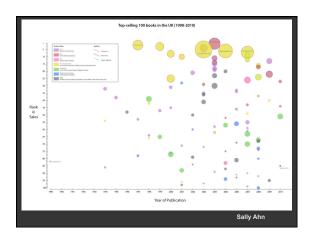
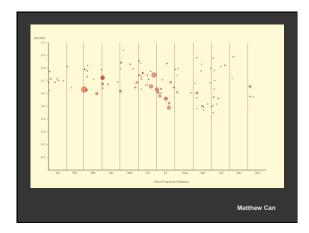
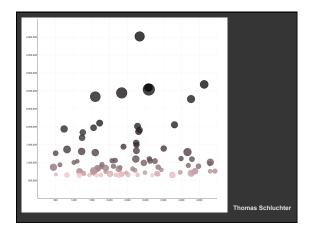
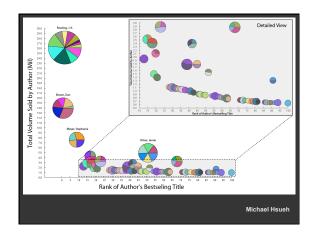
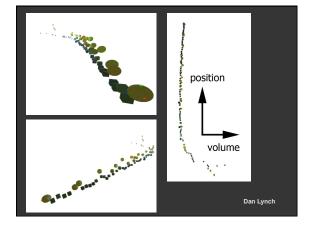

Exploratory Data Analysis

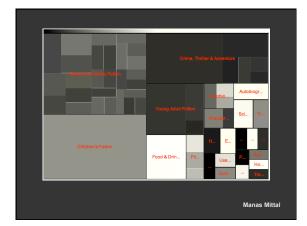

Maneesh Agrawala


CS 294-10: Visualization Spring 2011 Last Time: Visualization Designs









Last Last Time: Jock Mackinlay's APT

Combinatorics of encodings

Challenge:

Pick the best encoding from the exponential number of possibilities $(n+1)^8$

Principle of Consistency:

The properties of the image (visual variables) should match the properties of the data.

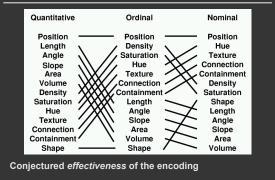
Principle of Importance Ordering:

Encode the most important information in the most effective way.

Mackinlay's expressiveness criteria

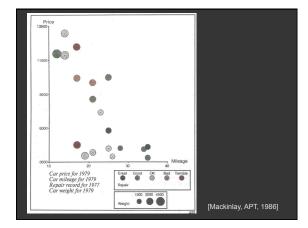
Expressiveness

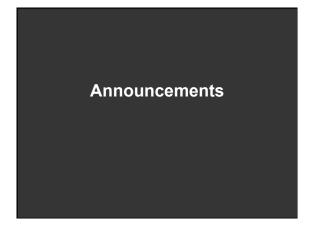
A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express *all* the facts in the set of data, and *only* the facts in the data.

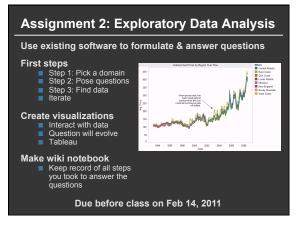

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily *perceived* than the information in the other visualization.

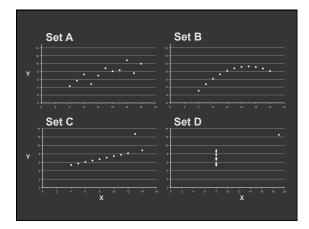

Subject of perception lecture


Mackinlay's ranking



Mackinlay's design algorithm

- User formally specifies data model and type
- APT searches over design space
 - Tests expressiveness of each visual encoding
 - Generates image for encodings that pass test
 - Tests perceptual effectiveness of resulting image
- Outputs most effective visualization

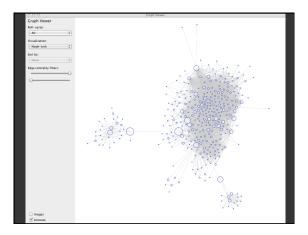


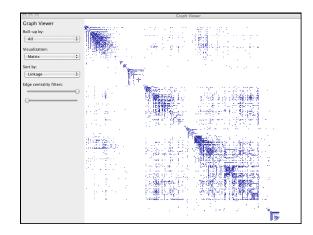
	Set A		Set	Set B		t C	Set D	
	х	Y	<u> </u>	Y	<u> </u>	Y	<u> </u>	Y
		8.04		9.14		7.46		6.58
		6.95		8.14		6.77		5.76
	13	7.58		8.74	13	12.74		7.71
		8.81		8.77		7.11		8.84
	11	8.33	11	9.26	11	7.81		8.47
	14	9.96	14	8.1	14	8.84		7.04
		7.24		6.13		6.08		5.25
		4.26		3.1		5.39		12.5
	12	10.84	12	9.11	12	8.15		5.56
		4.82		7.26		6.42		7.91
		5.68		4.74		5.73		6.89
Summary Statistics Linear Regression								
$u_{\chi} = 9.0 \sigma_{\chi} = 3.317 Y^2 = 3 + 0.5 X$ Anscombe 1973								
	u _y = 7.8	5 σ _Y =2	.03	R ² = 0.	67			

Topics

Exploratory Data Analysis Data Diagnostics Graphical Methods Data Transformation Confirmatory Data Analysis

Statistical Hypothesis Testing


How to gauge the quality of a visualization?


