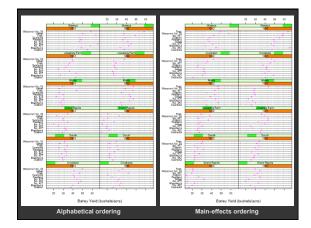
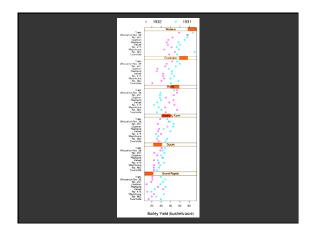
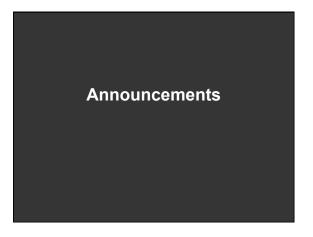

# Last Time: Generalized Selection

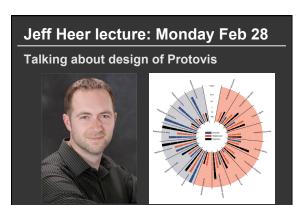


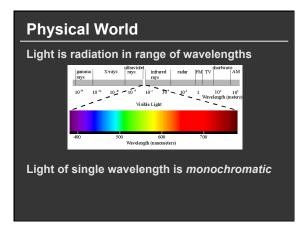


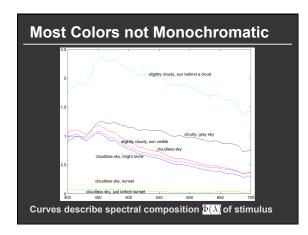


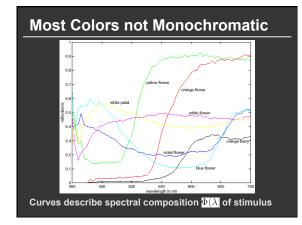



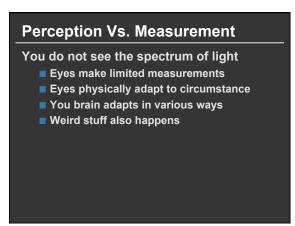




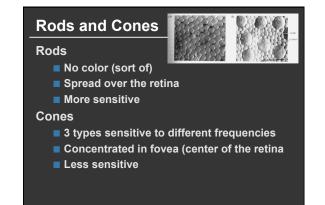





Can work alone or in pairs Final write up due before class on Mar 7, 2011





| What is Col                     | or?                                          |                                                                    |
|---------------------------------|----------------------------------------------|--------------------------------------------------------------------|
| Physical World                  | Visual System                                | Mental Models                                                      |
| Lights, surfaces, ——<br>objects | —→ Eye, optic ——→<br>nerve, visual<br>cortex | Red, green, brown<br>Bright, light, dark,<br>vivid, colorful, dull |
|                                 |                                              | Warm, cool, bold,<br>blah, attractive, ugly,<br>pleasant, jarring  |
|                                 |                                              |                                                                    |
|                                 |                                              |                                                                    |

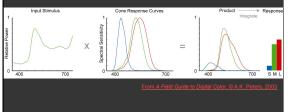

| Color N                               | lodels                 |                        |                                |                                  |
|---------------------------------------|------------------------|------------------------|--------------------------------|----------------------------------|
|                                       |                        |                        |                                |                                  |
| Light<br>Energy                       | Cone<br>Response       | Opponent Encoding      | → Perceptual<br>Models         | → Appearance<br>Models           |
| Spectral<br>distribution<br>functions | Encode as three values | Separate<br>lightness, | Color<br>"Space"               | Color in<br>Context              |
| F(λ)                                  | (L,M,S)<br>CIE (X,Y,Z) | chroma<br>(A,R-G,Y-B)  | Hue<br>lightness<br>saturation | Adaptation<br>Background<br>Size |
|                                       |                        |                        | CIELAB<br>Munsell<br>(HVC)     | CIECAM02                         |
|                                       |                        |                        |                                |                                  |

