
Starcraft II Build Order Visualizer

Karl He
University of California, Berkeley
Department of Computer Science

karl.he@berkeley.edu

Saung Li
University of California, Berkeley
Department of Computer Science

shadowcwal@berkeley.edu

Abstract

We describe a visualization tool for analyzing build orders for
real-time strategy games, specifically for Starcraft II. We provide
an overview of the strengths and weaknesses of related work, and
detail the implementation of the tool and the techniques we
employed. We then discuss the results of the tool and outline a
number of further directions we wish to take for this project.

1 Introduction

In real-time strategy (RTS) games like Starcraft II [8], a
participant’s goal is to destroy his opponent’s assets. To
accomplish this, he must gather resources, construct production
buildings, research new technology, and produce units to attack
his opponent [1]. An essential concept that has been developed
by RTS players is build orders, in which players perform the
above actions in a linear pattern, managing resources and
constructing buildings and units to achieve a specific army by a
certain time.

Since RTS games generally provide many structures, units, and
technologies for players to choose from, build orders vary widely
and have strengths and weaknesses against other build orders.
Timing is of utmost importance, as a player must have a certain
amount of units to counter the other player’s units at any given
time [2]. Often, players come up with ideas for what units to
produce, and must play through multiple games to master the
timing of the corresponding build orders. If there are parts of the
build orders players want to change, they must modify them and
play more games to test them out. This process can be time
consuming, and although there is a large community of players
sharing build orders with each other, the formats in which they
currently do so have several weaknesses that we will discuss.
These formats typically do not allow players to quickly grasp the
key timings or strengths and weaknesses of a build order.

To enable players to focus on learning and modifying build
orders, we address this issue by developing an interactive
visualization tool that reveals the timings of build orders and
allow users to compare them against other builds. We focus on
developing this visualization for Starcraft II, as it is arguably the
most popular and competitively developed RTS game, but we
believe our techniques can be generalized to other RTS games.

We first review related work on visualizing Starcraft II build
orders.

2 Related Work

By far the most widespread form of representing a build order is
via what we will refer to as the textual format. Players generally
use this format when sharing it on online forums [3]. Here is one
such example of the “4 Warpgate Rush” build order in textual
format:

9 Pylon
13 Gateway + Probe sent to scout
14 Assimilator
16 Pylon
17 Cybernetics Core
18 Zealot
22 Stalker
24 Warpgate research
24 Stalker
26 Gateway
26 Gateway
26 Gateway
26 Pylon

Here a number represents a supply count, which is a measure of
how many units a player has, and the following action is the
building, unit, or research to perform at that supply. Workers are
assumed to be constructed constantly unless specified otherwise.
This format is concise, as it packs most of the information a
player needs to execute a build order in a compact fashion.
Players can easily memorize build orders from this, and sharing is
a matter of copy and pasting such text. The drawback is that one
cannot infer the timings of the build order from this format.
Players cannot tell when they would finish the build or what they
would have at any given time. This makes it hard to tell how well
this build would do against others. Players must play games to test
out the effectiveness of the builds, and modifying the build would
mean having to play more games to test out the changes.

The game itself provides a visualization of the exact build order
that players use in their games (Figure 1).

Figure 1: In the post-game screen, Starcraft II players can view the initial build orders of each player involved. The exact supply and time
that each unit was built is apparent. However, the lack of horizontal alignment and the strictly tabular format makes it difficult to compare

two build orders, or easily create a mental image of what is happening.

Figure 2: The sc2replayed version of the build order comparison is much more intuitive. Research timings are included and actions are
horizontally aligned. However, it still suffers many of the same problems as the built-in visualizer.

Along with supply counts, this built-in visualization also shows
the timings of each action so that players can tell what they have
done by a given time. The problem is only the start times of
actions are displayed, so we cannot see when they are completed.
Additionally, if we want to know what players have at a certain

time, we would first have to locate that time and then count
everything upwards and remember the actions. This makes the
side-by-side comparison of build orders difficult as players need
to locate the time they want for both builds and then remember
everything that has happened up to that point. Also, this does not

show some of the in-game actions such as transferring workers,
dropping mules, chronoboost, and more.

www.sc2replayed.com provides another visualization for build
orders, showing builds that players have used (Figure 2).