"The first sign that a visualization is good is that it shows you a problem in your data...


...every successful visualization that I've been involved with has had this stage where you realize, "Oh my God, this data is not what I thought it would be!" So already, you've discovered something."

- Martin Wattenberg

Visualize Friends by School?

Berkeley	
Cornell	1111
Harvard	1111111
Harvard University	111111
Stanford	
Stanford University	11111111
UC Berkeley	
UC Davis	11111111
University of California at Berkeley	
University of California, Berkeley	
University of California, Davis	Ш

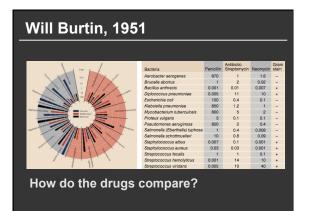
Data Quality & Usability Hurdles

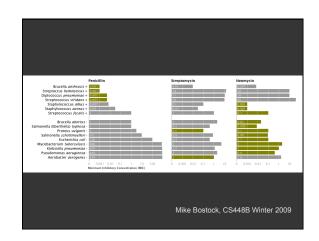
Missing Data Type Conversion Entity Resolution Data Integration

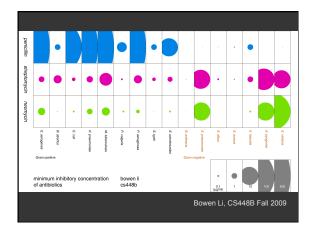
no measurements, redacted, ...? Erroneous Values misspelling, outliers, ...? e.g., zip code to lat-lon diff. values for the same thing?

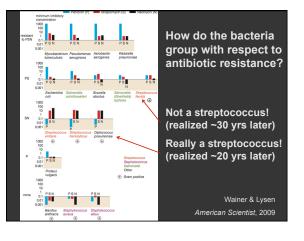
effort/errors when combining data

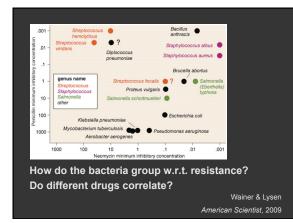
LESSON: Anticipate problems with your data. Many research problems around these issues! Exploratory Analysis: Effectiveness of Antibiotics


The Data Set


Genus of Bacteria	String
Species of Bacteria	String
Antibiotic Applied	String
Gram-Staining?	Pos / Neg
Min. Inhibitory Concent. (g)	Number


Collected prior to 1951


What questions might we ask?


Table 1: Burtin's data.		Antibiotic			
Bacteria	Penicillin	Streptomycin	Neomycin	Gram Staining	
Aerobacter aerogenes	870	1	1.6	negative	
Brucella abortus	1	2	0.02	negative	
Brucella anthracis	0.001	0.01	0.007	positive	
Diplococcus pneumoniae	0.005	11	10	positive	
Escherichia coli	100	0.4	0.1	negative	
Klebsiella pneumoniae	850	1.2	1	negative	
Mycobacterium tuberculosis	800	5	2	negative	
Proteus vulgaris	3	0.1	0.1	negative	
Pseudomonas aeruginosa	850	2	0.4	negative	
Salmonella (Eberthella) <i>typhosa</i>	1	0.4	0.008	negative	
Salmonella schottmuelleri	10	0.8	0.09	negative	
Staphylococcus albus	0.007	0.1	0.001	positive	
Staphylococcus aureus	0.03	0.03	0.001	positive	
Streptococcus fecalis	1	1	0.1	positive	
Streptococcus hemolyticus	0.001	14	10	positive	
Streptococcus viridans	0.005	10	40	positive	

Common Data Transformations

Normalize Log	y _i / Σ _i y _i (among others) log y
Power	У ^{1/к}
Box-Cox Transform	(y ^λ − 1) / λ if λ ≠ 0
	logy ifλ=0
Binning	e.g., histograms
Grouping	e.g., merge categories

Often performed to aid comparison (% or scale difference) or better approx. normal distribution

Lessons

Exploratory Process

- 1 Construct graphics to address questions
- 2 Inspect "answer" and assess new questions3 Repeat!

Transform the data appropriately (e.g., invert, log)

"Show data variation, not design variation"

-Tufte