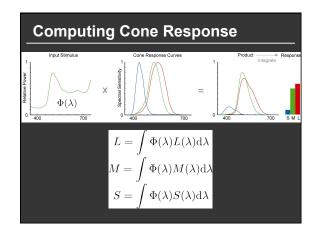


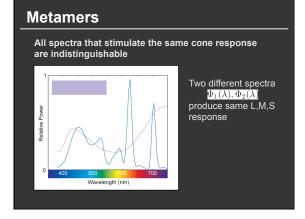


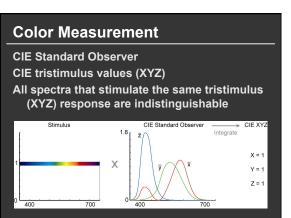


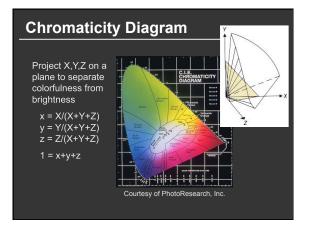


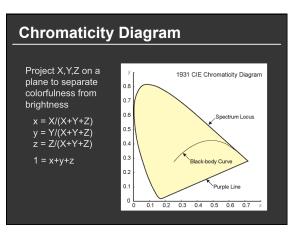





# Cone Response

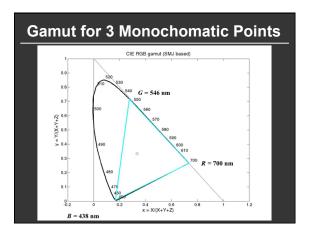

#### Encode spectra as three values

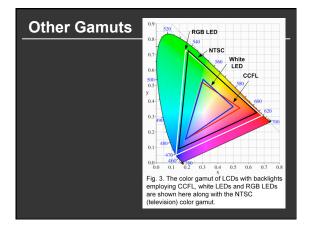

- Long, medium and short (LMS)
- Trichromacy: only LMS is "seen"
- Different spectra can "look the same"

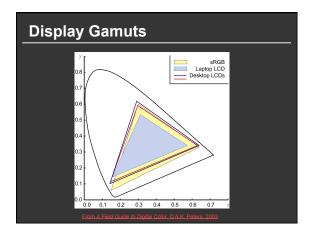


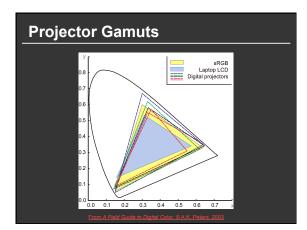






### Gamut

- Gamut is the chromaticities generated by a set of primaries
- Because everything we've done is linear, interpolation between chromaticities on a chromaticity plot is also linear
- Thus the gamut is the convex hull of the primary chromaticities









| Color M               | lodels                 | ;                       |                                 |                                       |
|-----------------------|------------------------|-------------------------|---------------------------------|---------------------------------------|
|                       |                        |                         |                                 |                                       |
| Light<br>Energy       | Cone _<br>Response     | → Opponent → Encoding → | Perceptual<br>Models            | → Appearance<br>Models                |
| Spectral distribution | Encode as three values | Separate<br>lightness,  | Color<br>"Space"                | Color in<br>Context                   |
| functions<br>F(λ)     | (L,M,S)<br>CIE (X,Y,Z) | chroma<br>(A,R-G,Y-B)   | Hue,<br>lightness<br>saturation | Adaptation,<br>Background,<br>Size, … |
|                       |                        |                         | CIELAB<br>Munsell               | CIECAM02                              |
|                       |                        |                         | (HVC)                           |                                       |
|                       |                        |                         |                                 |                                       |

# **Opponent Color**

#### Definition

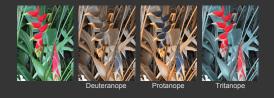
- Achromatic axis
- R-G and Y-B axis
- Separate lightness from chroma channels

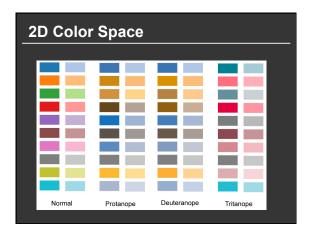
First level encoding

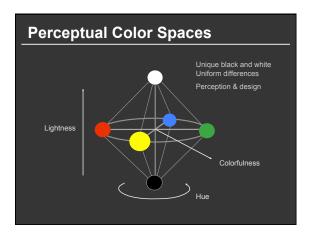
- Linear combination of LMS
- Before optic nerve
- Basis for perception
- Defines "color blindness"






