Using Space Effectively: 2D

Maneesh Agrawala

CS 294-10: Visualization Spring 2011 Last Time: Color

Multivariate Color Sequences

Get it right in black & white

Value

- Perceived lightness/darkness
- Controlling value primary rule for design

Value defines shape

- No edge without lightness difference
- No shading without lightness variation

Value difference (contrast)

- Defines legibility
- Controls attention
- Creates layering

Readability

If you can't use color wisely, it is best to avoid it entirely Above all, do no harm

> If you can't use color wisely, it is best to avoid it entirely Above all, do no harm.

Why does the logo work?

Value Control Google^{**} Google^{**}

Legibility and Contrast

Legibility

- Function of contrast and spatial frequency
- "Psychophysics of Reading" Legge, et. al.

Legibility standards

- 5:1 contrast for legibility (ISO standard)
- 3:1 minimum legibility
- 10:1 recommended for small text

How do we specify contrast?

- Ratios of foreground to background luminance
- Different specifications for different patterns

Additional Resources

Maureen Stone's website Final copy of slides, references A Field Guide to Digital Color A.K. Peters

Final project

Design new visualization method

Pose problem, Implement creative solution

Deliverables

- Implementation of solution
- 8-12 page paper in format of conference paper submission
- 2 design discussion presentations

Schedule

- Project proposal: 3/1
- Project presentation: 4/4
- Final paper and presentation: TBD

Grading

- Groups of up to 3 people, graded individually
 Clearly report responsibilities of each member

Using Space Effectively: 2D

Topics

Displaying data in graphs Banking to 45 degrees Fitting data and depicting residuals Graphical calculations Zooming and distortion

Discussion

Due to computational complexity... Prefer avg-slope to avg-weighted-orient Prefer avg-orient to global-orient-resolution

But due to perceptual effectiveness...? Cleveland recommends weighted-avg-orient But, goal is to maximize discriminability

Perceptual experiments needed to clarify

Multi-Scale Banking to 45°

Goal

Optimized aspect ratios for varying scales

Approach

Identify Scales of Interest Generate Scale-Specific Trend Lines Bank Trend Lines to 45° Filter Resulting Aspect Ratios

Multi-Scale Banking to 45°

Use Spectral Analysis to identify trends Find strong frequency components Lowpass filter to create trend lines

Applications						
Small Multiples	Trend Explorer					
Sparklines						
VFINX 119.27 GOOG 364.80 MSFT 27.14 YHOO 32.18						
	MAN MAN MANA MANA					

າດ	w	erful b	rain	?		
	_			-		
	Micro	soft Evcel - animal.vls				ni xi
18	File	Edit View Insert Format	Tools Data W	indow Help	- 1	8 ×
	A	✓				
	A	В	C	D	E	1
1	ID	Name	Body Weight	Brain Weight		-
2	1	Lesser Short-tailed Shrew	5	0.14		
3	2	Little Brown Bat	10	0.25		
4	3	Mouse	23	0.3		
5	4	Big Brown Bat	23	0.4		
6	6	Musk Shrew	48	0.33		
7	6	Star Nosed Mole	60	1		
8	7	Eastern American Mole	75	1.2		
9	8	Ground Squirrel	101	4		
10) 9	Tree Shrew	104	2.5		
11	10	Golden Hamster	120	1		-
12	2 11	Mole Rate	122	3		
1	3 12	Galago	200	5		
12	1 13	Rat	280	1.9		
16	5 14	Chinchilla	425	6.4		
16	5 15	Desert Hedgehog	550	2.4		
11	16	Rock Hyrax (a)	750	12.3		
18	3 17	European Hedgehog	785	3.5		
15	3 18	Tenrec	900	2.6		
2	15	Arctic Ground Squirrel	920	5.7		
21	2	African Giant Pouched Rat	1000	6.6		
2	2 21	Guinea Pig	1040	5.5		
23	3 22	Mountain Beaver	1350	8.1		
2	23	Slow Loris	1400	12.5		
2	5 24	Genet	1410	17.5		
26	3 25	Phalanger	1620	11.4		-
	4 1	animal /	11		1 0	чĒ
Pa	-		Annta			÷.,
Re	947				_	- 11

Graphical Calculations

_	heory			
	$ x_1(u) $	$y_1(u)$	$w_1(u)$	
	$x_2(v)$	$y_2(v)$	$w_2(v)$	= 0
	$x_3(s,t)$	$y_3(s,t)$	$W_3(s,t)$	
		0		

Slide rule
Model 1474-66 Electrotechnica 18 Scales
Tehnolemn Timisoara Slide Rule Archive http://pubpages.unh.edu/~jwc/tehnolemn/

