Perception

Maneesh Agrawala

CS 294-10: Visualization Spring 2011

Last Time: Multidimensional Visualization

Visualizing Multiple Dimensions

Strategies

- Avoid "over-encoding" Use space and small multiples intelligently Reduce the problem space Use interaction to generate *relevant* views
- There is rarely a single visualization that answers all questions. Instead, the ability to generate appropriate visualizations quickly is key

Polaris/Tableau Approach

Insight: simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa

Use smart defaults for visual encodings

Recently: automate visualization design (ShowMe – Like APT)

Parallel Coordinates

Inselberg's Principles

- 1. Do not let the picture scare you
- 2. Understand your objectives – Use them to obtain visual cues
- 3. Carefully scrutinize the picture
- 4. Test your assumptions, especially the "I am really sure of's"
- 5. You can't be unlucky all the time!

2

Mackinlay's ranking of encodings

QUANTITATIVE Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape ORDINAL Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape NOMINAL Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Topics

Signal Detection Magnitude Estimation Pre-Attentive Visual Processing Using Multiple Visual Encodings Gestalt Grouping Change Blindness

Exponents of power law		
Sensation	Exponent	
Loudness	0.6	
Brightness	0.33	
Smell	0.55 (Coffee) - 0.6 (Heptane)	
Taste	0.6 (Saccharine) -1.3 (Salt)	
Temperature	1.0 (Cold) – 1.6 (Warm)	
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)	
Duration	1.1	
Pressure	1.1	
Heaviness	1.45	
Electic Shock	3.5	

Most accurate Position (common) scale Position (non-aligned) scale Image: Common definition defi

Mackinlay's ranking of encodings

QUANTITAT	IVE
Position	
Length	
Angle	
Slope	
Area (Size)	
Volume	
Density (Val)
Color Sat	
Color Hue	
Texture	
Connection	
Containmen	t
Shape	

ORDINAL NOMINAL Position Color Hue Texture Position Density (Val) Color Sat Connection Containment Density (Val) Color Hue Texture Connection Color Sat Shape Length Containment Length Angle Slope Angle Area (Size) Slope Volume Area Volume

 Shape
 Shape
 Volume

 Conjectured effectiveness of visual encodings

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

Preattentive conjunctions

Spatial conjunctions are often preattentive

- Motion and 3D disparity
- Motion and color
- Motion and shape
- **3D** disparity and color
- **3D** disparity and shape

Most conjunctions are not preattentive

Feature-integration theory

Speeded classification

Redundancy gain Facilitation in reading one dimension when the other provides redundant information

Filtering interference

Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa Stroop effect – Color naming influenced by word identity, but word naming not influenced by color