# Vischeck

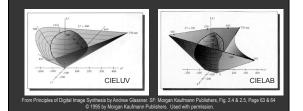

Simulates color vision deficiencies


Web service or Photoshop plug-in

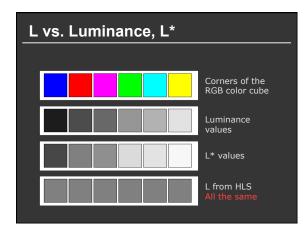
Robert Dougherty and Alex Wade

www.vischeck.com





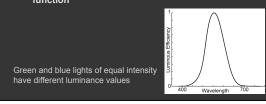


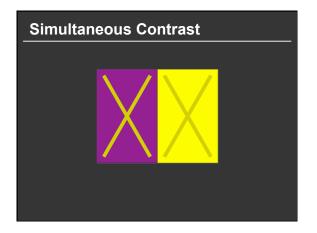

# CIELAB and CIELUV

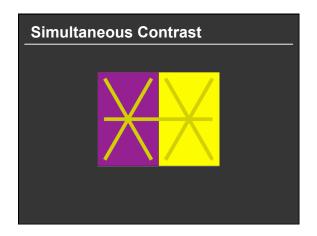
Lightness (L\*) plus two color axis (a\*, b\*) Non-linear function of CIE XYZ Defined for computing color differences (reflective)



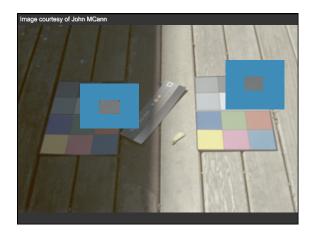

# Psuedo-Perceptual Models HLS, HSV, HSB NOT perceptual models Simple renotation of RGB • View along gray axis • See a hue hexagon • L or V is grayscale pixel value Cannot predict perceived lightness

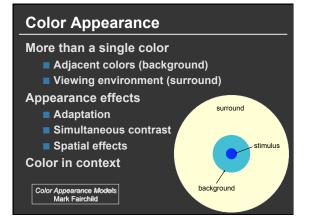



# Luminance & Intensity

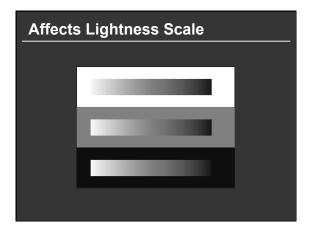

Intensity

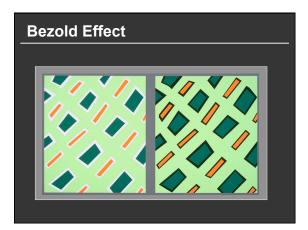
- Integral of spectral distribution (power) Luminance
  - Intensity modulated by wavelength sensitivity
  - Integral of spectrum x luminous efficiency function

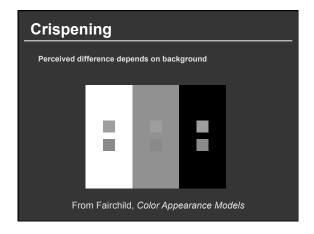


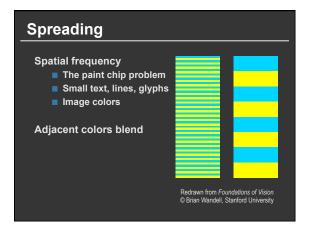


| Color N                               | lodels                    |                                  |                                 |                                       |
|---------------------------------------|---------------------------|----------------------------------|---------------------------------|---------------------------------------|
|                                       |                           |                                  |                                 |                                       |
| Light<br>Energy ──                    | Cone<br>Response          | → Opponent –<br>Encoding –       | → Perceptual<br>Models          | → Appearance<br>Models                |
| Spectral<br>distribution<br>functions | Encode as<br>three values | Separate<br>lightness,<br>chroma | Color<br>"Space"                | Color in<br>Context                   |
| F(λ)                                  | (L,M,S)<br>CIE (X,Y,Z)    | (A,R-G,Y-B)                      | Hue,<br>lightness<br>saturation | Adaptation,<br>Background,<br>Size, … |
|                                       |                           |                                  | CIELAB<br>Munsell<br>(HVC)      | CIECAM02                              |
|                                       |                           |                                  |                                 |                                       |
|                                       |                           |                                  |                                 |                                       |



