common structure. In Figure 1, the nodes common to both

graphs are colored gray. This makes it immediately

apparent to the viewer which nodes the graphs have in

common.

Same structure looks the same

As we had hypothesized, our evaluation revealed that

making shared graph structure appear visually similar in

both graphs improves the viewer’s ability to see it. For our

cookie recipe graphs, participants made mappings between

the graphs based on visually similar groups of nodes

(comparison based on appearance of graph structure), and

then checked the labels on the nodes to further verify

similarity.

Same structure in same relative location

We also learned from our evaluation that it is not enough

for common structure to look the same in both graphs.

What we also need for ease of comparison is that the

common structure appear in the same relative location in

both graphs. Consider Figure 4 as an example. Although the

common subgraph looks the same in both graphs, it is in a

different location. In the graph on the left, it is in the upper

left. In the graph on the right, it is in the lower right. This is

what made it difficult for participants of our study to locate

the common structure. In contrast, in the cookie recipe

graphs, most of the common structures were in the same

relative location in both graphs. And when they were not,

participants took notice and commented that while the

structures were the same, they were not placed in the same

location. They remarked upon this as something that was

“wrong” with the layout.

Convey hierarchical information

One of the complaints with our recipe graph visualization is

that participants had a preference for reading it from top to

bottom, but our directed edges had a general flow from left

to right. In fact, when commenting on hierarchical

relationships, participants saw the top-to-bottom

relationships better. For directed graphs, it is important to

have as many directed edges point downwards as possible.

When edges must point in another direction, we

recommend that corresponding edges between the two

graphs point in the same direction.

FUTURE WORK

Our algorithm for simultaneous graph layout is just a first

step toward creating visualizations that facilitate graph

comparison. There is much yet to be done in this area and

there are many possible extensions to our current method.

Directed graphs

Our existing algorithm does not faithfully support directed

graphs in the sense that it does not compute layouts that

convey the hierarchical information in directed graphs. We

plan to extend our algorithm to directed graphs by

modifying the stress-based objective function that our

algorithm minimizes. We will incorporate the hierarchy

constraints used by the DIG-COLA algorithm [3].

Evaluation

Our evaluation merely evaluated our visualizations in

isolation. In the future, we would like to compare our

simultaneous side-by-side layout to other visualizations for

graph comparison, such as the difference map [1].

In addition, we would like to have a better understanding of

what mappings people make when they compare graphs.

And perhaps a way to evaluate visualizations for graph

comparison is to examine how the visualizations differ

based on what mappings they elicit from users.

We plan to use Mechanical Turk to gather mappings for

pairs of graphs by asking workers to draw marks around

what they perceive to be common structure. Kittur et al.

have shown that with careful experimental design,

Mechanical Turk can be viable way to perform user studies

quickly and cheaply [10]. In the field of visualization, Heer

and Bostock replicated known results in graphical

perception with workers on Mechanical Turk, providing a

basis for conducting graphical perception experiments on

the system [8].

Better use of inexact graph matching

Our method used inexact graph matching to create a

mapping between the nodes of two graphs when the nodes

did not have unique labels. However, we might want to

create such a mapping even when the nodes do have unique

labels. Here is the justification:

Remember that our algorithm favors layouts where

corresponding nodes in the two graphs are the same

distances from other corresponding nodes. This tends to

result in layouts where shared structure looks the same in

both graphs. But, as there are more correspondences

between nodes (i.e. as the matching becomes more inexact),

we have more soft constraints on the layout our algorithm

can produce. This will tend to give us layouts where the

common structure not only has the same appearance, but

also appears in the same relative location. We believe the

use of inexact graph matching is the reason why the graphs

in Figure 6 preserved relative location in many cases.

Furthermore, we would like to experiment with different

cost functions in the graph edit distance computation to see

how they affect the simultaneous layout. In particular, we

would like to know how robust the layout is with respect to

the cost function. Our function gave a cost of 1 to all

insertion and deletion operations, a cost of 0 to relabeling

operations where the labels were identical, and infinity to

relabeling operations where the labels were different. We

anticipate that different applications will require different

cost functions.

