Spatial Layout

Maneesh Agrawala

CS 294-10: Visualization Spring 2011

Announcements

Final project

Design new visualization method Pose problem, Implement creative solution

Deliverables

Implementation of solution

8-12 page paper in format of conference paper submission
2 design discussion presentations

Schedule

- Project proposal: 3/14
- Project presentation: 4/4
- Final paper and presentation: TBD

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Example: Timeline label layout

Problem

Input: Set of graphic elements (scene description) Goal: Select visual attributes for elements

Color

Alternative Automative Automative

Topics

Direct rule-based methods Constraint satisfaction Optimization **Example-based methods**

Rule-based timeline labeling

Center labels with respect to point on line

- Elements are axis-aligned rectangles
- Keep track of largest empty space rectangles

Pros and cons

Pros

- Designed to run extremely quickly
- Simple layout algorithms are easy to code

Cons

Complex layouts require large rule bases with lots of special cases

Network of layout constraints

Page layout example [Weitzman and Wittenburg 94]		
<pre>[Defruit (Make-Article Th Article -> Text Text Te (Arthor < 1) 2 (Description-Of 4)) (Description-Of 4)) (Tricle-name 0) = r (article-name 0) = r (article-name 0) = r (cop-ligned 4)) (cop-ligned 4) (cop-ligned 4</pre>		- -

Adaptive Grid~Based Document Layout

Chuck Jacobs¹ Wilmot Li² evan schrier² David Bargeron¹ David Salesin^{1,2}

¹MICROSOFT RESEARCH ²UNIVERSITY OF WASHINGTON

Pros and cons

Pros

- Often run fast (at least one-way constraints)
- Constraint solving systems are available online
- Can be easier to specify relative layout constraints than to code direct layout algorithm

Cons

- Easy to over-constrain the problem
- Constraint solving systems can only solve some types of layout problems
- Difficult to encode desired layout in terms of mathematical constraints

Layout as optimization

Scene description

- Geometry: polygons, bounding boxes, lines, points, etc.
- **Layout parameters:** position, orientation, scale, color, etc.

Large design space of possible layouts

To use optimization we will specify ...

- Initialize/Perturb functions: Form a layout
- Penalty function: Evaluate quality of layout
- ... and find layout that minimizes penalty

Optimization algorithms

There are lots of them:

line search, Newton's method, A*, tabu, gradient descent, conjugate gradient, linear programming, quadratic programming, simulated annealing, ...

Differences

- Speed
- Memory
- Properties of the solution
- Requirements

Simulated annealing currL ← Initialize() - Form initial layout - Perturb to form new layout currE ← Penalty(currL) Evaluate quality of layouts if((newE < currE) or (rand[0,1) < $e^{-\Delta E/T}$)) Always accept lower penalty Small probability of accepting higher penalty Decrease(T) Perturb: Efficiently cover layout design space Penalty: Describes desirable/undesirable layout features

Pros and cons

Pros

Much more flexible than linear constraint solving systems

Cons

- Can be relatively slow to converge
- Need to set penalty function parameters (weights)
- Difficult to encode desired layout in terms of mathematical penalty functions

Design principles

Sometimes specified in design books

- Tufte, Few, photography manuals, cartography books ...
 - Often specified at a high level
 - Challenge is to transform principles into constraints or penalties

Cartographer Eduard Imhof's labeling heurists transformed into penalty functions for an optimization based point labeling system [Edmondson 97]

Preference elicitation [Gajos and Weld 05]

Learn characteristics of good designs

- Generate designs based on a parameterized design space
 - Ask designers if they are good or bad
 - Learn good parameters values based on responses

Pros and cons

Pros

Often much easier to specify desired layout via example

Cons

- Usually requires underlying model
- Model will constrain types of layouts possible
- Large design spaces likely to require lots of examples to learn parameters well