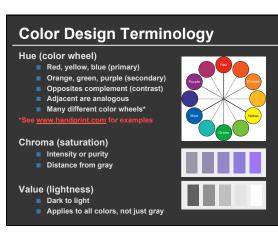


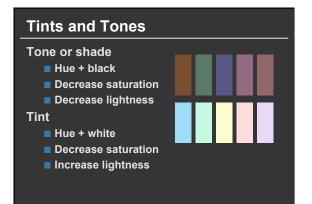



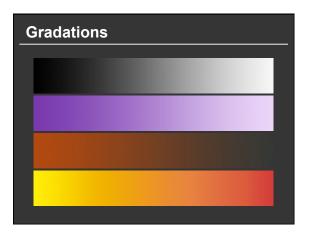





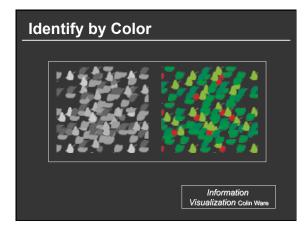



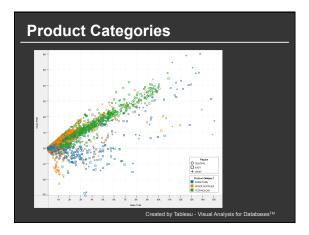






| Color I               | Models                 |                            |                                 |                                                                                    |
|-----------------------|------------------------|----------------------------|---------------------------------|------------------------------------------------------------------------------------|
|                       |                        |                            |                                 |                                                                                    |
| Light<br>Energy —     | _ Cone<br>Response     | → Opponent —<br>Encoding — | Perceptual<br>Models            | Appearance<br>Models                                                               |
| Spectral distribution | Encode as three values | Separate<br>lightness,     | Color<br>"Space"                | Color in<br>Context                                                                |
| functions<br>F(λ)     | (L,M,S)<br>CIE (X,Y,Z) | chroma<br>(A,R-G,Y-B)      | Hue,<br>lightness<br>saturation | Adaptation,<br>Background,<br>Size, …                                              |
|                       |                        |                            |                                 | CIECAM02<br>Adaptation<br>Contrast effects<br>Image appearance<br>Complex matching |






# **Fundamental Uses**

- To label
- To measure
- To represent or to imitate reality
- To enliven or decorate

To Label





| Gro   | bup   | bin   | <b>g</b> , I | Hiç   | ghl   | igł   | ntir  | ng    |       |       |       |       |
|-------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       |       |       |              |       |       |       |       |       |       |       |       |       |
|       | Х     | Y     | Z            | Х     | Y     | Ζ     | Х     | Y     | Ζ     | Х     | Υ     | Ζ     |
| red   | 25.37 | 13.70 | 0.05         | 26.27 | 14.13 | 0.04  | 18.41 | 10.16 | 0.05  | 17.43 | 9.30  | 0.00  |
| green | 22.14 | 51.24 | 0.35         | 20.68 | 49.17 | 0.44  | 21.11 | 46.00 | 0.20  | 16.36 | 37.95 | 0.12  |
| blue  | 13.17 | 3.71  | 74.89        | 15.38 | 5.20  | 86.83 | 11.55 | 3.37  | 65.53 | 9.96  | 3.44  | 56.14 |
| gray  | 63.46 | 73.30 | 78.05        | 64.66 | 71.99 | 90.08 | 52.96 | 62.49 | 67.99 | 45.54 | 53.65 | 58.14 |
| black | 0.66  | 0.70  | 0.77         | 0.63  | 0.66  | 1.09  | 0.47  | 0.58  | 0.70  | 0.44  | 0.54  | 0.71  |
|       |       |       |              |       |       |       |       |       |       |       |       |       |
|       | х     | Y     | z            | Х     | Y     | Z     | х     | Y     | Z     | Х     | Y     | Z     |
| red   | 25.37 | 13.70 | 0.05         | 26.27 | 14.13 | 0.04  | 18.41 | 10.16 | 0.05  | 17.43 | 9.30  | 0.00  |
| green | 22.14 | 51.24 | 0.35         | 20.68 | 49.17 | 0.44  | 21.11 | 46.00 | 0.20  | 16.36 | 37.95 | 0.12  |
| blue  | 13.17 | 3.71  | 74.89        | 15.38 | 5.20  | 86.83 | 11.55 | 3.37  | 65.53 | 9.96  | 3.44  | 56.14 |
| gray  | 63.46 | 73.30 | 78.05        | 64.66 | 71.99 | 90.08 | 52.96 | 62.49 | 67.99 | 45.54 | 53.65 | 58.14 |
| black | 0.66  | 0.70  | 0.77         | 0.63  | 0.66  | 1.09  | 0.47  | 0.58  | 0.70  | 0.44  | 0.54  | 0.71  |
|       |       |       |              |       |       |       |       |       |       |       |       |       |
|       |       |       |              |       |       |       |       |       |       |       |       |       |

# **Considerations for Labels**

How critical is the color encoding?