The main advantage of this visualization is that the timings of
actions are aligned horizontally so that we can easily see what
each player as done at given times. However, the supply counts
are missing, and this visualization suffers from many of the
disadvantages mentioned in the built-in one, such as not knowing
the completion times, the total counts of units up to a given point,
and not showing certain actions.

www.sc2calc.org provides a tool where users can input a build
order in textual format and it generates a table of the actions
performed along with their corresponding timings, supplies, and
resources available [4]. Although this provides more information
about the state of the game, it is still hard to visualize all the
timings at once, as there is a lot of cluttered text. The completion
times provided are hard to analyze, as players need to remember
them and look forward in time to see what has happened from
start to completion time. The tool also does not provide a way to
compare two build orders at once.

It is worthwhile to note that of the 3 tools described, the first two
pull their information from analyzing replays of actual games.
The sc2calc.org tool instead allows users to manually specify the
build order using an input system derived from the textual build
orders previously described. This system allows for much more
interactivity, and shared many aspects with the new tool we were
planning to develop. We ultimately decided to build upon their
tool rather than rebuild the system from scratch.

3 Methods

Our goal is to convert build orders from a textual format to a
visualization that addresses the above problems. More
specifically, we want to expose the start and completion times of
all actions and make it easy to compare what two different build
orders have at any given time. We want users to be able to save
and access builds in textual format so they can generate
visualizations from them at any time. This maintains the
portability of text, as users can still share build orders via copy
and pasting.

We strongly believe in the importance of the community in
developing build orders, and therefore the importance of being
able to easily access the tool. Using the web and Protovis [5] as a
medium for our work was the best fit to these goals.

3.1 Input

Since the textual format is most widely used and is easily shared,
we develop this tool to take in as input a build order in that
format. From here, calculations need to be done to determine the
resources that the player has, start and completion times, supply
counts, and actions performed. Comprehensive work has already
been done on this by Jasper A. Visser, as displayed in his build
order calculator tool at www.sc2calc.org.

Impressed by Visser’s work, we decided to use it as the parser for
our system. As sc2calc.org does not have any sort of API, we
instead utilized a PHP page to capture the results of POST
requests we send to his tool. When the page generates the table,
we fetch the html, parse all the information in the table,

encapsulate it in JavaScript data structures that can be easily used
by our system. We can now use this data to generate
visualizations, using textual build orders as input.

3.2 Saving build orders

We create a tree to visualize all of the stored build orders. The
root is the name of the tree, and it has three children, one for each
race. The children of a race node are the build orders in textual
format corresponding to that race. The name of a build is the
name of the node. A user who is searching for a specific build can
toggle the race nodes to hide irrelevant nodes and look for the
build’s name. Hovering over the name of a build shows the build
order in textual format next to the cursor to remind users of what
it is. Clicking on a build from the tree will highlight it red and fill
in the input box with that build and name. Users can then perform
visualizations or modify the build and overwrite it. Users can also
choose to delete the build from the tree.

Note that we did not implement a database for saving since we are
focusing on the visualization aspect of the tool, so refreshing the
browser will erase saved builds.

3.3 Unit cheat sheet

One weakness of using textual build orders as the input system is
the verbosity of the input method. Visser’s system in particular is
fairly strict in terms of the input, and does not allow abbreviations
of any sort, nor does it make any assumptions about actions the
players take that may seem natural. An example of this can be
demonstrated by the line “14 Assimilator, and put 3 workers on
gas”. The Assimilator is a structure of the Protoss faction which
allows players to gather the resource vespene gas. It is typically
not explicitly stated that a player must order his workers to
harvest the vespene and is rather implied by the fact that the
Assimilator would not be constructed without the intention of
using it.

Despite its weaknesses, textual input still remains the best way to
transmit build orders. While we cannot wholly solve the
weaknesses, we can alleviate the need to remember exact
spellings, as well as the need to input large quantities of text. We
accomplish this by providing unit portraits categorized by race
that users of our tool can click on to quickly input units into our
system. This could be further extended to also perform actions
such as transferring workers and swapping add-ons, some of the
more common and most wordy actions that can be expressed in
Visser’s syntax.

3.4 Build order visualization

Our approach to displaying a build order is reminiscent of a Gantt
chart, which is used to illustrate the start and end dates of the
elements of a project [6]. Our display consists of a vertical
timeline in-between the two build orders and time bars
representing the start and completion times of performing an
action. Our major deviation from how a Gantt chart is displayed is
that a Gantt chart organizes the bars into projects. Our
visualization requires no such distinction, and it in fact would
become a visual impedance to have a new column for each new
action that was performed. We instead chose to use the minimal
amount of columns necessary. The maximum number of columns
we use is the same as the maximum number of actions that are
simultaneously performed in the build order.