We have also thought of using the results of the graph edit

distance to modulate the stress function of the combined

graph that we actually lay out. Currently, we place an edge

of zero weight between corresponding nodes of the two

input graphs. Instead, we might let that weight vary based

on the strength of the correspondence, as computed by the

graph edit distance.

Finally, we plan to implement some form of approximate

graph edit distance rather than our exact algorithm because

the computational complexity of graph edit distance

prevents us from using it on large graphs.

Miscellaneous

We used gradient descent to minimize the stress function.

In the future, we plan to use the majorization technique

used by DIG-COLA [3]. It is a global optimization with the

nice property that it guarantees a monotonic decrease of the

stress function.

Currently, our method only supports comparing two graphs.

We would like to explore ways of comparing several

graphs, perhaps in a small multiples type of visualization. A

naïve way to do this is by using our method on pairs of

adjacent graphs, fixing the layout of the first graph. But,

there might be a more sophisticated method that considers

all of the graphs simultaneously.

Lastly, we would like to explore the use of other visual

variables like color and node size in our visualizations. We

have already discussed the potential for color to improve

the viewer’s ability to make mappings between the graphs.

CONCLUSION

We have presented a visualization technique for comparing

two graphs. Our method is to place the graphs side-by-side

with a layout that maintains the same visual appearance of

structure that is common between the two graphs. We have

described an algorithm based on stress minimization that

produces layouts with this property. Examples show that

our algorithm produces the kinds of layouts we desire. An

informal evaluation of our visualizations reveals several

design principles for graph comparison visualizations.

While it is the case that common structure should have the

same visual appearance, that alone is not enough. It is also

important that common structure appear in the same relative

location in both graphs. Most importantly, we have outlined

the work yet to be done in this area of research.

ACKNOWLEDGMENTS

We thank Maneesh Agrawala and Björn Hartmann for the

discussions that have led to this work and their invaluable

suggestions that have helped guide it.

REFERENCES

1. Archambault, D. Structural differences between two

graphs through hierarchies. In Proc. of Graphics

Interface, 2009.

2. Diehl, S. and Görg, C. Graphs, they are changing –

dynamic graph drawing for a sequence of graphs. In

Proc. of Graph Drawing, 2002.

3. Dwyer, T. and Koren, T. DIG-COLA: Directed Graph

Layout through Constrained Energy Minimization. In

Proc. of IEEE Symposium on Information Visualization,

2005.

4. Frishman, Y. and Tal, A. Dynamic drawing of clustered

graphs. In Proc. of IEEE Symposium on Information

Visualization, 2004.

5. Fruchterman, T. and Reingold, E. Graph Drawing by

Force-directed Placement. In Software – Practice &

Experience, 1991.

6. Görg, C., Birke, P., Pohl, M., and Diehl, S. Dynamic

graph drawing of sequences of orthogonal and

hierarchical graphs. In Proc. of Graph Drawing, 2004.

7. Graphviz. http://www.graphviz.org/.

8. Heer, J. and Bostock, M. Crowdsourcing Graphical

Perception: Using Mechanical Turk to Assess

Visualization Design. In Proc. CHI ’10, 2010.

9. Kamada, T. and Kawai, S. An Algorithm for Drawing

General Undirected Graphs. Information Processing

Letters, 1989.

10. Kittur, A., Chi, E., and Suh, B. Crowdsourcing User

Studies With Mechanical Turk. In Proc. CHI ’08, 2008.

11. Neuhaus, M., Riesen, K., and Bunke, H. Fast

Suboptimal Algorithms for the Computation of Graph

Edit Distance. In Structural, Syntactic, and Statistical

Pattern Recognition, Springer 2006.

12. North, S. Incremental layout in dynaDAG. In Proc. of

Graph Drawing, 1995.

13. Sugiyama, K., Tagawa, S., and Toda, M. Methods for

Visual Understanding of Hierarchical Systems. In IEEE

Transactions on Systems, Man, and Cybernetics, 1981.

http://www.graphviz.org/