- Unique specification or is it a "hint"?
- Quick response, or time for inspection?
- Is there a legend, or need it be memorized?

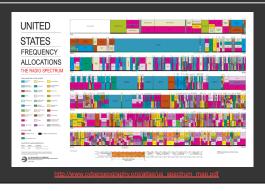
**Contextual issues** 

- Are there established semantics?
- Grouping or ordering relationships?
- Surrounding shapes and colors?
- Shape and structural issues
  - How big are the objects?
  - How many objects, and could they overlap?
  - Need they be readable, or only visible?

# **Controls and Alerts**

Aircraft cockpit design

- Quick response
   Critical information and conditions
- Memorized
- 5-7 unique colors, easily distinguishable


#### Highway signs

- Quick response
- Critical but redundant information
- 10-15 colors?

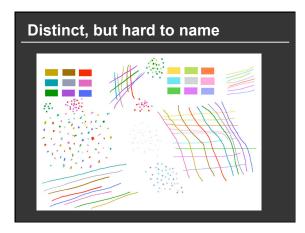
Typical color desktop

- Aid to search
- Redundant information
- Personal and decorative
- How many colors?

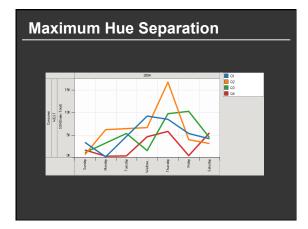
## Radio Spectrum Map (33 colors)



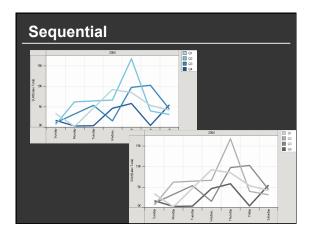
| Distin                                                                                                                 | guis                                                                               | hable                                                            | on Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| RADIO SERVICES C<br>ADDIALITICA<br>MODILITICA<br>MODILITICA<br>MODILITICA<br>ADDIALITICA<br>ADDIALITICA<br>ADDIALITICA | OLOR LEGEND<br>MERAVELITE<br>UNONCOLE<br>UNONCOLE<br>SPECIFIC                      | ROCKTINION<br>ROCKTINION<br>SPELITE<br>ROCLICATON                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mon Walt F                                                                 |
|                                                                                                                        | WATTNE HORKE<br>WATTNE HORKE<br>SATELUTE<br>WATTNE<br>RECONVICATION<br>WETCORLOGOL |                                                                  | Contraction of the second | B<br>B<br>B<br>MHz                                                         |
| STELLT                                                                                                                 | Add<br>METEOROLODICAL<br>SATELUTE<br>MOBLE<br>MOBLE SATELUTE                       | BING RESARCH<br>BING RESARCH<br>SUNDING PROJECT<br>AND THE STANL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ut Biordiana Redeciation 200<br>200 Redeciation 200<br>200 Redeciation 200 |
|                                                                                                                        |                                                                                    | NOTINE SOAL SHELL TE                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 GHz                                                                      |

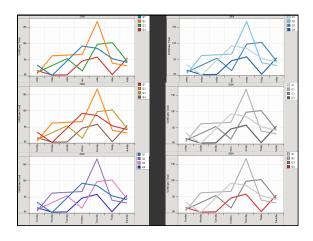

# **Tableau Color Example**

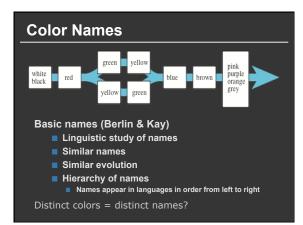
#### **Color palettes**

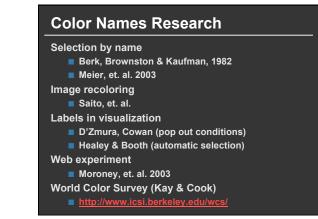

- How many? Algorithmic?
- Basic colors (regular and pastel)
- Extensible? Customizable?


