Spatial Layout

Maneesh Agrawala

CS 294-10: Visualization
Spring 2011

Final project
Design new visualization method
- Pose problem, Implement creative solution
Deliverables
- Implementation of solution
- 8-12 page paper in format of conference paper submission
- 2 design discussion presentations
Schedule
- Project proposal: 3/14
- Project presentation: 4/4
- Final paper and presentation: TBD
Grading
- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Example: Timeline label layout

Problem
Input: Set of graphic elements (scene description)
Goal: Select visual attributes for elements
- Position
- Orientation
- Size
- Color
- ...

Topics
Direct rule-based methods
Constraint satisfaction
Optimization
Example-based methods
Direct Rule-Based Methods

Rule-based timeline labeling
- Alternate above/below line
- Center labels with respect to point on line

Excentric labeling [Fekete & Plaisant 99]
http://www.cs.umd.edu/hcil/excentric/

Dynamic space management [Bell 00]
Manage free space on desktop to prevent window overlap

Dynamic space management [Bell 00]
Goal: Place new elements to avoid overlap
- Elements are axis-aligned rectangles
- Keep track of largest empty space rectangles
Dynamic space management [Bell 00]

Goal: Place new elements to avoid overlap
- Elements are axis-aligned rectangles
- Keep track of largest empty space rectangles

![Diagram of dynamic space management](image)

Pros and cons

Pros
- Designed to run extremely quickly
- Simple layout algorithms are easy to code

Cons
- Complex layouts require large rule bases with lots of special cases

Linear Constraint Satisfaction

Network of layout constraints

Constraints as linear equations

- **One-way constraints**
 - Form a directed acyclic graph (DAG).
 - Given the value for any variable, we propagate its value locally through the graph updating the other variable.
Page layout example [Weitzman and Wittenburg 94]

Adaptive document layout [Jacobs 03]

Users authors templates which use one-way constraints to adapt to changes in page size

ADL template authoring [Jacobs 03]

Pros and cons

Pros
- Often run fast (at least one-way constraints)
- Constraint solving systems are available online
- Can be easier to specify relative layout constraints than to code direct layout algorithm

Cons
- Easy to over-constrain the problem
- Constraint solving systems can only solve some types of layout problems
- Difficult to encode desired layout in terms of mathematical constraints
Scene description

- Geometry: polygons, bounding boxes, lines, points, etc.
- Layout parameters: position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify ...
- Initialize/Perturb functions: Form a layout
- Penalty function: Evaluate quality of layout
- ... and find layout that minimizes penalty

Optimization algorithms

There are lots of them:
- line search, Newton’s method, A*, tabu, gradient descent, conjugate gradient, linear programming, quadratic programming, simulated annealing, ...

Differences
- Speed
- Memory
- Properties of the solution
- Requirements

Simulated annealing

```plaintext
currL := Initialize()
while (! termination condition)
    newL := Perturb(currL)
    currE := Penalty(currL)
    newE := Penalty(newL)
    if (newE < currE) or (rand[0,1) < \delta \Delta E / T)
        currL := newL
        Decrease(T)
```

Perturb: Efficiently cover layout design space
Penalty: Describes desirable/undesirable layout features
Many dimensions → large space

- Position (x, y)
- Leader line
- Word wrap
- Color
- Alignment
- Orientation
- Scale

2D x 50 labels → 100D space

Penalties

- Overlap & Distance
 - Label – anchor slice
 - Label – other slices
 - Label – label
- Leader lines
- Intersections
- Word Wrap

Annealing minimizes sum of all penalties
Overlap: Label – Anchor Slice

Avoid partial overlap: No penalty if fully inside/outside

Overlap: Label – Anchor Slice

Penalize partial overlap by overlap amount

Distance: Label – Anchor Slice

Ensure label near center of edge of anchor slice

Distance: Label – Anchor Slice

Minimize distance d

Penalties

- Overlap & Distance
 - Label – anchor slice
 - Label – other slices
 - Label – label
- Leader lines
- Length
- Intersections
- Word Wrap
- Annealing minimizes sum of all penalties

Demo
Pros and cons

Pros
- Much more flexible than linear constraint solving systems

Cons
- Can be relatively slow to converge
- Need to set penalty function parameters (weights)
- Difficult to encode desired layout in terms of mathematical penalty functions

Design principles

Sometimes specified in design books
- Tufte, Few, photography manuals, cartography books ...
- Often specified at a high level
- Challenge is to transform principles into constraints or penalties

Example-Based Methods

Preference elicitation [Gajos and Weld 05]

Learn characteristics of good designs
- Generate designs based on a parameterized design space
- Ask designers if they are good or bad
- Learn good parameters values based on responses

Nonlinear Inverse Opt. [Vollick et al. 07]

Learn label layout style from single example
- Horizontal/Vertical

Nonlinear Inverse Opt. [Vollick et al. 07]

Learn label layout style from single example
- Parallel Leader Lines
Artistic Resizing

A Technique for Rich Scale-Sensitive Vector Graphics

Pierre Dragicevic
Stéphane Chatty
David Thevenin
Jean-Luc Vinot

The Resizing Problem

- Fixed size
- Naive scaling
- Artistic resizing

Expressing Artistic Resizing

- Commonly described using formulae

\[w_L = \frac{(w - w_B)}{2} \]
\[h_L = \frac{(h - h_B)}{2} \]
\[w_B = 5 \]
\[h_B = 5 \]
\[r = 20 \]

- These formulae are:
 - Translated into code by the programmer
 - Or used as an input to constraint-solving systems

Example-Based Approach

1. Designers produce variants using their authoring tool
2. System interprets the example set

Artistic Resizing

How does it work?

- Assumes the exclusive use of:
 - Copy & paste for adding new examples
 - Affine transformation tools (move, scale, rotate, shear)
- Based on local interpolation of transformations

Artistic Resizing

How does it work?

- Each variant of \(T_1 \) is associated with the example's bounding box
Artistic Resizing
How does it work?

- Problem of multivariate interpolation

Pros and cons

Pros
- Often much easier to specify desired layout via example

Cons
- Usually requires underlying model
- Model will constrain types of layouts possible
- Large design spaces likely to require lots of examples to learn parameters well