Additional elements we felt were important to display were the
supply counts when each action is performed, as well as
cumulative information at any given time in the build order. We
felt it was important for supply counts to be visible at all times,
since they are a vital part of how build orders are remembered and
understood by players. We decided to display the supply count
directly on the time bars. Although this adds some visual clutter,
the utility it gives is far greater than the cost.

The cumulative information we wanted to display were the units
each build order has produced, as well as some measure of the
economic power of each build order. We chose to incorporate this
via an interactive hover-box that followed the mouse’s position on
the timeline. This gives intuitive context to the current units and
resources being displayed by the hover-box, without
unnecessarily cluttering the display.

Figure 3: The input box for our build order visualization tool.

Figure 4: The visualization for our build order visualization tool. This example shows the 4gate build versus the 1-1-1 build.

4 Results

4.1 Inputting Build Orders

The textual format of builds used as input for our tool must be the
same as the one used in sc2calc.org. That site provides a syntax
guide for the input format [4] that can be used for our tool.

To assist users in inputting units and buildings as text, we provide
images of all of them in the “Unit Cheat Sheet” section. Clicking
on them will input their corresponding names with spaces before
and after them into the end of the text box. This can assist players
with remembering and inputting the names of units, and can speed
up the process of inputting a build. The drop-down list allows
users to toggle between the different races. Organization by races
is most logical as no build order will utilize multiple races.

After inputting a textual build order, the user can select “Show on
Left” or “Show on Right” to generate a visualization of the build
on the bottom left or bottom right, respectively. Doing this will
not save the build order. To do so, the user can input a name for
the build and save it so that it can be retrieved again. If an input is
entered incorrectly, the user is notified of the problem.

4.2 Saving Build Orders

The “Saved Build Orders” stores some example build orders as
well as any build orders saved by the user of the tool, stored in a
tree structure organized by race. Build orders are saved by name,
the contents of which can be revealed by hovering over the name
of the build order. Selecting a build order loads it into the input
field, and also allows the user to delete the saved build.

4.3 Reading the Visualization

To prevent too many parallel rows of actions, the time bars are
collapsed into the minimum necessary columns. Each time bar
includes an image of the unit, building, research, or other action
taken, and the supply count is displayed below the image.
Hovering over the image will display the name of the action or
unit in a tooltip. The time bars are color-coded according to
whether the action taken is producing a worker, unit, or building,
or performing another action such as researching technology or
transferring workers. We used the selected colors from
Colorbrewer’s qualitative-set1 color scheme so that the text and
images are still readable and the colors are easily differentiated.
By color coding these categories, players can easily focus on one
category and compare actions and associated timings in it between
the two build orders. A legend for the colors is unnecessary, as
players can immediately recognize what they stand for. These
time bars allow users to see what is completed and currently in
production at any given time.

In the center of the visualization is a timeline representing game
time. The timeline is aligned to both build orders displayed,
making it easy to compare the timings of each build. When the
user hovers over the timeline, a box displays under the cursor
showing the time and images of the resources, supplies, units,
buildings, and research completed up to that time. The images are
organized so that units appear in the first row, then buildings in
the second, and then all other actions such as research and
transferring workers in the third. Images are shown multiple times
according to how many of that action is taken or unit is controlled,
so that users can easily compare strengths and weaknesses
between builds. The image of workers are displayed once, with a
counter next to it, since most builds generally produce many

workers. This hover-box feature enables users to see everything
that each build order has at any given time.

5 Discussion

We did not undertake a formal usability study of our system, but
we allowed several StarCraft players to try out the tool. An
important test to perform would be to see how long it takes for
players to understand and modify particular build orders using our
visualization. We can then compare these times with similar-level
players who use other formats such as the textual one. The main
difficulty in carrying out this test is searching for players with
similar experience and who do not already know the build orders
being shown.

Upon sharing our prototype with the community, reception to our
system has generally been positive. The most common problem
appears to be in initially understanding how to use the system.
Even StarCraft players have difficulty using Visser’s build order
syntax, which uses several symbols and phrases that typically
don’t appear in textual build orders, and are rather explained in
prose beneath the build order. This difficulty is alleviated by our
cheat sheet of units, which generates the text necessary for an
action. After initial criticisms, we added a direct link to the syntax
guide for those unfamiliar with the textual format used.
Understanding how to read the visualizations produced also
remains an issue, although the several StarCraft players we spoke
to quickly picked up how to analyze them.