#### Color appearance


- As a function of size
- As a function of background
- Robust and reliable color names





| Та | able   | eau     | Colo   | ors   |             |
|----|--------|---------|--------|-------|-------------|
|    |        | Regular | Medium | Light | Ultra-light |
|    | Blue   | text    | text   | text  |             |
| Ċ  | Orange |         |        |       |             |
|    | Green  | text    | text   | text  | text        |
|    | Red    | text    | text   | text  | text        |
|    | Purple |         |        |       |             |
|    | Brown  |         |        |       |             |
|    | Pink   |         |        |       |             |
|    | Gray   |         |        |       | text        |
|    | Gold   | text    | text   | text  | text        |
|    | Teal   |         |        |       |             |
|    |        |         |        |       |             |





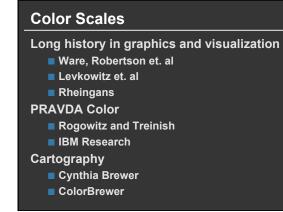


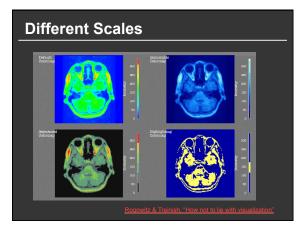


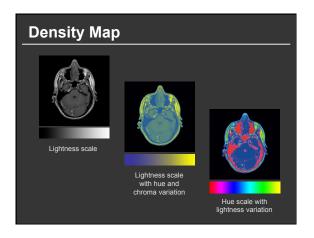


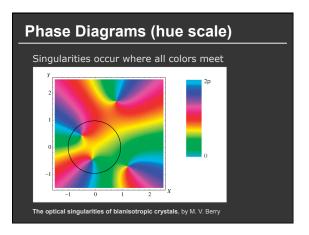






#### **Data to Color**


#### Types of data values


- Nominal, ordinal, numeric
- Qualitative, sequential, diverging
- Types of color scales


#### Hue scale

- Nominal (labels)
- Cyclic (learned order)
- Lightness or saturation scales
  - Ordered scales
- Lightness best for high frequency
- More = darker (or more saturated)
- Most accurate if quantized









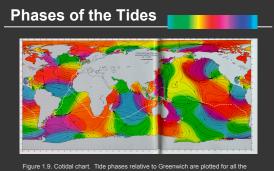
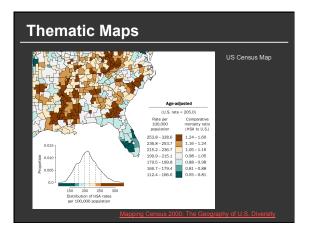
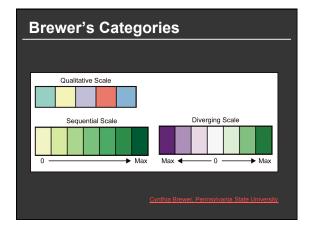


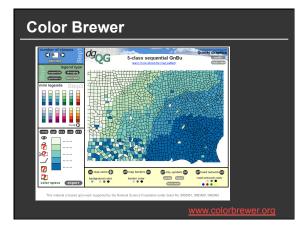

Figure 1.9. Cotidal chart. Tide phases relative to Greenwich are plotted for all the world's oceans. Phase progresses from red to orange to yellow to green to blue to purple. The lines converge on anphidromic points, singularities on the earth's surface where there is no defined tide. [Winfree, 1987 #1195, p. 17].

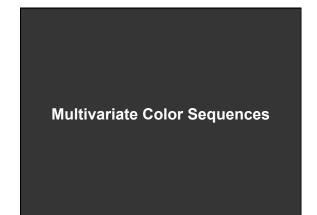
### **Brewer Scales**

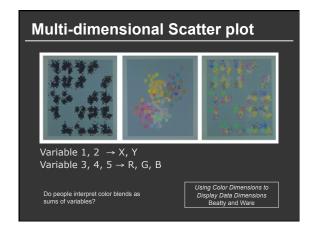
Nominal scales


Distinct hues, but similar emphasis


#### Sequential scale


- Vary in lightness and saturation
- Vary slightly in hue


**Diverging scale** 


- Complementary sequential scales
- Neutral at "zero"