Upon overcoming the learning curve of inputting build orders,
users don’t appear to have any complaints about the way the build
orders are displayed. Users had highly positive comments on the
hover-box depicting what each player has at any given time.
Visualizing start and complete times and the color coding of
timeline were also found to be both helpful and aesthetically
pleasing. The main problem is when users want to modify a build
order, they would have to deal with the syntactical issues of the
input format again and in-game constraints such as supply limits
and prerequisites for buildings, units, and research. However,
coming up with build orders and modifying them to perfect timing
has always been a difficult task, and overall our visualization
system acts as a beneficial tool for analyzing the success of build
orders with respect to others.

6 Future Work

Our initial user studies seem to indicate that our tool’s major weak
points are its initial learning curve and the lack of apparent utility.
Future work on this project is therefore centered on giving more
immediate utility to the user, as well as making the system more
intuitive.

6.1 Workflow

Many users were initially confused when presented with our
system. We hope this can be at least alleviated by making the
workflow of our system more apparent. This encompasses using
the saved build order tree, the input form, and the left/right
display actions. Adding more visual cues and tooltips will
hopefully remove the need for lengthy explanations or manuals on
the tool.

6.2 Clustering

When analyzing a generated visualization of a build order, it is
useful to be able to quickly focus on a particular category of

objects such as workers, army, buildings, research, and actions so
that they can be easily compared to another build order. We
partially addressed this issue by color coding these different
categories. However, an improved algorithm which groups similar
objects by category could greatly improve readability. For
example, in the visualization of a build order, workers could be
grouped in the first few columns, units in the next few, then
buildings, and then research and actions. Doing so could allow
users to easily locate objects within a category. Filtering could be
another option, though generally users would still want to have a
sense of other categories even when focusing on one of them.

6.3 Dynamic Edits

Currently, users can edit a build order by modifying the text, and
then re-rendering the visualization. An alternative feature where
users can directly manipulate the timeline to add and remove
objects would make it easier to tweak a build order while
comparing it with another one in order to perfect a timing. The
ability to drag objects into and out of the timeline would improve
interactivity and provide the user with greater flexibility in
modifying and visualizing build orders.

6.4 Sharing

An important aspect of our project is the ability to bring existing
build orders into the system so that users can retrieve them at a
future time. We have provided an interface for saving builds, but
have not implemented the database for permanent storage due to
time constraints.

A further step would be making it easier to share build orders
saved into our system, which would allow us to feed them back
into the community. Currently, users can copy and paste the text
of the build orders, which can then be fed as input for our
visualization. Perhaps we can allow users to share URLs that
direct them to the visualizations themselves, and allowing them to
export and import their saved build orders. Doing so can help the
community effectively communicate and develop new build
orders.

7 Conclusion

In this paper, we described a visualization tool for analyzing build
orders for Starcraft II. We reviewed the strengths and weaknesses
of related work, and detailed the implementation of the tool and
techniques used. We then discussed the results of our tool, and,
finally, we outlined the several future directions we plan to take
this project into. Since most real-time strategy games have similar
fundamental aspects such as structures, technological
advancements, attacking units, and building, resource, and timing
constraints, the visualization techniques we used here for Starcraft
II can be generalized to other such games.

Acknowledgements

We would like to thank Jasper A. Visser for creating a tool for
calculating optimal timings of build orders and writing the syntax
guide. In retrospect, replicating even a lesser imitation of his
system would have been impossible under our time constraints.
We would also like to thank Maneesh Agrawala and his Spring
2011 CS294 class for guidance and Blizzard for creating great
games and fostering a wonderful community.

References

1. Real-time strategy. http://en.wikipedia.org/wiki/Real-
time_strategy

2. Build order. http://en.wikipedia.org/wiki/Build_order

3. Team Liquid. http://wiki.teamliquid.net/starcraft2/Strategy

4. Sc2calc. http://sc2calc.org/build_order/

5. Protovis. http://vis.stanford.edu/protovis/

6. Gantt chart. http://en.wikipedia.org/wiki/Gantt_chart

7. Colorbrewer 2. http://colorbrewer2.org/

8. Starcraft II. http://us.blizzard.com/en-us/games/sc2/

